[

Gen. Math. Notes, Vol. 22, No. 2, June 2014, pp.123-132
ISSN 2219-7184; Copyright (©ICSRS Publication, 2014
WWW. 4-CSTS. 0Tq

Awailable free online at http://www.geman.in

A— Core of a Sequence and Related Inequalities
Meltem Kaya' and Hasan Furkan?

L2Kahramanmaras Siitcii Imam Universitesi, Fen Edebiyat Fakiiltesi
46100-Kahramanmaras, Tiirkiye
'E-mail: meltemkaya55@hotmail.com
2E-mail: hasanfurkan@ksu.edu.tr; hasanfurkan@hotmail.com

(Received: 7-3-14 / Accepted: 12-4-14)

Abstract

The sequence spaces c* and cs* have recently been introduced in [13] and [9],
respectively, as the sets of all sequences whose A— transforms are in the spaces c
and cs, respectively. The main purpose of this study is to introduce the new type
cores, ICn— core and Sx— core, of a real valued sequence and also determine
necessary and sufficient conditions for a matriz A to satisfy Ky — core(Ax) C
IC— core(x), Ka — core(Ax) C o — core(x), Kp — core(Ax) C st — core(x), and
Sp — core(Az) C K — core(x), Sn — core(Az) C o — core(x), Sp — core(Ax) C
st — core(x), for all x € l.

Keywords: Matriz transformatios, core of a sequence , Knopp’s core the-
orem, invariant means, inequalities.

1 Introduction

Let E be a subset of N = {0, 1,2,...}. The natural density § of F is defined by
6(E) =lim, £|{k < n: k € E}|, where the vertical bars indicate the number of
elements in the enclosed set. The sequence = = (xy) is said to be statistically
convergent to the number ¢ if for every e, 0{k : |xy — €] > ¢} =0, [7]. In
this case, we write st — limx = (. By st and sty, we denote the sets of
statistically convergent and statistically null sequences. Fridy and Orhan [7]
have introduced the notions of the statistically boundedness, statistical-limit
superior (st — limsup) and inferior (st — lim inf).

Let /o, and ¢ be the Banach spaces of bounded and convergent sequences
with the usual supremum norm respectively. Let o be a one-to-one mapping
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from NV into itself and 1" be an operator on {, defined by T'x = z4(;). Then
a continuous linear functional ® on ¢, is said to be an invariant mean or a
o—mean if and only if (i) ®(z) > 0 when the sequence x = (z;) has x, >
0 for all k, (ii) ®(e) = 1, where e = (1,1,1,...), (iii) ®(x) = ®(T'z) for all x €
loo.

Throughout this paper we consider the mapping ¢ having no finite orbits,
that is, o?(k) # k for all positive integers k > 0 and p > 1, where o?(k) is pth
iterate of o at k. Thus, a 0— mean extends the limit functional on ¢ in the
sense that ®(x) = limz for all x € ¢, [14]. Consequently, ¢ C V,, where V,
is the set of bounded sequences all of whose 0— means are equal. In the case
o(k) = k+1, a c—mean often called a Banach limit and V, reduces to the set
f of almost convergent sequences introduced by Lorentz [10]. The reader can
refer to Raimi [16] for invariant means.

={rely: lijr)ntpn(x) = s uniformly in n, s =0 —limz},

where

T, + 1Tz, +..+TPx,
p+1

We say that a bounded sequence z = (z}) is o—convergent if and only if
x € V,. By Vi, we denote the space of o—null sequences. It is well known [16]
that x € {, if and only if (Tx — z) € Vi, and V, = Vi, @ Re.

Let A = (anx) be an infinite matrix of real numbers and = = (z}) be a real
number sequence. Then Az = ((Ax),) = (X4 ankzr) denotes the A—transform
of z. If X and Y are two sequence spaces, then we use (X :Y') to denote the
set of all matrices A such that Ax exists and Az € Y for all z € X. Troughout,
> will denote the summation from k£ =1 to oco.

If X and Y are equipped with the limits X —lim and Y — lim, respectively,
A= (an) € (X :Y)and Y — lim,(Ax), = X — lim, o, for all x = (z) € X,
then we say A regularly transforms X into Y and write A = (an;) € (X 1Y),
Let A\ = (\z) be a strictly increasing sequence of positive reals tending to
infinity; that is 0 < A\g < A} < Ay < ..., limg_oo A\px = 00. We define the
matrix A = (\,x) of weighted mean relative to the sequence A by

ton(z) = , toia(z)=0.

n

Ak—Ap—1 < <
Ap =4 w0 0<k<n,
0, k > n,

for all k, n € N. With a direct calculation we derive the equality

1
)\—Zkk—)\klxk, (nEN)
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Let us consider the following functionals defined on /:

[(z) = liminfxy, L(z) = limsup xy,
k—o0 k—o0
1 P
-(x) = limsupsu Tyi(n,
4o () msup sup ;::0 (n),

W(z) = inf L(z+ z).

z€Z

Knopp’s core (or K—core) [3] and o—core [12] of a real bounded sequence x
were defined by the closed intervals [I(z), L(z)] and [—¢,(—2), ¢, (x)] , respec-
tively, and also the inequalities ¢,(Az) < L(z) (o-core of Ax C K-core of x),
4o (Ax) < q,(x) (o-core of Az C o-core of x), for all x € £, was studied. Fur-
thermore, we have that ¢,(z) = W(z) for all z € ¢, [12]. Several researchers
studied on o—core, (see [2,4-6,8,11,15]). Also, the textbook [1] containing the
chapter titled “ Core of a Sequence”, reviewed the Knopp core, o-core, Z-core,
Fp-core.

Recently, Fridy and Orhan [7] introduced the notions of statistical bound-
edness, statistical limit superior (or briefly st —lim sup) and statistical limit in-
ferior (or briefly st—liminf), defined the statistical core (or briefly st—core) of a
statistically bounded sequence is the closed interval [st—lim inf x, st—lim sup z]
and also determined necessary and sufficient conditions for a matrix A to yield
K—core(Ax) C st—core(x) for all x € £

2 The Lemmas

In this section, we prove some lemmas which are needed in proving our main re-
sults and need the following lemma due to Das [6] for the proof of next theorem.

In what follows we only consider that the inequality liminf, (AKII) > 1
holds.

Lemma 2.1 Let ||C|| = ||(¢mi(p))]| < 0o and lim,, sup,, [k (p)| = 0. Then,
there is a y = (yx) € loo such that |ly]] <1 and

lim sup sup Z Cok(P)yr = lim LSUp sup Z |emk(P)]-

m

Lemma 2.2 [13] The inclusions ¢y C ¢* C €4 strictly hold.

Corollary 2.3 [15] The equalities ¢j = ¢y, * = ¢ and £ = s hold if
and only if liminf,, (A"“) > 1.

Lemma 2.4 [9] The inclusions cs* C ¢y and bs* C 02, strictly hold.
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Lemma 2.5 Let ||A]| < co. Then, A € ({s : ¢) if and only if

JA]| = sup Y |ank| < o0, (1)
nok
h%n = Z(/\n — A_1)ank, = o for each k, (2)
m n=0
1 m
hﬂrpZ )\—Z(An—/\n_l) —a| = 0. (3)
k m n=0

Following is a result of Lemma 2.5.

Lemma 2.6 Let |A]| < co. Then, A € ({ : c) if and only if the condi-
tions (1) and (3) of Lemma 2.5 hold with ay, = 0 for all k € N.

Lemma 2.7 Let ||A|| < oco. Then, A € (¢ : ¢*)yeq if and only if the condi-
tions (1) and (2) of Lemma 2.5 hold with oy, = 0 for all k € N and

lirglzk: ;m é‘a(An — A1) @i, = 1. (4)
Lemma 2.8 Let ||[A|| < co. Then, A€ (V, : )yey if and only if

A€ (c:)req, (5)

AT —1) € (ly : ). (6)

Lemma 2.9 Let ||A]| < co. Then, A € (st Nly : )yey if and only if the
condition (5) holds, and

lim Y

keE

for every E C N with §(E) = 0.

m

)\1 Z(An - Anfl)ank =0 (7)

m n=0

Proof. Suppose first that A € (st N ly : ¢*)ey. Then, (5) follows from
the fact that ¢ C st N {y. Now, for a given x € /,, and a subset F of N with
d(FE) =0, let us define a sequence y = (yx) by

) T ke FE
ZVY0 ., keE.

By our assumption, since y € sty N {o, we have Ay € ¢. On the other hand,
since Ay = Y icp QnkTk, the matrix D = (d,;) defined by

d. = Ank ke FE
"l 0 ., k€E,
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for all n, must be in ({y : ¢y). Thus, the necessity of (7) follows from Lemma
2.6.

Conversely, let (5) and (7) hold and let x be any sequence in st N {4 with
st —limz = (. Write E = {k : |z — {| > €} for any given £ > 0, so that
§(E) =0. Since A € (¢ : ¢)eq, we have

k n=0 k n=0 k n=0

= hmz Z — n 1 ank(wk—f) €

mnO

On the other hand,

m

Z()\n — )\n_l)ank

n=0

Z Z - n 1a,nk(33k—£)

mnO

< Jloll 3 5

keE ~'m

+elAflIALL

the condition (7) implies that
hmz Z - n 1 ank(xk - 6) =0. (8)
m n=0

Hence, lim A(Az) = st — limz; that is, A € (st N {y : ¢),eq, which completes
the proof.

Lemma 2.10 Let |A|| < oco. Then, A € ({5 : cs*) if and only if the
condition (1) of the Lemma 2.5 holds and

m 1 n
linrmnz)\—z:)\—)\llalk—ak for each k, (9)
n=0 7'1 =0
m 1 n
lim ) Z)\—ZA—Azlam—ak—O (10)
k In=0 =0

Lemma 2.11 Let |A|| < oco. Then, A € ({ : csy) if and only if the
conditions (1) and (10) hold with oy, =0 for all k € N.

Lemma 2.12 Let ||A|]] < co. Then, A € (c : ¢s*).eq if and only if the
conditions (1) and (9) hold with o, =0 for all k € N and

m 1 n
1%HZ§YZ — Aim1)ag, = 1. (11)

n =0
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Lemma 2.13 Let ||A]| < co. Then, A € (Vy : cs*),ey if and only if
A€ (c,¢8") ey, (12)
AT — 1) € (o, c5p). (13)
Lemma 2.14 Let ||A|| < co. Then, A € (stNly : cs™)pey if and only if the
condition (12) holds, and
m 1 n
™ e In0 An i

for every E C N with §(F) =

3 Kp—Core

In this section, we define the concept of Ky —core and give some core theorems

related to the space .

Definition 3.1 Let x € (. Then, Kx—core of x is defined by the closed
interval [—Ly(—z), La(z)], where

1 m
La(x) = limsup = > (A = A1)z, (15)
m m n=0
From the definition, it is easy to see that Ky—core(x) = {¢} if and only if
lim A,,(x) = ¢, that is, x € c*.

Theorem 3.2 Let ||A|| < oco. Then, Ky—core(Az) C K—core(x) for all
T € Uy if and only if A € (c: cV)yey and

i 3 3O = deca)owe| = 1 (16)
k n=0

Proof. Suppose first that Ky—core(Az) C K—core(z) for all x € (. In
this case, Ly(Az) < L(x) for all x € {. Then, one can easily see that
[(z) < —Lp(—Ax) < La(Az) < L(x).

If # € ¢, then () = L(z) = limz and hence —Lj(—Ax) = Ly(Az) =
lim A(Az) = limx. This means that A € (¢ : ¢),eq.
Now, let us define C' = (¢;x) by

1 m
ka:rz )\ _)\n 1 a'nk (17)
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for all k&, m € N. Then, it is easy to see that the conditions of Lemma 2.1 are
satisfied by the matrix C. Hence, there is a y € {, such that [|y|| <1 and

lim sup Z CmkYr = lim sup Z | Conke|-
m k m k
Therefore, by using the hypothesis, we can write
1 < liIrqlnian |Conre] < limsup Y [
k m k

= limsup > coryr = La(Ay) < L(y) < [ly|| < 1.
m k

This gives the necessity of (16).

Conversely, suppose that A € (¢ : ¢*),¢, and (16) holds for all z € /.
For any real number z, we write 2t := max{z,0}, 2~ := max{—z,0},|z| =
2t +27,2=2"— 2 and |z| — 2 = 2z7. Thus, for any given ¢ > 0, there is a
ko € N such that xp < L(x) + ¢ for all k£ > ky. Now, we can write

Zcmkxk = Z Cmk Tk + Z (Cmi) Ty — Z (Cmk) Tk

k<ko k>ko k>ko

< Azl X2 feml + (L) +€) Y lemel + 12l D [lemn] — cmal.

k<ko k k
Therefore, by applying the operator lim sup,, to the last inequality and using
hypothesis, we have Lj(Az) < L(z) + . Hence, the proof is completed, since
€ is arbitrary and x € /..

Theorem 3.3 Let ||A| < co. Then, Ky—core(Ax) C o—core(x) for all
x € by if and only if A € (V, : ¢M)ypeg and (16) hold.

Proof. Let Kp—core(Az) C o—core(x) for all x € (. Then, since
La(Az) < g,(z) and g, (x) < L(z) for all x € £, the necessity of (16) follows
from Theorem 3.2.

Also, we can write that

_QU(_‘T) S _LA(_A:E) S LA(A‘T) S QU(x)

ie.,
o —liminfr < —Ljy(—Az) < Ly(Az) < o — limsup z.

If x is chosen in V,, then o —liminf x = o —limsup x = o —lim x. Therefore,
we have from the last inequality that —Lj(—Ax) = La(Az) = limA(Ax) =
o —limz and so, A € (V, : )yey-

Conversely, suppose that A € (V, : ¢*),¢; and (16) holds. In this case, since
¢ C V,, by using Theorem 3.2, we have Ly(Az) < L(x) for all z € l«.

inf La(Az+ Az) < inf L(x+ z) = W(x). (18)

2e&Voo 2e&Voo
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On the other hand, since Az € c()\ for z € Vi, we can write that

inf Lp(Az+ Az) > Ly(Ax) + inf Ly(Az) = La(Ax). (19)
z2&€Voe 2€Vos

Thus, combining the statements (18) and (19), we obtain that L, (Az) < W (x)
for all x € £, which completes the proof, since ¢,(x) = W(x), [12].

Theorem 3.4 Let ||A]| < oo. Then, Kr—core(Azx) C st—core(x) for all
T € Ly if and only if A € (st Nly : M)pey and (16) hold.

Proof. Assume that p—core(Az) C st—core(x) for all x € f. Then,
La(Az) < B(x) for all © € (o where f(x) = st — limsupz. Hence, since
f(x) = st —limsupz < L(z) for all x € l (see [7]), we obtain (16) from
Theorem 3.2. Furthermore, we can write that

—B(—z) < —La(—Azx) < Ly(Az) < B(2)

ie.,

st —liminfx < —Ly(—Az) < Ly(Az) < st — limsup z.

If x € st Ny, then st — liminf z = st — limsupx = st — limx. Thus, the
last inequality implies that st —limax = —Lx(—Az) = Ly(Az) = lim A(Ax),
that is, A € (st N leg 1 ) ey

Conversely, assume that A € (st Nl : ), and (16) hold. If z € /o,
then B(x) is finite. Let E be a subset of N defined by E = {k : x; > f(z)+¢}
for any given ¢ > 0. Then it is obvious that §(F) = 0 and x, < §(z) + ¢ if
k ¢ E. Now, we can write that

Zcmk$k = Z Cmk Tk + Z Cmk T = Z CmkTr + Z e — Z Crnk Tk
k

k<ko k>ko k<ko k>ko k>ko
< 2l Y2 lemal + D2 ahern + X crper + 2zl Y- (emnl — )
k<ko k>kq k>kq k>ko
kZE keE
< Nzl D2 lemel + (B(x) +) D lemnl + 2]l Y lemnl
k<ko k>kq k>kq
k¢E keE

Hlzll D (leml = cmal,

k>ko

where C' = (¢,1) is defined by (17). By applying the operator lim sup,, to the
last inequality and using hypothesis, it follows that Ly(Az) < f(x) + . This
completes the proof, since ¢ is arbitrary.
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4 S)—Core

In this section, the concept of Sy—core for x € ¢, is defined and necessary
and sufficient conditions for a matrix A to satisfy Sy—core(Az) C K—core(z),
Sa—core(Azx) C o—core(x) and Sy—core(Ax) C st—core(z) for all x € l, are
determined.

Definition 4.1 Let x € (.. Then, Sy—core of x is defined by the closed
interval [—M*(—x), M*(x)], where

M0 =0 " i=0

From the definition, it is easy to see that Sy—core(z) = ¢ if and only if
lim,, 37 (Ax), = ¢, that is, z € cs™.

Theorem 4.2 Let |A|| < co. Then, Sy — core(Ax) C K — core(z) for all
r € Ly if and only if A € (¢ : cs™)yey and

m 1 n
LAl P Y
Theorem 4.3 Let |A|| < oo. Then, Sy — core(Ax) C o — core(x) for all
x € lo if and only if A € (V, : ¢sY)yeq and (20) hold.

Theorem 4.4 Let ||A|| < co. Then, Sy — core(Ax) C st — core(z) for all
T € Uy if and only if A € (st N ly : c8Y)rey and (20) hold.

Since Theorem 4.2, 4.3 and 4.4 can be proved similarly with Theorem 3.2, 3.3
and 3.4, proofs of their are trivial.
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