
Gen. Math. Notes, Vol. 22, No. 2, June 2014, pp.123-132
ISSN 2219-7184; Copyright c©ICSRS Publication, 2014
www.i-csrs.org
Available free online at http://www.geman.in

λ− Core of a Sequence and Related Inequalities

Meltem Kaya1 and Hasan Furkan2
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Abstract
The sequence spaces cλ and csλ have recently been introduced in [13] and [9],

respectively, as the sets of all sequences whose Λ− transforms are in the spaces c
and cs, respectively. The main purpose of this study is to introduce the new type
cores, KΛ− core and SΛ− core, of a real valued sequence and also determine
necessary and sufficient conditions for a matrix A to satisfy KΛ − core(Ax) ⊆
K− core(x), KΛ− core(Ax) ⊆ σ− core(x), KΛ− core(Ax) ⊆ st− core(x), and
SΛ− core(Ax) ⊆ K− core(x), SΛ− core(Ax) ⊆ σ− core(x), SΛ− core(Ax) ⊆
st− core(x), for all x ∈ `∞.

Keywords: Matrix transformatios, core of a sequence , Knopp’s core the-
orem, invariant means, inequalities.

1 Introduction

Let E be a subset of N = {0, 1, 2, ...}. The natural density δ of E is defined by
δ(E) = limn

1
n
|{k ≤ n : k ∈ E}|, where the vertical bars indicate the number of

elements in the enclosed set. The sequence x = (xk) is said to be statistically
convergent to the number ` if for every ε, δ{k : |xk − `| ≥ ε} = 0, [7]. In
this case, we write st − limx = `. By st and st0, we denote the sets of
statistically convergent and statistically null sequences. Fridy and Orhan [7]
have introduced the notions of the statistically boundedness, statistical-limit
superior (st− lim sup) and inferior (st− lim inf).

Let `∞ and c be the Banach spaces of bounded and convergent sequences
with the usual supremum norm respectively. Let σ be a one-to-one mapping
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from N into itself and T be an operator on `∞ defined by Tx = xσ(k). Then
a continuous linear functional Φ on `∞ is said to be an invariant mean or a
σ−mean if and only if (i) Φ(x) ≥ 0 when the sequence x = (xk) has xk ≥
0 for all k, (ii) Φ(e) = 1, where e = (1, 1, 1, ...), (iii) Φ(x) = Φ(Tx) for all x ∈
`∞.

Throughout this paper we consider the mapping σ having no finite orbits,
that is, σp(k) 6= k for all positive integers k ≥ 0 and p ≥ 1, where σp(k) is pth
iterate of σ at k. Thus, a σ− mean extends the limit functional on c in the
sense that Φ(x) = limx for all x ∈ c, [14]. Consequently, c ⊂ Vσ, where Vσ
is the set of bounded sequences all of whose σ− means are equal. In the case
σ(k) = k+ 1, a σ−mean often called a Banach limit and Vσ reduces to the set
f of almost convergent sequences introduced by Lorentz [10]. The reader can
refer to Raimi [16] for invariant means.

Vσ = {x ∈ `∞ : lim
p
tpn(x) = s uniformly in n, s = σ − limx},

where

tpn(x) =
xn + Txn + ...+ T pxn

p+ 1
, t−1,n(x) = 0.

We say that a bounded sequence x = (xk) is σ−convergent if and only if
x ∈ Vσ. By V0σ, we denote the space of σ−null sequences. It is well known [16]
that x ∈ `∞ if and only if (Tx− x) ∈ V0σ and Vσ = V0σ ⊕Re.

Let A = (ank) be an infinite matrix of real numbers and x = (xk) be a real
number sequence. Then Ax = ((Ax)n) = (

∑
k ankxk) denotes the A−transform

of x. If X and Y are two sequence spaces, then we use (X : Y ) to denote the
set of all matrices A such that Ax exists and Ax ∈ Y for all x ∈ X. Troughout,∑
k will denote the summation from k = 1 to ∞.

If X and Y are equipped with the limits X− lim and Y − lim, respectively,
A = (ank) ∈ (X : Y ) and Y − limn(Ax)n = X − limk xk for all x = (xk) ∈ X,
then we say A regularly transforms X into Y and write A = (ank) ∈ (X : Y )reg.
Let λ = (λk) be a strictly increasing sequence of positive reals tending to
infinity; that is 0 < λ0 < λ1 < λ2 < ..., limk→∞ λk = ∞. We define the
matrix Λ = (λnk) of weighted mean relative to the sequence λ by

λnk =

{
λk−λk−1

λn
, 0 ≤ k ≤ n,

0, k > n,

for all k, n ∈ N . With a direct calculation we derive the equality

(Λx)n =
1

λn

n∑
k=0

(λk − λk−1)xk; (n ∈ N).
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Let us consider the following functionals defined on `∞:

l(x) = lim inf
k→∞

xk, L(x) = lim sup
k→∞

xk,

qσ(x) = lim sup
p→∞

sup
n∈N

1

p+ 1

p∑
i=0

xσi(n),

W (x) = inf
z∈Z

L(x+ z).

Knopp’s core (or K−core) [3] and σ−core [12] of a real bounded sequence x
were defined by the closed intervals [l(x), L(x)] and [−qσ(−x), qσ(x)] , respec-
tively, and also the inequalities qσ(Ax) ≤ L(x) (σ-core of Ax ⊆ K-core of x),
qσ(Ax) ≤ qσ(x) (σ-core of Ax ⊆ σ-core of x), for all x ∈ `∞, was studied. Fur-
thermore, we have that qσ(x) = W (x) for all x ∈ `∞ [12]. Several researchers
studied on σ−core, (see [2,4–6,8,11,15]). Also, the textbook [1] containing the
chapter titled “ Core of a Sequence”, reviewed the Knopp core, σ-core, I-core,
FB-core.

Recently, Fridy and Orhan [7] introduced the notions of statistical bound-
edness, statistical limit superior (or briefly st− lim sup) and statistical limit in-
ferior (or briefly st−lim inf), defined the statistical core (or briefly st−core) of a
statistically bounded sequence is the closed interval [st−lim inf x, st−lim supx]
and also determined necessary and sufficient conditions for a matrix A to yield
K−core(Ax) ⊆ st−core(x) for all x ∈ `∞.

2 The Lemmas

In this section, we prove some lemmas which are needed in proving our main re-
sults and need the following lemma due to Das [6] for the proof of next theorem.

In what follows we only consider that the inequality lim infn→∞
(
λn+1

λn

)
> 1

holds.

Lemma 2.1 Let ‖C‖ = ‖(cmk(p))‖ <∞ and limm supp |cmk(p)| = 0. Then,
there is a y = (yk) ∈ `∞ such that ‖y‖ ≤ 1 and

lim sup
m

sup
p

∑
k

cmk(p)yk = lim sup
m

sup
p

∑
k

|cmk(p)|.

Lemma 2.2 [13] The inclusions cλ0 ⊂ cλ ⊂ `λ∞ strictly hold.

Corollary 2.3 [13] The equalities cλ0 = c0, c
λ = c and `λ∞ = `∞ hold if

and only if lim infn→∞
(
λn+1

λn

)
> 1.

Lemma 2.4 [9] The inclusions csλ ⊂ cλ0 and bsλ ⊂ `λ∞ strictly hold.
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Lemma 2.5 Let ‖Λ‖ <∞. Then, A ∈ (`∞ : cλ) if and only if

‖A‖ = sup
n

∑
k

|ank| <∞, (1)

lim
m

1

λm

m∑
n=0

(λn − λn−1)ank = αk for each k, (2)

lim
m

∑
k

∣∣∣∣∣ 1

λm

m∑
n=0

(λn − λn−1)− αk
∣∣∣∣∣ = 0. (3)

Following is a result of Lemma 2.5.

Lemma 2.6 Let ‖Λ‖ < ∞. Then, A ∈ (`∞ : cλ0) if and only if the condi-
tions (1) and (3) of Lemma 2.5 hold with αk = 0 for all k ∈ N.

Lemma 2.7 Let ‖Λ‖ < ∞. Then, A ∈ (c : cλ)reg if and only if the condi-
tions (1) and (2) of Lemma 2.5 hold with αk = 0 for all k ∈ N and

lim
m

∑
k

1

λm

m∑
n=0

(λn − λn−1)ank = 1. (4)

Lemma 2.8 Let ‖Λ‖ <∞. Then, A ∈ (Vσ : cλ)reg if and only if

A ∈ (c : cλ)reg, (5)

A(T − I) ∈ (`∞ : cλ0). (6)

Lemma 2.9 Let ‖Λ‖ < ∞. Then, A ∈ (st ∩ `∞ : cλ)reg if and only if the
condition (5) holds, and

lim
m

∑
k∈E

∣∣∣∣∣ 1

λm

m∑
n=0

(λn − λn−1)ank

∣∣∣∣∣ = 0 (7)

for every E ⊆ N with δ(E) = 0.

Proof. Suppose first that A ∈ (st ∩ `∞ : cλ)reg. Then, (5) follows from
the fact that c ⊂ st ∩ `∞. Now, for a given x ∈ `∞ and a subset E of N with
δ(E) = 0, let us define a sequence y = (yk) by

yk =

{
xk , k ∈ E
0 , k 6∈ E.

By our assumption, since y ∈ st0 ∩ `∞, we have Ay ∈ cλ0 . On the other hand,
since Ay =

∑
k∈E ankxk, the matrix D = (dnk) defined by

dnk =

{
ank , k ∈ E
0 , k 6∈ E,
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for all n, must be in (`∞ : cλ0). Thus, the necessity of (7) follows from Lemma
2.6.

Conversely, let (5) and (7) hold and let x be any sequence in st ∩ `∞ with
st − limx = `. Write E = {k : |xk − `| ≥ ε} for any given ε > 0, so that
δ(E) = 0. Since A ∈ (c : cλ)reg, we have

lim
m

∑
k

m∑
n=0

λmnankxk = lim
m

(∑
k

m∑
n=0

λmnank(xk − `) + `
∑
k

m∑
n=0

λmnank

)

= lim
m

∑
k

1

λm

m∑
n=0

(λn − λn−1)ank(xk − `) + `.

On the other hand,

∣∣∣∣∣∑
k

1

λm

m∑
n=0

(λn − λn−1)ank(xk − `)
∣∣∣∣∣ ≤ ‖x‖∑

k∈E

1

λm

∣∣∣∣∣
m∑
n=0

(λn − λn−1)ank

∣∣∣∣∣+ε‖Λ‖‖A‖,
the condition (7) implies that

lim
m

∑
k

1

λm

m∑
n=0

(λn − λn−1)ank(xk − `) = 0. (8)

Hence, lim Λ(Ax) = st− limx; that is, A ∈ (st ∩ `∞ : cλ)reg, which completes
the proof.

Lemma 2.10 Let ‖Λ‖ < ∞. Then, A ∈ (`∞ : csλ) if and only if the
condition (1) of the Lemma 2.5 holds and

lim
m

m∑
n=0

1

λn

n∑
i=0

(λi − λi−1)aik = αk for each k, (9)

lim
m

∑
k

∣∣∣∣∣
m∑
n=0

1

λn

n∑
i=0

(λi − λi−1)aik − αk
∣∣∣∣∣ = 0. (10)

Lemma 2.11 Let ‖Λ‖ < ∞. Then, A ∈ (`∞ : csλ0) if and only if the
conditions (1) and (10) hold with αk = 0 for all k ∈ N .

Lemma 2.12 Let ‖Λ‖ < ∞. Then, A ∈ (c : csλ)reg if and only if the
conditions (1) and (9) hold with αk = 0 for all k ∈ N and

lim
m

∑
k

m∑
n=0

1

λn

n∑
i=0

(λi − λi−1)aik = 1. (11)
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Lemma 2.13 Let ‖Λ‖ <∞. Then, A ∈ (Vσ : csλ)reg if and only if

A ∈ (c, csλ)reg, (12)

A(T − I) ∈ (`∞, cs
λ
0). (13)

Lemma 2.14 Let ‖Λ‖ <∞. Then, A ∈ (st∩ `∞ : csλ)reg if and only if the
condition (12) holds, and

lim
m

∑
k∈E

∣∣∣∣∣
m∑
n=0

1

λn

n∑
i=0

(λi − λi−1)aik

∣∣∣∣∣ = 0 (14)

for every E ⊆ N with δ(E) = 0.

3 KΛ−Core

In this section, we define the concept of KΛ−core and give some core theorems
related to the space cλ.

Definition 3.1 Let x ∈ `∞. Then, KΛ−core of x is defined by the closed
interval [−LΛ(−x), LΛ(x)], where

LΛ(x) = lim sup
m

1

λm

m∑
n=0

(λn − λn−1)xn. (15)

From the definition, it is easy to see that KΛ−core(x) = {`} if and only if
lim Λm(x) = `, that is, x ∈ cλ.

Theorem 3.2 Let ‖Λ‖ < ∞. Then, KΛ−core(Ax) ⊆ K−core(x) for all
x ∈ `∞ if and only if A ∈ (c : cλ)reg and

lim
m

∑
k

1

λm

∣∣∣∣∣
m∑
n=0

(λn − λn−1)ank

∣∣∣∣∣ = 1. (16)

Proof. Suppose first that KΛ−core(Ax) ⊆ K−core(x) for all x ∈ `∞. In
this case, LΛ(Ax) ≤ L(x) for all x ∈ `∞. Then, one can easily see that

l(x) ≤ −LΛ(−Ax) ≤ LΛ(Ax) ≤ L(x).

If x ∈ c, then l(x) = L(x) = limx and hence −LΛ(−Ax) = LΛ(Ax) =
lim Λ(Ax) = lim x. This means that A ∈ (c : cλ)reg.

Now, let us define C = (cmk) by

cmk =
1

λm

m∑
n=0

(λn − λn−1)ank (17)
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for all k, m ∈ N . Then, it is easy to see that the conditions of Lemma 2.1 are
satisfied by the matrix C. Hence, there is a y ∈ `∞ such that ‖y‖ ≤ 1 and

lim sup
m

∑
k

cmkyk = lim sup
m

∑
k

|cmk|.

Therefore, by using the hypothesis, we can write

1 ≤ lim inf
m

∑
k

|cmk| ≤ lim sup
m

∑
k

|cmk|

= lim sup
m

∑
k

cmkyk = LΛ(Ay) ≤ L(y) ≤ ‖y‖ ≤ 1.

This gives the necessity of (16).
Conversely, suppose that A ∈ (c : cλ)reg and (16) holds for all x ∈ `∞.

For any real number z, we write z+ := max{z, 0}, z− := max{−z, 0}, |z| =
z+ + z−, z = z+ − z− and |z| − z = 2z−. Thus, for any given ε > 0, there is a
k0 ∈ N such that xk < L(x) + ε for all k > k0. Now, we can write∑

k

cmkxk =
∑
k<k0

cmkxk +
∑
k≥k0

(cmk)
+xk −

∑
k≥k0

(cmk)
−xk

≤ ‖x‖
∑
k<k0

|cmk|+ (L(x) + ε)
∑
k

|cmk|+ ‖x‖
∑
k

[|cmk| − cmk].

Therefore, by applying the operator lim supm to the last inequality and using
hypothesis, we have LΛ(Ax) ≤ L(x) + ε. Hence, the proof is completed, since
ε is arbitrary and x ∈ `∞.

Theorem 3.3 Let ‖Λ‖ < ∞. Then, KΛ−core(Ax) ⊆ σ−core(x) for all
x ∈ `∞ if and only if A ∈ (Vσ : cλ)reg and (16) hold.

Proof. Let KΛ−core(Ax) ⊆ σ−core(x) for all x ∈ `∞. Then, since
LΛ(Ax) ≤ qσ(x) and qσ(x) ≤ L(x) for all x ∈ `∞, the necessity of (16) follows
from Theorem 3.2.

Also, we can write that

−qσ(−x) ≤ −LΛ(−Ax) ≤ LΛ(Ax) ≤ qσ(x)

i.e.,
σ − lim inf x ≤ −LΛ(−Ax) ≤ LΛ(Ax) ≤ σ − lim supx.

If x is chosen in Vσ, then σ−lim inf x = σ−lim supx = σ−limx. Therefore,
we have from the last inequality that −LΛ(−Ax) = LΛ(Ax) = lim Λ(Ax) =
σ − limx and so, A ∈ (Vσ : cλ)reg.

Conversely, suppose that A ∈ (Vσ : cλ)reg and (16) holds. In this case, since
c ⊂ Vσ, by using Theorem 3.2, we have LΛ(Ax) ≤ L(x) for all x ∈ `∞.

inf
z∈V0σ

LΛ(Ax+ Az) ≤ inf
z∈V0σ

L(x+ z) = W (x). (18)
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On the other hand, since Az ∈ cλ0 for z ∈ V0σ, we can write that

inf
z∈V0σ

LΛ(Ax+ Az) ≥ LΛ(Ax) + inf
z∈V0σ

LΛ(Az) = LΛ(Ax). (19)

Thus, combining the statements (18) and (19), we obtain that LΛ(Ax) ≤ W (x)
for all x ∈ `∞ which completes the proof, since qσ(x) = W (x), [12].

Theorem 3.4 Let ‖Λ‖ < ∞. Then, KΛ−core(Ax) ⊆ st−core(x) for all
x ∈ `∞ if and only if A ∈ (st ∩ `∞ : cλ)reg and (16) hold.

Proof. Assume that KΛ−core(Ax) ⊆ st−core(x) for all x ∈ `∞. Then,
LΛ(Ax) ≤ β(x) for all x ∈ `∞ where β(x) = st − lim supx. Hence, since
β(x) = st − lim supx ≤ L(x) for all x ∈ `∞ (see [7]), we obtain (16) from
Theorem 3.2. Furthermore, we can write that

−β(−x) ≤ −LΛ(−Ax) ≤ LΛ(Ax) ≤ β(x)

i.e.,

st− lim inf x ≤ −LΛ(−Ax) ≤ LΛ(Ax) ≤ st− lim supx.

If x ∈ st ∩ `∞, then st− lim inf x = st− lim supx = st− limx. Thus, the
last inequality implies that st − limx = −LΛ(−Ax) = LΛ(Ax) = lim Λ(Ax),
that is, A ∈ (st ∩ `∞ : cλ)reg.

Conversely, assume that A ∈ (st ∩ `∞ : cλ)reg and (16) hold. If x ∈ `∞,
then β(x) is finite. Let E be a subset of N defined by E = {k : xk > β(x) + ε}
for any given ε > 0. Then it is obvious that δ(E) = 0 and xk ≤ β(x) + ε if
k 6∈ E. Now, we can write that∑
k

cmkxk =
∑
k<k0

cmkxk +
∑
k≥k0

cmkxk =
∑
k<k0

cmkxk +
∑
k≥k0

c+
mkxk −

∑
k≥k0

c−mkxk

≤ ‖x‖
∑
k<k0

|cmk|+
∑
k≥k0
k 6∈E

c+
mkxk +

∑
k≥k0
k∈E

c+
mkxk + ‖x‖

∑
k≥k0

(|cmk| − cmk)

≤ ‖x‖
∑
k<k0

|cmk|+ (β(x) + ε)
∑
k≥k0
k 6∈E

|cmk|+ ‖x‖
∑
k≥k0
k∈E

|cmk|

+‖x‖
∑
k≥k0

[|cmk| − cmk],

where C = (cmk) is defined by (17). By applying the operator lim supm to the
last inequality and using hypothesis, it follows that LΛ(Ax) ≤ β(x) + ε. This
completes the proof, since ε is arbitrary.



λ− Core of a Sequence and Related Inequalities 131

4 SΛ−Core

In this section, the concept of SΛ−core for x ∈ `∞ is defined and necessary
and sufficient conditions for a matrix A to satisfy SΛ−core(Ax) ⊆ K−core(x),
SΛ−core(Ax) ⊆ σ−core(x) and SΛ−core(Ax) ⊆ st−core(x) for all x ∈ `∞ are
determined.

Definition 4.1 Let x ∈ `∞. Then, SΛ−core of x is defined by the closed
interval [−M∗(−x),M∗(x)], where

M∗(x) = lim sup
m→∞

m∑
n=0

1

λn

n∑
i=0

(λi − λi−1)xi.

From the definition, it is easy to see that SΛ−core(x) = ` if and only if
limm

∑m
n=0(Λx)n = `, that is, x ∈ csλ.

Theorem 4.2 Let ‖Λ‖ < ∞. Then, SΛ − core(Ax) ⊆ K − core(x) for all
x ∈ `∞ if and only if A ∈ (c : csλ)reg and

lim
m

∑
k

∣∣∣∣∣
m∑
n=0

1

λn

n∑
i=0

(λi − λi−1)aik

∣∣∣∣∣ = 1. (20)

Theorem 4.3 Let ‖Λ‖ < ∞. Then, SΛ − core(Ax) ⊆ σ − core(x) for all
x ∈ `∞ if and only if A ∈ (Vσ : csλ)reg and (20) hold.

Theorem 4.4 Let ‖Λ‖ < ∞. Then, SΛ − core(Ax) ⊆ st − core(x) for all
x ∈ `∞ if and only if A ∈ (st ∩ `∞ : csλ)reg and (20) hold.

Since Theorem 4.2, 4.3 and 4.4 can be proved similarly with Theorem 3.2, 3.3
and 3.4, proofs of their are trivial.
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