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Abstract

In a graph G with a distribution of pebbles it vertices, a pebbling move is
the removal of two pebbles from one vertex andatidition of one pebble to an
adjacent vertex. The covering cover pebbling numbdenoted by (G), of a
graph G, is the smallest number of pebbles, suah tiowever the pebbles are
initially placed on the vertices of the graph, aféesequence pebbling moves, the
set of vertices with pebbles forms a covering ofnGhis paper we determine the
covering cover pebbling number for cycles and exyathe lollipops.
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1 Introduction

Pebbling, one of the latest evolutions in graplotheroposed by Lagarias and
Saks, has been the topic of vast investigation witinificant observations.
Having Chung [1] as the forerunner to familiarizebpling into writings, many
other authors too have developed this topic. Hullperblished a survey of
pebbling results[3]. Given a connected graph, ithste certain number of pebbles
on its vertices in some configuration. Preciselgpafiguration on a graph G is a
function from V (G) to NLI {0} representing a placement of pebbles on G. The
size of the configuration is the total number oblgles placed on the vertices.
Support vertices of a configuration C are thosewtnch there is at least one
pebble of C. In any configuration, if all the pedblare placed on a single vertex,
it is called a simple configuration. A pebbling neag the removal of two pebbles
from one vertex and the addition of one pebblent@@jacent vertex. In (regular)
pebbling, the target vertex is selected and theigitm move a pebble to the target
vertex. The minimum number of pebbles, such thgandless of the target vertex,
we can pebble that target vertex is called the jpelpmumber of G. In cover
pebbling the aim is to cover all the vertices witbbbles, That is, to move a
pebble every vertex of the graph simultaneouslye Thinimum number of
pebbles required such that, regardless of theiiairmplacement on G, there is a
sequence of pebbling moves, at the end of whicaryevertex has at least one
pebble on it, is called the cover pebbling numideBoln [2], the cover pebbling
number for complete graphs, paths and trees aezndieied. The covering cover
pebbling number, denoted hy (G), of a graph G, is the smallest number of
pebbles, such that, however the pebbles are Igifiddced on the vertices of the
graph, after a sequence pebbling moves, the setrotes with pebbles forms a
covering of G. The concept of covering cover petphumber was introduced by
A.Lourdusamy and A.Punitha Tharani in [5] and tlistermined the covering
cover pebbling for complete graphs, paths, wheal, graph,complete r-partite
graph and binary trees.

In this paper we determine the covering cover pegbhumber for cycles in
Section 2. With regard to the covering cover petgbhumber of cycles, we find
the following theorem in [5].

Theorem 1.15] Let B, be a path on n vertices with V = \{§P= {v1, V2, V3,..., Vi

N -1
3

1, Vn} and E=E(R)={v1V2, VoV3, VaVa,..., Vh-Vn}. Then O ( Pn) =

In Section 3, we then present the covering covebloeg number for even cycle
lollipop.
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2 Covering Cover Pebbling Number for Cycles

We begin by proving that placing all the pebblesar vertex is a “worst case”
configuration that determines the covering covdagiag number of cycles.

Lemma 2.1 The value ofo (Cy) is attained when the original configuration
consists of placing all the pebbles on a singldeserwhere G : VoviVa . . . Vi 41Vo
is a cycle on ‘m’ vertices.

Proof. Assume first that a worst configuration consistsraire than one set of
consecutively pebbled vertices (“islands”). Thexmaum number of vertices in
each island is at most two. Suppose if any onthefislands consists of three or
more pebbled vertices, one could rearrange alpéidbles to the inner one or two
vertices of the same island, thereby causing aetangmber of pebbles to be
needed to cover the edges-a contradiction. Tlac ‘@sland” consists of at most
two vertices.

Now, consider the effect of relocating all the pelklonto a single island. Once,
again, we get a contradiction to the fact thatdarmyuld be more than one island,
because we need more pebbles to cover the edgies gfaph, after relocating all
the pebbles onto a single island. So, our assomjthat a worst configuration
consist of more than one island) is wrong.

Next, assume that, the island consists of exautty tertices. Clearly, a worst
initial configuration of pebbles is obtained bygfey o — 1 pebbles on one vertex,
say \ and placing one pebble at an adjacent vertex,aday ¢ , since, we need
more pebbles to cover the edges of the cycle. Mtk after the distribution of
(0 -1, 1) pebbles to {v v,} respectively, we cover all the edges of the cycle
But if we put all the pebbles on,wve cannot cover at least one edge of the cycle.
Hence the result follows.

Since placing all the pebbles on a single vertexwsorst case, we now determine
the value ot (Cy).

Theorem 2.2Let G, : VoviVe . . . b aVo be a cycle on ‘'m’ vertices. Then

[ k+2
27 70 i m=2k (k22)
0 (Cm) =1 3

2K -1if m=2k-1(k=2)

Proof. By Lemma 2.1, we assume allC,,) pebbles are onp\1 Cpp,. If m = 2k (k
> 2), consider the pathsaRPand B where R = wvi1 . . . - 1vk and B =
VoVak-1Vok—2 - - - k. We can cover the edges of the pathsud B, using 2(Px+1)
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1
pebbles, since 1@ = I(Ps) = k (Figure GJ) and 0 (Ppy) = [é (2n -1 |,
where R denotes a path on n vertices. Note thamay be pebbled twice. This
happens only when k is odd. Since if k is oddnttiee path R is of odd length.

That is, both R and R are of odd length implies Vs pebbled twice.
Thus,

20(P«+1), if K is even
20(Px+1) -1, if kisodd

k+1 _
22—32 1f Kk is even

a(C2k) ={

-

k+1 _
2 le -1, if kisodd

\

(Sk+2
2 4, If kis even

k+2 _
%3, if kisodd

2k+2_5
3

Thereforeg (Cx) =

Vi V2 V3 Vk-3 Vk-2 Vi-1

Vo Vi

Vak-1 Vok.2 V-3 Vi3 Vie2 Vi1

The Cycle Gk (k = 2)
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Vi V2 V3 Vk-3 Vk-2

Vk-1

Vo

Vok-2 Vok-3 Vok-4 Vi+2 Vk+1

The Cycle Gk (k2 2)

Now, consider the case when m =2k (k= 2). Also consider the pathg &nd
Ps where R = vov1 . . . \—1vk and B = WVks1 . . . Wk2Vo. We can cover the
edges of the pathssRnd B usingo(P«.1) ando(P«) pebbles respectively, since

I(Pa) = k and
I(Pg) = k- 1(Figure Gy.1).

It is easy to see that we do not pebklénice. Therefore,

0(Cok-1) =0(P1) + 0 (RY)

ok+tl_o5 kg
3 + Cif Kk is even
) ok+l 4 ok
2 1+2 2,if kisodd
| 3
(k+l, ok_g
JIf kis even
T k+1 L ok
27 T*2773 i visodd
K_
:M,kzz
3

Thus,0(Cak-1) = 2k -1.
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Therefore,

[ k+2
27 770 | i m=2k (k>2)
0(Cm) =1

2K -1 if m=2k-1(k=2)

3 Covering Cover Pebbling Number for Even Cycle
Lollipops

We proceed to determine the covering cover peblslurgber for a class of
unicyclic graphs, called a class of even cycledolb graphs.

Definition 3.1 [4] For a pair of integers m> 3 and n= 2, let L(m, n) be the
Lollipop graph of order m + n - 1 obtained from ycte G, by attaching a path of
length n—1 to a vertex of the cycle.

If the cycle G in L(m,n) is even, then we call L(m,n) an evesiecy
lollipop. We will use the following labeling fordglgraphs G and R

Let Cin = VoV1Va...Vm1Vo and P, = Vonl sz...vp 1be the cycle and the
-

path available in L(m,n).

Theorem 3.2Let L(m, 2) be a lollipop graph, where m = 2k2l.
Then,o(L(m, 2)) =

20(Cm) +1, if m=2kwithk=2 is even
20(Cyy), otherwise

Proof. Consider the Lollipop graph L(m,2).

Casellet m = 2k, where k&2 is even

Consider the distribution ofaZC,,) pebbles orv Clearly, we cannot cover at

Py
least one of the edges of L(m, 2). Thad,(m, 2))= 20(Cy,) + 1.
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Vok-2 Vok-1

V2

Now, consider the distribution ob2C,)) + 1 pebbles on L(m, 2).
Case(1A)C, contains at least(C,) pebbles.

If either Vp
1

So, assume bothyvand VIOl have zero pebbles on it. Now, all the(€,) + 1

or \p contains a pebbles on it, then we are done (byassmmption).

pebbles are on V() — {vo}. We can cover the edges of,@sing at most(Cy,)
pebbles. So, we hawgC,,) + 1 remaining pebbles to pebble the vertgx Since

Vo has no pebbles on it, bothyv ; and v contain at least one pebble each while
usingo(Cy) + 1 remaining pebbles. But, if any one of thetices of {\ok.1 , Vi}
contains two or more pebbles, then we are done, b8l -1 and v have
exactly one pebble each. Now, consider the paths\Bvs . . . \ and B = WVk+1

.. . \bk—2 Which are of length k2 each. Then, any one of the paths contains at

2

=0(P+1)-1=

least

2k+1_2 _2k+1_5 K— o |
-l=—2>2 , Where the first inequality follows

3 3

since0(Cm) = 20(F41) and the last inequality follows sinceis
even.

(Note that, if k = 2, ¥is the only remaining vertex in the cyclg énd we are
done).
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Since, I(R) = I(Ps) = k- 2, we can move two pebbles to eithgrw or v from

the path B or Py which contains at least 2 pebbles. So, we can put a pebble at
Vo and we are done.

Case (1B)Cy, contains x o (C,) pebbles.

There are at least2C,,) + 1 - x pebbles alpl . We can move

LZJ(Cm) - X
2

Jpebbles toy Thatis,, fronv X we can move at least

X X
d(Cm)— > pebbles to ¥ Now we have at least x¢ (Cr) - >

pebbles in G and we are done. So(L(m, 2)< 2 0(C,) + 1.
Thereforeg(L(m, 2) = 20(Cy) + 1 if m=2k and k is even.

Case2Let m=2k, where k3 is odd.

Consider the distribution 0fc2C,)-1 pebbles o/, . Clearly we cannot cover at

P
least one of the edges of L(m,2). 8¢,(m,2)>2c(Cy,).

Let us now prove that(L(m,2))<2c(Cy). Consider the distribution ofcRCr,)
pebbles on L(m,2).

Case (2A)C,, contains at least(C,,)) pebbles.
If either V|D1 or Vp contains a pebble on it, then we are done (byassumption).

So, assume bothyvand V|D1 have zero pebbles. Now, all the(€,) pebbles are

on V(G - {vo}. We can cover the edges of,@ising at most(Cy,) pebbles.
So, we haves(C,) remaining pebbles to pebble the vertgx Bince y has zero
pebbles on it, both,y- ;1 and \y contain at least one pebble each while using
o(Cn) remaining pebbles. But, if;p or v contains two or more pebbles, then
we are done. So, bothws and \ have exactly one pebble each. Now, consider
the paths R= Vvov3 . . .  and B = WVi+1 . . . bk —2 Note that R and B are of
length k -2 each. Then, any one of the paths contains ast lea

["(Crg)‘ﬂm(ml)—l:




32 A. Lourdusamy et al.

2k+1_1_1_ 2k+1_ A
3 3

follows since k3 is odd.

sz_l

pebbles, where the last inequality

Since, I(R) = I(Ps) = k- 2, we can move two pebbles to eithgrw or v from
the path B or Py which contains at least 2 pebbles. So, we can put a pebble at
Vo and we are done.

Case (2B)Cr, contains x o(Cy,,) pebbles.

There are at leaso?C,) — x pebbles av From these pebbles, we can send

P

2 -x-1
La(cmz) X Jpebblestoy
—(x+
That is,[za(cm)2 (X 1)J =0(Cnm) _{XTH-J

X+1
Now, G, has at least x 6(Cy,) _LTJ > 0(C) pebbles and we are

done.
Thusao(L(m, 2)) < 2 o(Cpy).
Thereforeg(L(m, 2)) = 20(Cy), if m=2k and k is odd.

Theorem 3.3Let L(m,n) be a Lollipop graph where m =2 and n>3. Then
a(L(m,n))=

2N~ 1gcm)+o(Ry), if m=2kwithk=2 s even

2 _10(Cm) + U(Pn —_ 1), otherwise

Proof. Consider the Lollipop graph L(m,n) where m =2k and r= 3.

CasellLet m = 2k with k= 2 is even and g 3.

Consider the distribution of"Z o(Cy)+o(P,)-1 pebbles on the vertex, L
n_

Clearly we cannot cover at least one of the ed@iegro, n). Thus,o(L(m, n)) =
2" 6(Cn )+ o(Py) .
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Now, consider the distribution o?n_]'O'(Cm) +0(Pn) pebbles on L(m,
n).

Case (1A)C,, containso(Cr,) or more pebbles.

If P, containso(P,,) pebbles then we are done. So assume thabmains less
thana(P,) pebbles. So, &contains at least’2' 6(Cy) + o(P,) — (6(P,) - 1) = 2
“16(Cn) + 1 pebbles. From these pebbles we used atmi@s) pebbles to cover
the edges of & We have at least T2 -1) o (Cy) + 1 pebbles in Gto cover the
edges of R Now, consider the pathg Pvovy . . . M2Vis and B @ ViVket - .« okt
Now we see that eithenfr R; contains

@"1-1oCm)
2

+ 1pebbles.

2" 1_9a(c
Then we claim th ( 2) ( m) +1> 2" o(P,)

Suppose not, then.

" 1-no(cm)

> +1< o)
Cn
That is (2 Z)Z(H(-H') +1<2o(P)
[ on k+1 ) |
That is (27-2))2 2 +1<2>to(P)

2 3

N k+1
That is (232) 2 > 2 +1< 2o
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2N _o on_1

That is

(2K -1) [+1<2

which is a contradiction, sincexk2 and r= 3.
So, either R or B contains at leastZ'o(P,) pebbles. If R contains 2 'o(P,)
pebbles then we are done (since)(B k-1 and y O Pa). So, assume thagP
contains at least“Z'o(P,) pebbles. Also, note, ifgPcontains 2o(P,) pebbles

then we are done. So, assurgecntains less thar@P,) pebbles. This implies
that B\ contains at least {2 — 1)0(C) + 1- (2 o(P,) — 1)

= (2" - 1)0(Cn) - 2 o(P,) +2 pebbles
But,
(2" = 1)0(Cp) - 2 o(P,) +2

=2 - 1)[20(Pk+1)] - 20(P)) +2 since m = 2k and k is even

-

k+1 n_
(2“—2) 2772 —2k 2 -1 +2if niseven
3 3
a K+1 n
@"-2) 2 72|k 2221 5if nisodd
3 3
(N _ K
2 —2 (2.2k—2—2k)—2—+2,if nis even
3 3
=
oN-2

22K -2-2Ky +2 if nis odd
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K

Con
2 —2 (2k—2)—%+2,if nis even

3

oN_»o
3

n_ k
|22 kg2
3 3

2N -2 |
(2" -2
[3] 2

So we can send at legst - pebbles

2% -2) +2.if nis odd

to v

| 2N -2 2 ) 2
That is, we send at least 2— — |=-=

2N-21 2
> 3 —5 pebbles to ywhere the inequality follows since k

> 2.
So, the minimum number of pebbles that we send is v

(54
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oN=2_4
3

IV

=240 (P-2)
= D(Pr-2) + 20(Pn-2)
>20(P-p) +2
=0o(P,-1) + 1, where the last inequality follows sine@,) = 20(P,-1) + 1 or
20(Pn-1)
So, we sendo(P,-1)) + 1 pebbles to o from P.. Also we send
a(Pn)
T > o(Py-1) pebbles to yfrom R;. Thus we have &(P,-1) + 1 pebbles
at \p and we are done.

Case (1B)C, contains x o(Cy,,) pebbles.

There are at least? o(C)) + o(P,) - x pebbles on P From these we usgP;)
pebbles to cover the edges gf Mow we have at least? o(C,) — x pebbles in
P.. We have to use these pebbles to cover the edggas From these pebbles,

n-1
(27 7)a(Cm) - X
we can send pebbles to y

2n_1

That is, ¢ has at least(Cy,) — pebbles.

2

X
Now, G, contains at least x &(Cy,) — >0(Cp) + X— Z > 0(Cp)

2 n _1
pebbles, sincex8 and so we are done.
Thus,o(L(m, n))< 2" 6(Cm )+ o(Py) .
Thereforeg(L(m, n)) = 27'0(Cy )+ o(P,), if m=2k and k is even.

Case (2)Let m = 2k with k= 3 is odd and & 3.
Consider the distribution of placing all th8 26(Cy) + o(P,1) - 1 pebbles
onvy, . Clearly we cannot cover at least one of the sadéd.(m, n).
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Thuso(L(m, n))= 2" 6(Cy) + 0(P1)
Now, consider the distribution of 2 6(C.)) + o(P.-1) pebbles on L(m, n).

Case (2A)C, contains at least(C,,) pebbles.

If P, containso(P,) or more pebbles then we are done. So, assumB,tha
contains less tham(P;) pebbles. This implies that@ontains at least"? 6(C)
+ 0(Pr-1) — (o(P,) —1) pebbles.

That is, the minimum number of pebbles thath@s is,

2"'0(Cm) + 0(Pr-1) — 0(Py) + 1

2" L5 (Cm) + 0(Pho1) - (20(Py—1 +1) +1, if niseven

2" 1g(Cm) + 0 (P—1) - 2o (Ph—1) +1, if nisodd

2" 15(Ccm)-o(Py—1)if niseven

2" 15(Cr) -o(Ph-q) +1if nisodd
> 2" 0(Cr) = 0(Pa-1).
From these pebbles, we usg,,,) pebbles to cover the edges ¢f.C

Consider the pathsaP vovivs . . . V—aVk-1 and B WVis1 - . . k-1 Of length k-
1 each. Then any one of the paths contains &t leas

"1 -na(Cm) - a(Pr-1)
2

pebbles.

That is, either Ror R contains at least,

"L -na(Cm) - o(Ph-1)
2

> 2¢1g(P,) pebbles.



38 A. Lourdusamy et al.

Suppose not, then,

{(2“‘1 ~10(Crm) - a(Pn-lﬂ e

2

n-1_ n-1_,)\]
{2 3 1}0(%)_[2 : 1}

That is, > <2t o(Py)

n-1
- -1
That is, [2 3 1](30((:?) j‘l < Xt o(Py)

(on-1_ 1) —
That is, (2 1}( 320(pk+1)~Y) 1j‘| <2t o(P)

3 2

(since m = 2k and k is odd)

(on-1_ _
That is, (2 3 1}( 23.0( pl;+1)) 4}} < 2 o(Py)

(2N =2)( 3pktl-y _ -
That is, —1||<2%(P,) (sincekis
3 2(3)

n_ n_
That is, 2 2 (2k+1 —§j < 2P, = 271 2 1
3 2 3

which is a contradiction, sinceX3 is odd and & 3.

odd)
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If P contains at least“Zo(P,) pebbles, then we are done, since)(® k-1.S0
we assume thatgPcontains at least“Z'c(P,) pebbles. Also, note that ifgP
contains 20(P,) pebbles then we are done, sincel{fo}) = k). Assume that
Ps contains less thaH‘Q(Pn) pebbles. Then the minimum number of pebbles that
Pa has is,

(27 -1)0(Crn) = 6(Pr-1) = (2‘0(Py) -1)

"L -10(Crm) - o (P—1) - 2 (20(Ph_1) +1) + 1if niseven
@" -1 o(Crr) - (Py—) - 2% (20(Ph—1) +1if nisodd

> (21-1)0(Cp) = 6(Pra) — 2 0(Py-0)
(27 -1)0(Cr) = (1+2“")0(Proy)

n-1_ n-1_
= 231J[3(2J (Pk+1) -1 - (Zk+1 +1) {“J

3

\}

n-1
23*}[2(2“*1 1) —3} — k14

[Zrl;l"l][(sz’l -6) | - 2{2:1_1}(2" -3,

Thus the minimum number of pebbles that we can senglis,

{757

2k_1
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on-1_4 3 on=1_4)/5
P | S S P |
3 2k_1 3 4
5/ 2N~1_4
=53 > 2 6(Prs)

> 0(Py-1) + 1 where the second inequality follows sine@ .k

Also we can sen%@ J > 0(Py-1) pebbles to yfrom the path B So, we have

at least &(P.,-1) + 1 pebbles atov Thus we have enough pebbles to cover the
edges of the path,Rnd we are done.

Case (2B)Cn, contains x o(Cy,) pebbles.
There are 2'0(Cy) + o(P-1) — x pebbles on P we uses(P,) pebbles to cover
the edges of P The number of pebbles remaining op fBr the purpose of
covering the edges of{ds 276(Cnn) + 0(Ph-1) = x — o(Py)

> 27'0(C) + O(Po-1) = X = (20(Pr1) + 1)

= 2"16(Cn) - 0(Pr-1) — (X +1)

So, the minimum number of pebbles that we can senglis,

2" Lo(Cm) ~o(Pr-1) - (x +1)

2n_1
oN1_1 (x+1)
>10(Cm) - n-1 - n-1
32 2
1 1 X+1
> 0(Cm)—=- — =
3 gon1 4
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Now, the minimum number of pebbles that laas is,

X 7J
X +0(Cp) - +

4 12

3X 7)
> o(Cp) +| ———

4 12

> 0(Cy,), where the last inequality follows since x > 0, #e are done.

Thus,o(L(m, n))< 2" 6(Cy) + o(Py-1).

Thereforeg(L(m, n)) = 2~6(Cp) + 6(Pn-1).
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