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Abstract 

     In a graph G with a distribution of pebbles on its vertices, a pebbling move is 
the removal of two pebbles from one vertex and the addition of one pebble to an 
adjacent vertex. The covering cover pebbling number, denoted by σ (G), of a 
graph G, is the smallest number of pebbles, such that, however the pebbles are 
initially placed on the vertices of the graph, after a sequence pebbling moves, the 
set of vertices with pebbles forms a covering of G. In this paper we determine the 
covering cover pebbling number for cycles and even cycle lollipops. 

     Keywords: Graph, pebbling, covering, lollipop graph. 
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1      Introduction 
 
Pebbling, one of the latest evolutions in graph theory proposed by Lagarias and 
Saks, has been the topic of vast investigation with significant observations. 
Having Chung [1] as the forerunner to familiarize pebbling into writings, many 
other authors too have developed this topic. Hulbert published a survey of 
pebbling results[3]. Given a connected graph, distribute certain number of pebbles 
on its vertices in some configuration. Precisely, a configuration on a graph G is a 
function from V (G) to N ∪  {0} representing a placement of pebbles on G. The 
size of the configuration is the total number of pebbles placed on the vertices. 
Support vertices of a configuration C are those on which there is at least one 
pebble of C. In any configuration, if all the pebbles are placed on a single vertex, 
it is called a simple configuration. A pebbling move is the removal of two pebbles 
from one vertex and the addition of one pebble to an adjacent vertex. In (regular) 
pebbling, the target vertex is selected and the aim is to move a pebble to the target 
vertex. The minimum number of pebbles, such that regardless of the target vertex, 
we can pebble that target vertex is called the pebbling number of G. In cover 
pebbling the aim is to cover all the vertices with pebbles, That is, to move a 
pebble every vertex of the graph simultaneously. The minimum number of 
pebbles required such that, regardless of their initial placement on G, there is a 
sequence of pebbling moves, at the end of which, every vertex has at least one 
pebble on it, is called the cover pebbling number of G. In [2], the cover pebbling 
number for complete graphs, paths and trees are determined. The covering cover 
pebbling number, denoted by σ (G), of a graph G, is the smallest number of 
pebbles, such that, however the pebbles are initially placed on the vertices of the 
graph, after a sequence pebbling moves, the set of vertices with pebbles forms a 
covering of G. The concept of covering cover pebbling number was introduced by 
A.Lourdusamy and A.Punitha Tharani in [5] and they determined the covering 
cover pebbling for complete graphs, paths, wheel, star graph,complete r-partite 
graph and binary trees. 
In this paper we determine the covering cover pebbling number for cycles in 
Section 2. With regard to the covering cover pebbling number of cycles, we find 
the following theorem in [5]. 
 

Theorem 1.1[5] Let Pn be a path on n vertices with V = V(Pn) = {v1, v2, v3,…, vn-

1, vn} and E=E(Pn)={v 1v2, v2v3, v3v4,…, vn-1vn}. Then 
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In Section 3, we then present the covering cover pebbling number for even cycle 
lollipop. 
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2 Covering Cover Pebbling Number for Cycles 
  
We begin by proving that placing all the pebbles on one vertex is a “worst case” 
configuration that determines the covering cover pebbling number of cycles. 
 
Lemma 2.1 The value of σ (Cm) is attained when the original configuration 
consists of placing all the pebbles on a single vertex, where Cm : v0v1v2 . . . vm −1v0 
is a cycle on ‘m’ vertices.  
 
Proof. Assume first that a worst configuration consists of more than one set of 
consecutively pebbled vertices (“islands”).  The maximum number of vertices in 
each island is at most two.  Suppose if any one of the islands consists of three or 
more pebbled vertices, one could rearrange all the pebbles to the inner one or two 
vertices of the same island, thereby causing a larger number of pebbles to be 
needed to cover the edges-a contradiction.  Thus, each “island” consists of at most 
two vertices.  
Now, consider the effect of relocating all the pebbles onto a single island.  Once, 
again, we get a contradiction to the fact that there could be more than one island, 
because we need more pebbles to cover the edges of the graph, after relocating all 
the pebbles onto a single island.  So, our assumption (that a worst configuration 
consist of more than one island) is wrong.  
Next, assume that, the island consists of exactly two vertices.  Clearly, a worst 
initial configuration of pebbles is obtained by placing σ − 1 pebbles on one vertex, 
say v1 and placing one pebble at an adjacent vertex of v1, say v2 , since, we need 
more pebbles to cover the edges of the cycle.  Note that, after the distribution of  
(σ − 1, 1)  pebbles to {v1, v2} respectively, we cover all the edges of the cycle.  
But if we put all the pebbles on v1, we cannot cover at least one edge of the cycle. 
Hence the result follows.        
 
Since placing all the pebbles on a single vertex is a worst case, we now determine 
the value of σ (Cm). 
 
Theorem 2.2 Let Cm : v0v1v2 . . . vm −1v0 be a cycle on ‘m’ vertices.  Then 
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Proof. By Lemma 2.1, we assume all σ(Cm) pebbles are on v0 ∈ Cm.  If m = 2k (k 
≥ 2), consider the paths PA and PB where PA = v0v1 . . . vk − 1vk and PB = 
v0v2k−1v2k−2 . . . vk .  We can cover the edges of the paths PA and PB, using 2σ(Pk+1) 
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pebbles, since l(PA) = l(PB) = k (Figure C2k) and 




 −= )12(
3

1
)( n

nPσ , 

where Pn denotes a path on n vertices.  Note that, v0 may be pebbled twice.  This 
happens only when k is odd.  Since if k is odd, then the path Pk+1 is of odd length.  
That is, both PA and PB are of odd length implies v0 is pebbled twice. 
Thus,  
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Therefore, σ (C2k) = 
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The Cycle C2k (k ≥≥≥≥ 2) 

v1 v2 v3 vk-3 vk-2 vk-1 

v2k-1

  
v2k-2 v2k-3 vk+3 vk+2 vk+1 

vk v0 
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The Cycle C2k-1 (k ≥≥≥≥ 2) 

 

Now, consider the case when m = 2k − 1 (k ≥ 2). Also consider the paths PA and 
PB where PA = v0v1 . . . vk − 1vk and PB = vkvk+1 . . . v2k−2 v0.  We can cover the 
edges of the paths PA and PB using σ(Pk+1) and σ(Pk) pebbles respectively, since  
 
l(PA) = k and  
l(PB) = k − 1(Figure C2k-1).  
 
It is easy to see that we do not pebble v0 twice.  Therefore,  
 
 σ(C2k − 1) = σ(Pk+1) +  σ (Pk)  
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 Thus, σ(C2k−1)  =  12 −k
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Therefore,  

 










≥−=−

≥=












 −+

=

)2(12,12

)2(2,
3

522

)(

kkmifk

kkmif
k

mCσ  

                     

3 Covering Cover Pebbling Number for Even Cycle 
Lollipops 
 
We proceed to determine the covering cover pebbling number for a class of 
unicyclic graphs, called a class of even cycle lollipop graphs. 
 
Definition 3.1 [4] For a pair of integers m ≥ 3 and n ≥ 2, let L(m, n) be the 
Lollipop graph of order m + n - 1 obtained from a cycle Cm by attaching a path of 
length n − 1 to a vertex of the cycle.  

 If the cycle Cm in L(m,n) is even, then we call L(m,n) an  even cycle 
lollipop. We will use the following labeling for the graphs Cm and Pn: 
 
 Let Cm = v0v1v2…vm-1v0  and  Pn = 0 1 2 1

...p p pn
v v v v

−
be the cycle and the 

path available in L(m,n). 
 

Theorem 3.2 Let L(m, 2) be a lollipop graph, where m = 2k (k≥2).  

 Then, σ(L(m, 2)) =  
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Proof. Consider the Lollipop graph L(m,2). 
 
Case1 Let m = 2k, where k ≥2  is even 
Consider the distribution of 2σ(Cm) pebbles on 

1pv .  Clearly, we cannot cover at 

least one of the edges of L(m, 2).  Thus, σ(L(m, 2)) ≥ 2σ(Cm) + 1. 
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Now, consider the distribution of 2σ(Cm) + 1 pebbles on L(m, 2).  
 
Case(1A) Cm contains at least σ(Cm) pebbles.  
 
If either 

1pv or v0 contains a pebbles on it, then we are done (by our assumption).  

So, assume both v0 and 
1pv have zero pebbles on it.  Now, all the 2σ(Cm) + 1 

pebbles are on V(Cm) − {v o}.  We can cover the edges of Cm using at most σ(Cm) 
pebbles.  So, we have σ(Cm) + 1 remaining pebbles to pebble the vertex v0.  Since 
v0 has no pebbles on it, both v2k − 1 and v1 contain at least one pebble each while 
using σ(Cm) + 1 remaining pebbles.  But, if any one of the vertices of {v2k-1 , v1} 
contains two or more pebbles, then we are done.  So, both v2k−1 and v1 have 
exactly one pebble each.  Now, consider the paths PA = v2v3 . . . vk and PB = vkvk+1 
. . . v2k −2 which are of length k −2 each.  Then, any one of the paths contains at  
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since )1(2)( += kPmC σσ and the last inequality follows since k≥4 is 

even. 
 
(Note that, if k = 2, v2 is the only remaining vertex in the cycle C4 and we are 
done).  
 

v0 vp1 
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v2k-2 v2k-1 
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Since, l(PA) = l(PB) = k − 2, we can move two pebbles to either v2k − 2 or v2 from 
the path PB or PA which contains at least 2k −1 pebbles.  So, we can put a pebble at 
v0 and we are done.  
 
Case (1B) Cm contains x < σ (Cm) pebbles.  
 
There are at least 2σ (Cm) + 1 − x pebbles at

1pv . We can move  
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pebbles in Cm and we are done. So, σ(L(m, 2) ≤ 2 σ(Cm) + 1. 
Therefore, σ(L(m, 2) = 2 σ(Cm) + 1 if m=2k and k is even. 
 
Case2 Let m=2k, where k≥3 is odd. 
Consider the distribution of 2σ(Cm)-1 pebbles on 

1pv . Clearly we cannot cover at 

least one of  the edges of L(m,2). So, σ(L(m,2))≥2σ(Cm). 
 
Let us now prove that σ(L(m,2))≤2σ(Cm). Consider the distribution of 2σ(Cm) 
pebbles on L(m,2). 
 
Case (2A) Cm contains at least σ(Cm) pebbles.  
If either 

1pv or v0 contains a pebble on it, then we are done (by our assumption).  

So, assume both v0 and 
1pv have zero pebbles.  Now, all the 2σ(Cm) pebbles are 

on V(Cm) − {v o}.  We can cover the edges of Cm using at most σ(Cm) pebbles.  
So, we have σ(Cm) remaining pebbles to pebble the vertex v0.  Since v0 has zero 
pebbles on it, both v2k − 1 and v1 contain at least one pebble each while using 
σ(Cm) remaining pebbles.  But, if v2k-1 or v1 contains two or more pebbles, then 
we are done.  So, both v2k−1 and v1 have exactly one pebble each.  Now, consider 
the paths PA = v2v3 . . . vk and PB = vkvk+1 . . . v2k −2. Note that PA and PB are of 
length k −2 each.  Then, any one of the paths contains at least 
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 pebbles, where the last inequality 

follows since k≥3 is odd.  
 
Since, l(PA) = l(PB) = k − 2, we can move two pebbles to either v2k − 2 or v2 from 
the path PB or PA which contains at least 2k −1 pebbles.  So, we can put a pebble at 
v0 and we are done.  
 
Case (2B) Cm contains x < σ(Cm) pebbles.  
  
There are at least 2σ(Cm) − x pebbles at 

1pv .  From these pebbles, we can send 
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done.  
Thus σ(L(m, 2)) ≤ 2 σ(Cm). 

Therefore, σ(L(m, 2)) = 2 σ(Cm), if m=2k and k is odd.                        
 
Theorem 3.3 Let L(m,n) be a Lollipop graph where m = 2k ≥ 4 and n ≥ 3. Then  
σ(L(m,n))=  
 

( )
( )






−+−
≥=+−

otherwisenPmCn

eveniskwithkmifnPmCn

,1)(12

22,)(12

σσ

σσ
 

 

Proof. Consider the Lollipop graph L(m,n) where m = 2k ≥ 4 and n ≥ 3. 
 
Case1 Let m = 2k with k ≥ 2 is even and n ≥ 3.  
Consider the distribution of 2n − 1σ(Cm)+σ(Pn)−1 pebbles on the vertex 

1pn
v

−
. 

Clearly we cannot cover at least one of the edges of L(m, n). Thus, σ(L(m, n)) ≥ 
2n−1σ(Cm )+ σ(Pn) . 
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Now, consider the distribution of ( )nPmCn σσ +− )(12  pebbles on L(m, 

n).  
 
Case (1A) Cm contains σ(Cm) or more pebbles.  
 
If Pn contains σ(Pn) pebbles then we are done.  So assume that Pn contains less 
than σ(Pn) pebbles.  So, Cm contains at least 2n −1 σ(Cm) + σ(Pn) − (σ(Pn) − 1) = 2n 

−1σ(Cm) + 1 pebbles.  From these pebbles we used at most σ(Cm) pebbles to cover 
the edges of Cm.  We have at least (2n−1 −1) σ  (Cm) + 1 pebbles in Cm to cover the 
edges of Pn.  Now, consider the paths PA : v0v1 . . . vk-2vk-1 and PB : vkvk+1 . . . v2k-1.  
Now we see that either PA or PB contains  
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which is a contradiction, since k ≥ 2 and n ≥ 3.  
 
So, either PA or PB contains at least 2k −1σ(Pn) pebbles.  If PA contains 2k −1σ(Pn) 
pebbles then we are done (since l(PA) = k − 1 and v0 ∈ PA).  So, assume that PB 
contains at least 2k −1σ(Pn) pebbles.  Also, note, if PB contains 2kσ(Pn) pebbles 
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











 −
3

2
12

2
2

3

22
k

n
 

  ≥ 













−












 −
3

2

3

22n
 pebbles to v0 where the inequality follows since k 

≥ 2. 

So, the minimum number of pebbles that we send to v0 is  

 



























 −
3

42n
 = 



























 −−

3

122
4

n
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          ≥ 












 −−

3

122
4

n
 

          ≥ 4 σ (Pn−2)   

          = 2σ(Pn−2) + 2σ(Pn−2) 

          ≥ 2 σ(Pn−2) + 2 

= σ(Pn − 1) + 1, where the last inequality follows since σ(Pn) = 2 σ(Pn−1) + 1 or 
2σ(Pn−1) 
 
So, we send σ(Pn−1) + 1 pebbles to v0 from PA.  Also we send  










2

)( nPσ
 ≥ σ(Pn−1) pebbles to v0 from PB.  Thus we have 2 σ(Pn−1) + 1 pebbles 

at v0 and we are done. 
 
Case (1B) Cm contains x < σ(Cm) pebbles.  
 
There are at least 2n−1 σ(Cm) + σ(Pn) − x pebbles on Pn.  From these we use σ(Pn) 
pebbles to cover the edges of Pn.  Now we have at least 2n−1 σ(Cm) − x pebbles in 
Pn.  We have to use these pebbles to cover the edges of Cm.  From these pebbles,  
 

we can send 
12

)()12(
−

−−

n
xmCn σ

 pebbles to v0.   

 That is, v0 has at least σ(Cm) − 
12 −n

x
 pebbles.   

Now, Cm contains at least x + σ(Cm) − 
12 −n

x
 ≥ σ(Cm) + x − 

4

x
 ≥ σ(Cm) 

pebbles, since n≥3 and so we are done.  
Thus, σ(L(m, n)) ≤ 2n−1σ(Cm )+ σ(Pn) . 

 
Therefore, σ(L(m, n)) = 2n−1σ(Cm )+ σ(Pn), if m=2k and k is even. 
 
Case (2) Let m = 2k with k ≥ 3 is odd and n ≥ 3.  
Consider the distribution of placing all the 2n−1 σ(Cm) + σ(Pn−1)  − 1 pebbles 
on

1pn
v − .  Clearly we cannot cover at least one of the edges of L(m, n).  
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 Thus σ(L(m, n)) ≥ 2n−1σ(Cm) + σ(Pn−1) 
 
 Now, consider the distribution of 2n−1 σ(Cm) + σ(Pn−1) pebbles on L(m, n).  
 
Case (2A) Cm contains at least σ(Cm) pebbles.  
If Pn contains σ(Pn) or more pebbles then we are done.  So, assume that Pn 
contains less than σ(Pn) pebbles.  This implies that Cm contains at least 2n−1 σ(Cm) 
+ σ(Pn−1) − (σ(Pn) −1) pebbles.  
  
That is, the minimum number of pebbles that Cm has is,  
 
 2n−1σ(Cm) + σ(Pn−1) − σ(Pn) + 1 
 = 








+−−−+−
++−−−+−

oddisnifnPnPmCn

evenisnifnPnPmCn

,1)1(2()1()(12

,1)11(2()1()(12

σσσ

σσσ
 

  

= 








+−−−
−−−

oddisnifnPmCn

evenisnifnPmCn

1)1()(12

)1()(12

σσ

σσ
 

 ≥ 2n−1 σ(Cm) − σ(Pn−1).  
 
From these pebbles, we use σ(Cm) pebbles to cover the edges of Cm.  
Consider the paths PA : v0v1v2 . . . vk−2vk−1 and PB : vkvk+1 . . . v2k − 1  of length k − 
1 each.  Then any one of the paths contains at least  
 

 












 −−−−

2

)1()()112( nPmCn σσ
 pebbles.  

 

That is, either PA or PB contains at least,  













 −−−−

2

)1()()112( nPmCn σσ
 ≥ 2k−1σ(Pn) pebbles.  
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Suppose not, then,  













 −−−−

2

)1()()112( nPmCn σσ
 < 2k−1 σ(Pn)  

That is, 


































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−












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2

3

112
)(

3

112
3

n
mC

n
σ

< 2k−1 σ(Pn)  

That is, 

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
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
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
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


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










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2

1)(3

3

112 mCn σ
 < 2k−1 σ(Pn) 

 That is, 




















 −−+











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2

1)1)1(.2(3

3

112 kpn σ
 < 2k−1 σ(Pn)  

(since m = 2k and k is odd) 

 That is, 




















 −+











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2

4))1(.3(2

3

112 kpn σ
 < 2k−1σ(Pn)  

 That is, 



























−−+









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

 −
1

)3(2

)112(3

3

22 kn
 < 2k−1σ(Pn)   (since k is 

odd)  

 That is, 




















 −+











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2
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3

22 k
n

 < 2k−1σ(Pn) = 2k−1













 −
3

12n
 

 which is a contradiction,  since k ≥ 3 is odd and n ≥ 3.  
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If PA contains at least 2k−1σ(Pn) pebbles, then we are done, since l(PA) = k−1.So 
we assume that PB contains at least 2k −1σ(Pn) pebbles.  Also, note that if PB 
contains 2kσ(Pn) pebbles then we are done, since l(PB∪{v 0}) = k).  Assume that 
PB contains less than 2kσ(Pn) pebbles.  Then the minimum number of pebbles that 
PA has is,  
     (2n−1

 −1)σ(Cm) − σ(Pn−1) − (2kσ(Pn) −1)  

=








+−−−−−−
++−−−−−−

oddisnifnPk
nPmCn

evenisnifnPk
nPmCn

1)1(2(2)1()()112(

1 )1)1(2(2)1()()112(

σσσ

σσσ

 

≥  (2n−1 −1)σ(Cm) − σ(Pn−1) − 2k+1σ(Pn-1)  

=  (2n−1 −1)σ(Cm)  − ( 1+2k+1 )σ(Pn-1) 

=  [ ]

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
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

 −−
kk

n
 

=




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











 −−
)612(

3

112 k
n

 = 




 −












 −−
32

3

112
2 k

n
.  

 

Thus the minimum number of pebbles that we can send to v0 is,  
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= 
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  ≥ 2 σ(Pn−1) 

≥ σ(Pn−1) + 1 where the second inequality follows since k≥3.  

Also we can send 








2

)( nPσ
 ≥ σ(Pn−1) pebbles to v0 from the path PB.  So, we have 

at least 2σ(Pn−1) + 1 pebbles at v0.  Thus we have enough pebbles to cover the 
edges of the path Pn and we are done.  
 
Case (2B) Cm contains x < σ(Cm) pebbles.  
 
There are 2n−1σ(Cm) + σ(Pn−1) − x pebbles on Pn. we use σ(Pn) pebbles to cover 
the edges of Pn.  The number of pebbles remaining on Pn for the purpose of 
covering the edges of Cm is     2n−1σ(Cm) + σ(Pn−1) − x − σ(Pn) 
  
 

≥ 2n−1σ(Cm) + σ(Pn−1) − x − (2σ(Pn−1) + 1) 
 

= 2n−1σ(Cm) − σ(Pn−1) − (x +1) 
 
So, the minimum number of pebbles that we can send to v0 is,  
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≥ 




 −−
12

7

4
)(

x
mCσ . 

 

Now, the minimum number of pebbles that Cm has is,  

 

x + σ(Cm) - 




 +
12

7

4

x
 

≥   σ(Cm) + 






 −
12

7

4

3x
 

≥ σ(Cm), where the last inequality follows since x > 0. So, we are done.   

Thus, σ(L(m, n)) ≤ 2n−1 σ(Cm) + σ(Pn−1). 

Therefore, σ(L(m, n)) = 2n−1σ(Cm) + σ(Pn−1).              
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