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Abstract

The object of the present paper is to investigai@ study certain subclass of
univalent functions defined by differential suboation by using the linear
operator[:j’f‘}n. Coefficient bounds, some properties of neighbodso
convolution properties, Integral mean inequalities the fractional integral for

this certain subclass are given.
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1 Introduction

Let G be the class of all functions of the form:-

f(z)=z+ Z a,z" (neN), (1.1)
n=2

which are analytic and univalent inthe opendisk U ={z€ (: |z| < 1}.
Let A denote the subclass of G containing of functidrth® form:-

o)

f(z)=Z—ZanZ", (a, =20, mneN). (1.2)

n=2

The Hadamard product (or convolution ) of two poseries
f(z) =Z—Zanzn and g(z) =Z—an2n (1.3)
n=2 n=2

in A is defined (as usual )by

o)

(F @ = f@ gD =2= ) anbyz" (1.4)

n=2

For positive real values of 4, ..., a, and f;, ...,ﬁm(ﬁj #0,—-1,..,j=
1,2,..,m),
the generalized hypergeometric functiQR,,(z) is defined by

O (@) e (@) 2

Fn(2) = Fp(0q, o, 05 B, o, B 2) = — 1.5
m( ) m( 1 Bl Bm ) e (Bl)n . (Bm)n n! ( )
(t <m+1;,meN,=NU{0};z€U),
where (a),, is the Pochhammer symbol defined by
1, n=20
(@n = {a(a +1D)(@a+2)...(a+n-1), a€EN. (1.6)

The notation ,F,, is quite useful for representing many well- knowndtions
such as the exponential, the Binomial, the Bess#lLlaguerre polynomial. Let
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H[O(l, ey A Bl’ ey Bm]c/q, — A
be a linear operator defined by

H[ Agy oy Ay Bll e Bm]f(z) =Z LFm(ali A2y ey Uy Bli BZJ e Bm; Z) * f(Z)

= z—an(ocl;L; m)a, z", (1.7)
n=2
Where,
X1 )pq () 1
Wn(al;l; m) — ( 1)n 1( L)Tl 1 (1.8)

(ﬁl)n—l...(ﬂm)n—l (Tl - 1)! .

For notational simplicity, we use shorter notatiéf,[a,] for
H[a’l, ey 0y, 1811 ,ﬁm]

In the sequel. It follows from (1.7) that
H[11f(z) = f(2), H;[2]f(2) = zf'(2).

The linear operator Hj[a;] is called Dziok—Srivastava operator (see[3])
introduced by Dziok and Srivastava which was subsetly extended by Dziok
and Raina [2] by using the generalized hypergeamdtnction, recently
Srivastaveet. al.([10]) defined the linear operatoi:;f;n as follows:-

£0,.f(2) = f(2)
LyEf(2) = (1= DHY [an)f (2) + A(Hiy [a,]f(2))'
=L f(», @A=z0), (1.9)
Ly f@) = Ly, (Lo () (1.10)
and in general ,

L7% £(z) = Mm( £ 1“1f(z)) (<m+1L,meN, =NU{0}z

ALm ALm

€ U) (1.11)

If the functionf (z) is given by (1.2), then we see form (1.7), (1(8)9) and
(1.11) that
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Lyinf(2)=z— Z wi(ag; A ;m)ay, 2", (1.12)
n=2

where,

wy(aqg; A4 5m) =

< (al)n—l...(at)n—l [1 + A(n - 1)]>T
(ﬁl)n—l...(ﬂm)n—l (Tl - 1)! '

(n € N\{1},teN,). (1.13)

Unless otherwise stated. We note that whea 1 and A = 0the linear

operator £’} would reduce to the familier Dziok Srivastava linear operator

given by (see [3]), includes (as its speaakes) various other linear operators
introduced and studied by Carlson and Shaffer[1}a[@] and Ruscheweyh]8].

For two analytic functiong, g € A, we say thaif is subordinate tg, written
f(z) < g(z) if there exists a Schwarz functiarn(z), which (by definition) is
analytic in U with

w(0) =0 and |W(Z)| <1 forallz € U,such that f(z) = g(W(z)),Z eU.

Furthermore, if the functiog(z) is univalent in U, then we have the following
equivalence (see [6]):

f(2) < g(2) & f(0) = g(0) and f(U) c g(V).

Definition 1: For any functiorf € A and § = 0,the § — neighborhood of is
defined as,

Ns(f) = {g(z) = Z—anzn € A: anan—bn | <4 } (1.14)
n=2 n=2

In particular, for the functioa(z) = z, we see that,

Ng(e)zig(z)z Z—anznecﬂ: Zn|bn| <6 } (1.15)

The concept of neighborhoods was first introdusg&oodman [4] and then
generalized by Ruscheweyh [9].

Definition 2: For fixed parameters A and B, withl < B < A < 1, we say that
feA is in the classW(t,6,a,4,1,m,A, B) if it satisfies the following
subordination condition:
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;tf;f‘lﬂz) 1+ Az
L2 f(2) “T1+Bz

Aum

(1.16)

In view of the definition of subordination, (1.18) equivalent to the following
condition:

Lo @
BN
T+0 ,aq
Alm f( )

Lyimf (@)

-1
<1,(ze€U).

For convenience, we write
W(t,0,a,A4,m1—2n-1) =W(t,0,a,,4,,m,n),

where W(z,0,aq,4,1,m,n) denotes the class of functions # satisfying the
inequality:

T+0a1
Re[%}>n, 0<n<1; zel).

2  Neighborhoodsfor theClassW(t, 08, a4, 4,1, m, A, B)

Theorem 2.1: A functionf € A belongs to the clas®/ (t,0,a;,4,1,m, A, B) if
and only if

Z wi (s ks m){(1 = Bwd(ap ium) — (1 - Ala, <A—B (2.1

for 1,0,,meNy,it<m+1,1>20and —1<B<A<1.

Proof: Letf € W(t, 0, a4, A, t,m, A, B). Then,

‘c+0 ,aq

L% f(z) 1+Bz

Atm

(2.2)

Therefore, there exists an analytic function w stinett
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L@ f(2) — Ly f(2)

w(z) = : (2.3)
BL; 0“1 f(2) — ALY f(2)
Hence,
;tfn“lf( ) - Lz S (@)
| W(Z) | T+9 ,aq T,001
_ ‘ Yz Wi (@g; A m){wy] (ag; 4;5,m) — 1a,z"
(A= B)z + X2, wi (ag; A 5 m){Bw (ag; 4; 5 m) — Ala,zn
Thus,
Re { = W (aq; A4 m){w,?(al,l ;m) — 1}anz } <1 24
zZ+ wy (a4, sm)Bw/ (a4, m a,zm ' '
(A—B)z + Xy ,wy (a3; 4 5 m){Bw) (ag; 4;5,m) — A

Taking | z| =r, for sufficiently small r with 0 <r < 1, the denominator of
(2.4) is positive and so it is positive for all iithv 0 <r < 1, sincew(z) is
analytic for| z| < 1. Then, the inequality (2.4) yields

o]

Z wy (aq; A ¢ m){w,? (ag; A, 5m) — 1}anr"
n=2

<(A-B)r+ Z wy (aq; A ¢ m){BWT? (ag; A, 5m) — A}anr”.

n=2

Equivalently,

Z wi (s 4 s m){(1 — B)wé (ag; A 5m) — (1 — A)lanr™ < (A— B)r,

n=2

and (2.1) follows upon letting— 1.

Conversely, for|z| =7,0<r <1, we have™ <r . That s,

z F(ag; A m){(l —Bwf(a;4;5m) — (1 — A)}anr
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< Z wi (aa; A s m){(1 — B)w? (ag; A 5m) — (1 — A)}apr < (A— B)r.

n=2

From (2.1), we have

Z wy (aq; A m){w,? (a;; ;5m) — 1}anzn
n=2

< Z wi (aqg; A4 m){w,? (ag; A, 5m) — 1}anr"
n=2
<(A-B)r+ Z{Bwﬁ (ag;; A4 um) — A}Wﬁ(al; A um)a,r™

n=2

<|(A-B)z+ Z{Bwﬁ (a;; A4 5m) — A}W,f(al;/l; ;m)a,z™|.

n=2

This proves that

Liaf(z) 1+ Az

< , z€U
Ly fz 1+Bz
and hence f e W(t,60,a,,4,t,m,A,B).
Theorem 2.2 If
5= ) , (2.5)

(feaeten 1) 1o Eete 1) 1)
then W(z,60, a;,A,1,m,A,B) c Ns(e).
Proof: It follows from (2.1), that if f € W (z,0, a1, 4,4, m,OOA, B), then
wi N ag; ;s m){(1 — B)wd (ay; 4, 5m) — (1 — A)} Z na, < (A—B),
n=2

Hence

0
(@)1 (@)1 L PO (@1)1(a): ~
((ﬁ1)1-~-(3m)1 1+ /1)) {(1 B) <(.81)1--.(Bm)1 1+ A)>

(1- A)} »_,na, < (A—B). (2.6)
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Which implies,

na,
(A—B)
-1 o
((061)1 (%)1 (1 + A)) [(1 — B) (M (1 + A)) — (1 — A)
6.

AN

(B1 - (Bm)1 (B)1 - (Bm)1

(2.7)
Using (1.15), we get the result.
Definition (2.1): The functiory defined by

g(2) = Z—anzn

n=
is said to be a member of the cla¥g, (, 6, a1, 4,1, m, A, B) if there exists a
function f € W(z, 6, a;, 4,1, m, A, B) such that

9(2)
< <
o) 1| <1-y, (zeU,0<y<1). (2.8)

Theorem (2.3): If f e W(r,0,a,,4,1,m,A,B) and

—1— 6w§(a1;A;L;m){(l—B)wze(al;/l;L;m)—(l—A)}
y = 2w (ag;6m){(1-B)wE (ag;4;5m)—(1-A)}-(A-B))’

(2.9)

then Ns(f) € W, (7,0, a1, 4,1,m, A, B).

Proof: Let g € Ns(f). Then we have from (1.14) that

o0

Zn|an—bn| <6,

n=2

which implies the coefficient inequality

- )
Zlan—bnlﬁz.
n=2

Also sincef € W(z, 0, a1, 4,1, m, A, B), we have from (2.1)

* (A-B)
a, <
Zn:Z " wl(ay; A um)[(1-Bwl(alum)—(1-A)]
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where
Tl Qe ) — (1)1 - (@)1 '
wilas 4 om) ((m B T ”) '
(@) (@) ?
er(al, A m) = (m (1 + ﬂ.)) .
So that
g(z) 1| = O;:z(an - bn)Zn Zﬁ:z | an — by |
f(2) | z- = AnZ™ 1-37_,a,
o) wi (a4 um)[(1 — B)Wg (a; A4, 5m) — (1 —A)]

= 2 ‘wi(ag; Ay m)[(l —Bwd (a;; A4 m) — (1 — A)] —(A—-B)
=1l-y.

Thus by Definition (2.1),g € W, (7,0, a4, 4,1, m, A, B) for y given by (2.9).
This completes the proof.

3  Convolution Properties:
Theorem 3.1: Let the functions f; ( j = 1,2) defined by

[@=2-) ana" (an;20j=12) 3.1)
n=2
be in the clas3/ (t,0, a1, A,,m,A,B) .
Then f; = f, e W(1,0,a4,4,1,m,A, o), where

- wi (ag; 45 m)[(1 = B)wf (ag; 4 5m) — (1 — A)]ZA —(A-B?W(a; ;,5m) — (1 —A))
- wi (aq; 45 m)[(1 — B)wE (aq; 4;5m) — (1 — A)]2 — wl (ay; 45 m)(A — B)2

Proof: We must find the largest such that

Ap1Qn2 < 1.

o wi (a4 sm)[(1 = o)wf (a4 5m) — (1 - A)]
nZZ A—o

Since f; € W(z,6,a,,4,1,m, A,B) (j = 1,2), then
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A—B mi=
(U =12). (3.2)

i wy (ag; 4;5m)[(1 = B)ws (ag; 4 5m) — (1 — A)] L1

By Cauchy-Schwarz inequality, we get

S wl (e A sm)[(1 = Bwl (ap; ;i um) — (1 —A)
Z ne [ A_"B ! ]1/an,1an,2 <1. (33)
n=2

We want only to show that

wi(ag; 45 m)[(1 = o)w (ag; 4, 5m) — (1 — A)]
A—o An,14n,2

- wp (aq; ;5 m)[(1 = B)wy (ag; 4;5m) — (1 — A)]

A—B v an14n2 -

This equivalently to

(A— o)A -Bw(as; 45m) — (1 - A)]
Vanatnz = OB T~ owl(ay Aom) — A - A)]

From (3.3), we have

A—B
Jan1Qn2 < '
n,1%n,2 wE(ay; A m)[(l —B)w) (a;; A5m) — (1 — A)]

Thus, it is sufficient to show that

A-B
wy (ag; ;5 m)[(1 = B)we (ay; 4, 5m) — (1 — A)]

_(Aa- [ =Bwf (ay;4;,5m) — (1 — A)]
~ (A-B)|1-o)wl(a;5m) - (1-4)]

Which implies to

- wi(ag; 4 5m)[(1 = B)wE (ag; 4, 5m) — (1 — A)]ZA —(A-B?*W(a;; ;;5m) — (1 —A))
- wi(ag; 4 5m)[(1 —BwE (ag; 4;5m) — (1 — A)]2 — w (ay; A, m)(A — B)2
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Theorem (3.2): Let the functions; (j = 1,2) defined by (3.1) be in the class
W(t,6,04,A, 1, m, A, B). Then the functiok defined by

k(z) =z — Z(afm +a2,)z" (3.4)

belong to the clas$/(z, 0, a;, 4,1, m, A, &), where

£
A(w,ﬁ(oc1 A ;m))? [(1 -Bwl(a;m) — (1 — A)] —2(A = B?*wit?(ay; A ,m) + 2(A — B)2(1 — A)w] (ay; A4;;;m)
Wi (ag; 4 5m))2[(1 = B)wf (ag; A 5m) — (1 — A)]2 — 2(A — B)2wit0 (ay; A 5m)

Proof: We must find the largestsuch that

z wi(aqg; At m)[(l — a)wn (ap; A, 5m)— (11— A)]

. (ag, +as,) <1

Since f; € W(z,0,a1,4,1,m,A,B) (j = 1,2), we get

o (wi(ay A sm)[(1—Bwf (ag; 4;5m) — (1 — A)]
Z( A-B > @

n=2

A—B
<1, (3.5)

Wi (ag; A 1-BWwo(agAum)—(1—A :
S(zw(a 5m)[( YWl (agp; A 5m) = ( )] M)

O (wias A sm)[( = Bwd(as sm) — A=A\
Z( A_B > .2

2
- wi(aq; A4 m)[(l - Bwi(aj; Lsm) — (1 - A)] ’
< <Z A—B n,2>
1

(3.6)

Combining the inequalities (3.5) and (3.6), gives

% (w,g(al;a; sm)[(1 - Bivui }gal,/l sm) —(1— A)]>2 @ tat)

2
1. (3.7)

NgE

IN 5
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But,k € W(t,0,a,4,1,m,A,¢), if and only if

A_¢ (a121,1 + arzz,z)

i wy (ag; 4 5m)[(1 — e)wf (ay; 4;5m) — (1 — A)]
n_sz 1. (3.8)

The inequality (3.8) will be satisfied if

wy (ag; ;5 m)[(1 — ewf (ag; 4, 5m) — (1 — A)]

A—c¢
- Wian 45 m)? [ ~ Bywf (ays s 5m) = (1 = )]
= 2(A — B)? ’
(n=2,3,...)

so that

£

- AW (aqg; ;5 m)*[(1 —B)wi(a;; 4, 5m) — (1 —A)]? — 2(A — B)?w5t (ay; 4,5, m) + 2(A — B)?2(1 — A)wi(aq; A ;m)
- W (aq; 4, 5m)?2[(1 —B)wi(ay; 4, 5m) — (1 — A))2 — 2(A — B)2wit(aq; A, m)

4 Integral Mean Inequalities for the Fractional
Integral:

Definition (4.1) [6]: The fractional integral of ordes (s > 0) is defined for a

function f by . o
z t
O jo Z-D dt, (4.1)

D;*f(2) =

where the functioif is an analytic in a simply — connected regionha tomplex
z-plane containing the origin, and multiplicity @& —t)S™! is removed by
requiringlog (z — t) to be real, wheriz — t) > 0.

In 1925, Littlewood [5] proved the following subamdtion theorem:

Theorem 4.1 (Littlewood [5]): If f and g are analytic in U witlf < g, then for

p>0andz=re? (0<r<1)

2m 21
j|ﬂ@wwsj'm@wwa

Theorem 4.2: Letf € W(z, 0, a,,4,t,m, A, B) and suppose th#t is defined by
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B A-B N
wi (ag;45m)[(1-B)wh (ag;4,5m)—(1-A)] 2", (n22). (4.2)

fa(z) =z

Also let

0

Z(i - 77)77+1ai

:2 A-B)(n+1DI'(s+n+3)
Twiag; A sm)[(A =-Bwf(ag;; 4um) - (A =-A)Mn+s+n+ D2 -n)’

(4.3)

for 0<n<i, s>0,where(i —n),+; denote the pochhammer symbol

defined by (i —=n)p41 = (—m(E —n+1) .0

If there exists an analytic functigndefined by

(q@)"!
Cwia sm)[@ —BWwE (@ um) —(1- A +s+n+1) X N
= (A _B )r(n + 1) i;{ (l — n)n+1H(l)aiZ f
(4.5)
where i >n and
r(i-—
HQ) = — =™ (s>0,i>2), (4.6)

ri+s+n+1)

then, forz =reYand 0 <r <1

2T 2T
f D f ()| dy < j D @) dy, (s>0,u>0). (4.7)

Proof: Let

o]

f(2) =Z—Zaizi :

=2

For n = 0 and Definition(4.1), we get

DS () = LR ( CONCTGHDIG+n+2) )

T(s+7+2) ,zr(z)r(i+s+n+1)aiz
=
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_ F(Z)ZS+T]+1 0 F(S n n + 2) . . .
- F(S+—n+2)(1 - DeatiOa )

r'@—mn)
I'i+s+n+1)

where

H@) =

(s>0,i>2).

SinceH is a decreasing function gfwe have
rz-mn)

Similarly, from (4.2) and Definition4.1, we get

D, " fu(2)
B F(Z)ZS""’H .
CI(s+n+2) <

B A-B)'(n+DI'(s+n+2) e
wy(aq; At m)[(l —Bwl(a; 4, 5m) — (1 — A)]F(n +s+n+ 1)Z >

For u>0andz=re?” (0<r < 1), we mustshow that

J-ZTL'
0

o]

I'(s+n+2) . N
1- ;%o — Dyl (Daz

u
dy

u
(A=-B)(n+ DI(s+n+2) dy.

T wilap Lom(—Bwl(a; sm) —A—-AIN@Tm+s+n+1)°

n-1

2
)
o |1

By applying Littlewood’s subordination theoremwibuld suffice to show that

o]

I'(s+n+2) . N
1- ;%o My Dz

<1
_ (A-=B)I(n+ DI'(s+n+2)
wi(ag A 6 m)[(L— Bywd (ag Asm) — (1— AT m+s+n+1)

n-1

By setting

o]

I'(s+n+2) . N
1- ;%o My Dz
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=1
_ (A-B)(n+DI'(s+n+2)
wy(aq; A m)[(l —Bwl (a;; A 5m) — (1 — A)]F(Z)F(n +s+n+1)

(q@)",

we find that

(q@)™
_wrlag Ay m)[(l —BWw(a; 4 5m) — (1 — A)]F(n +s+n+1) - ]
- (A-B)['(n+1) ;(l

- 77)17+1H(i)ai2i_1,

which readily yieldsw(0) = 0. For such a functiog, we obtain

|(q(2) "
- wi(aq; At m)[(l —BWw(a; 4, 5m) — (1 — A)]F(n +s+n+ Di(i
= (A—B)(n+1) £

—Mp+rHD a2

o]

wp(aq; A ¢ m)[(l —Bwl (a;; A 5m) — (1 — A)]F(n +s+n+1) )
= (A—B)T(n+ 1) H(2)|Z|Z(‘

i=2
- 77)7]+1H(i)ai

(A-B)I(s+n+3)I'(n+1)

= Mp+1a; < |Z| <1

_ 2] wi(ag; sm)[( - Bwl (a; usm) — (1 —A)|F+s+n+ DR — n)i(i
i=2

This completes the proof of the theorem .
By taking n = 0 in the Theorem4.2, we have the following corgllar

Corollary 4.1: Letf € W(z,6, a1, 4,1, m, A, B) and suppose thg, is defined by
(4.2). Also let

(A-B)(n+ 1I'(s + 3)
a; < ,n
wi(aq; 2 5m)[(1 = BwE (ag; 4 5m) — (1 — A)]T(n + s + DI(2)
= 2.

o0
i=2

If there exists an analytic functigndefined by
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(q@)H"
~wi(a; sm)[(1=B)wf (a; 45m) — (1 - A)|F(n+s+ 1) < i
B (A—B)[(n+ 1) Z H(Daz™,
where
L T® .>
H(l)—m, (S>O,l_2),

then, forz=re?” and 0<r<1

2T

2T
j|mﬁ@wwsf|w%@ww (s> 0,u>0)
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