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Abstract

In this work, projection method with degeneratedneé and its properties are
used to solve linear Fredholm Integro-Differentiategral equations (LFIDE).
The kernel in the equation are degenerated and exdorig matrix in which each
equations are integrated over the interval [0, b produce the elements for
obtaining the Eigen value. It approaches linear dftelm Integro-Differential
equations in a manner that gives the solution ireaact form and not in a series
form, the algorithm is simple and effective, andldcalso provide an accurate

approximate solution.
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1.0 Introduction

Fredholm Integro-Differential equations (FIDE) arise in many scientific
applications. It was also shown that FIDE can bevdd from boundary value
problems. Converting boundary value probleméntegro-DifferentialFredholm
integral equations and converting Fredhaitegro-Differentialequations (FIDE)
to equivalent boundary value problems are raredgdugrik Ivar Fredholm (1866—
1927) is best remembered for his work on integgalagions and spectral theory.
However,Adomian decomposition method (ADM) for solving igtal equations
has been presented by Adomian [1-2] and then #ssdleen extended by Wazwaz
to Volterra integral equation [13] and to boundaalue problems for higher-
order integro-differential equations. RAredholm Integro-Differential equations
(FIDE) equation of the second kind may be written as

un () = () + A [ K(x Hu(t) dt (1.0)
Subject to initial conditionga®(0) = ¢, 0 <k < (n—1) (1.1)

2.0 Formulation and I mplementation Method

Definition 1. A kernelk(x,t)is called degenerate if it can be expressed as the

sum of a finite number of terms, each of whichhégroduct of a function ok
only and a function oft only{16]: If we can write the kernel of (1) in the form:

N
k(x,0) = Y0 0 (0)Bi(t) (2.0)
(ork =Y, ;8| ) We may assume that tii€x)are linearly independenfny
continuous functiork(x,t) can be uniformly approximated by polynomials in a
closed interval.
To illustrate the efficiency of the proposed nuroarimethods in studying the

model equation (1.0) subject to the initial coratis, and given the kernel in (2.0),
the general second kind Integro-Differential Frddhequation,

wr(x) = () + A [ k(% u(t) dt, uk(0) = ¢, 0 < k < (n — 1),
¢, are the initial conditions

Equation (1.0) can be rewritten as
W(x) = ) + A [0 R, @ (IBi() u(Dd (2.1)

W (x) = f(x) + AR, () f Bi(Du(Dde (3.0)
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To discretized (2.1) let us denote

bi = [ Bi(Du(®dt (4.0)

and since our focus is to solve far we need to find our,,,, (x)which is
depending on the initigl(x)

u(x) = frew(x) + A X biinew (%) (5.0
from (3.0), we have

un(x) = f(x) + AX™, by (x) (6.0)
IM(x) = f(x) + A X, bioy (x) (6.1)

Operating withL™ on both sides of (6.1) and with the application(bfl), it
follows

() — £, X @D (0) = LA + A bioy (0]

(l 1)!

UG = E1y 2w 0) + L) + AT, by (0] (6.2)

Let us multiply (6.2) byg;(x),j = 1, 2, 3.. nintegrate from a to b over x

u)pjx) = - D(0)B; () + (L) + A X2, biog (OB ()

i= 1(1 e

2 uCIB;(dx = Ty [T A w0 (0)B (dx +

(e iepeadx £y b A wGEx) 63)

dn—l

where the differential operatok8 = -

dxn’ dxn—1’

The inverse operato.™ is therefore considered an n-—fold integral operato
defined byL™(.) = [(.)dx

Let
by = J, u()B;(x)dx

f = [ (L70) By () dx (7.0)
= [} (7o (9) By (x)dx
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Putting (7.0) into (6.3), we have

bj=(f+2) by
m =
rln—l
(I- }\Z. 131])b1] = f]
i=
(1—2A)B = F _

There exist a unique solution for (8.0) if the detman{l — AA| = 0 and either
no solution or infinitely many solutions whéin— AA| = 0.

This is a system af linear equations in the unknownd;. Suppose that there is a
unique solutiorfy, f,, f5 ....f,to this system.This system can be solved by finding
allb;,i = 1, 2,3, ....n; and substituting into

u(x) = frew(x) + }\Zﬂlbiainew(x) (8.1)
to find u(x)
[311 Q12 - - 3]
by f [az1 @22 - - Azl
B = |b2 F=|f A=[_ S ] (9.0)
P b a1'11 anz - - ar.m
From (7.0)
l[fab L_nalnew(x)ﬁl (X) dx fab L_n(XZnew (X) Bl (X)dX o fab L_nannew (X)Bl (X)dX]
L L e (OB (0% [P L 0onew COB(0AX . [ L lppen (0B () dx
A= ) .o '
lfab L™ pew (¥) Bn (x)dx fab L tgpew (X)Bn(x)dx . . fab L™ atppew (%) Bn (X)dXJ

3.0 Application and Numerical Results

To illustrate the efficiency of the proposed Aldgbm in studying the model
equation (1.0) subject to the initial conditionse wolve three examples of
Fredholm integro-differential equations by the noetlof solution above.

Example 3.1 Solve the following Fredholm integro-differentiajieation

u"'(x) =2 +sin (x) — f:(x —tu(t)dt,u(0) =1,u’(0) =0,u"(0) = -1
(10.0)
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The kernel iK(x,t) = (x —t) = Y2, a; () B;(£)

a;(x) =x
o (x) = -1
pi(t) =1
pa(t) =t
n=23
A=-1

From (6.3)u(x) — 1 + XZ_Z _ §+ cos(x) — (§b1 ~ Z‘jbz)
frew (X) = § + cos (x)
fi = JT Bu(® faew (@t =[ (5 + cos (1)) dt = =

= O a0 = [ e o e = 2

4

L
12
F = s
—=—2
15
x4
o(1new(x) = )
3
o(Znew(x) = —3

z'—l a;j = f(:T ainew(x)ﬂj(X)dx

4 5
a1 = f: Ugnew (X) By (x)dx = f:t—dt ==

4! 5!

T T[t3 _ '[[4'
A2 = fo aZnew(x)ﬁ1(X)dx = —fO ;dt =—

m 5 _ o
az1 = fo Ugnew (1) B2 (x)dx = fO Zdt =

T Tttt
Az2 = fo onew (X) B2 (x)dx = fo —;dt = -

n* 5 4

bh_| = 5 | [bs
b, ™ _ 2 n b,

15 144 30

83

(11.0)

(12.0)
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The determinant is non-zero and solving (12.0)d@io
b1 =:0, bz =-2
From (5.0)
u(X) = fnew(X) + AZ?zl biainew(X)
3 4 3
u(x) =X?+cos(x) - (%*O —%* —2)
u(x) = cos(x)
Example 3.2 Solve the following Fredholm integro-differentiajweation
u?(x) = (2x — m) + sin(x) + cos(x) — fOE(x — 2t)u(t) dt,
u(0) =u'(0) =1, u"(0) = u"(0)=-1 (23.0)

The kernel iK(x,t) = (x — 2t) = X2, a; (x)B;(2)

a; (x) =x

a,(x) = -2

Bi(t) =1

Bo(t) =t

n=4

A=-1

From (6.3)au(x) — u(0) — xu’(0) — > u"(0) — X u""(0) =

g - T;—’f: + sin(x) + cos(x) — (%50 b, — %bz) (14.0)

( )—X—S—ﬂ—x4+s'n( ) + cos(x)

fl = fogﬁl(t)fnew(t)dt =fog (;_Z — Z—T + Sin(t) + COS(t)) dt =2 — n—6

4608
ud T &t . T 2917
fo = [ PO e = [T GG = 50+ sin(®) + cos@)de =5 - o0

T

6
4608
T 29’

F =

2 322560
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X5
Ainew (x) = =1

O(Znew(x) = _g
pi(t) =1
Bo(t) =t

2 .
Z.zl aij = [Z Qinew (0B (x)dx

n Et5 6
a1 = [2 Aipew (®)B1(t)dE = 05t = 1055s
n n t4‘ 1-[5
Az = J2 Oapew (DB (D)dt = — st =150
n 6 T’
a1 = JZ Unew (B2 (H)dx = [2 oAt =55
n n t5 1-[6
Azz = JZ Canew (H)B2(O)dx = [2 -Gt =——
2 ° ne o
by " 4608 46080  1920|[D1
[bz] - o 2on? | 7 B 6 bz] (15-0)
2 322560 107520 4608

The determinant is non-zero and solving (15.0)d@io
b1 = 2, bz =§
From (5.0)
u(x) = fnew(x) + }\Z?zlbiainew(x)

x> mx? . x5 x* n
u(x) = E_H-I_ sin(x) + cos(x) — (E* 2 — _E*E)
u(x) = sin(x) + cos(x)
Example 3.3: Solve the following Fredholm integro-differentiajeation
u’(x) = 2x — xsin(x) + 2cos(x) — f_EE(t —x)u(t) dt,

2

u(0)=u'(0)=0 (16.0)

The kernel iK(x,t) = (t—x) = Y2, a; (x)B;(t)
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From (6.3)u(x) — u(0) — xu'(0) =

x3 . x2 x3
5 T xsin(x) — (5;b1 — 3, b2)

frew(@) =% + xsin(x)

fi = 7% Bi() frew(B)dt =[nt (g + tsin(t)) dt =~

Aloko MacDonald D et al.

(17.0)

fo = [2Bo(O) frow ()t = [%—(& + tsin(©)dt = —

_ M

A1new (x) = e

X3
A2new (x ) 3!

pi(t) =t
p2(t) = —1

z._ U J % Qi () B (x) dx

a;; = f na1new(t)ﬁ1(t)dt = - fz

A1z = f_Eg Uonew (B)f1(B)dt = — fz

dt =0

5
dt =
480
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3

n L
Az = f_zgamew(t)ﬁz(t)dx = - f_zg%dt =~
2 2

n L
a2z = [*n Uonew () B2 (H)dx = f_ZE%dt =0
2 2 7

[Zﬂ B [%l B l Ons _?] [Z;] (18.0)

24

The determinant is non-zero and solving (15.0)d@io
b1 = 0, bz =-2
From (5.0)
u(X) = fnew(X) + AZ?zl biainew(x)
u(x) = £+ xsin(x) — (ﬁ* 0— X -2)
3 2! 3!
u(x) = xsin(x)
4.0 Conclusion

The present method reduces the computational dliiies of other traditional
methods and all the calculation can be made siniple.accuracy of the obtained
solution can be improved by taking more terms andblution.
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