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Abstract

In this paper, the modified Korteweg-de Vries (MKdguation is solved
numerically using the finite difference method. é&mergy conservative finite
difference scheme was proposed. Accuracy and syabilthe difference solution
were proved.
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1 I ntroduction

In this paper, the finite difference method is emypd to obtain the numerical
solution to the modified Korteweg-de Vries (mKdVjjuation. A scheme is
developed for the numerical study of the mKdV enpnet with initial conditions.
The exact and numerical solutions obtained by $eiseme are compared. The
comparison shows that this scheme provides highpearical solutions for the
MKdV equation. The modified KdV equation has a putsavelling solution.
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Wadati and Ohkuma [4] have used the inverse soagtarethod to investigate the
multiple pole solution of the modified KdV equatidWazwaz [5] constructed the
solution of mkdv equation in the form of Taylor issr by using Adomian

decomposition method.

2  TheProblem and Analytical Solution
The MKdV equation in the form [2]

U, +&u’u, + (i, =0, 1)
where subscripts x and t denote differentiationgdasidered with the boundary
conditions u~0 as - . In this paper, we use periodic boundary condsifon

a region & x < b. The analytic solution of the MKdV equation daa expressed
as

u(xt) = 3csech® (p(x = vt = x;)) )
where % is an arbitrary constant.

3  Conservation Lawsfor the MKdV Equation

The MKdV equation possesses four polynomial invdsacorresponding to the
conservation of mass, momentum and energy whichherperiodic boundary
condition can be expressed in the form

I, = Tudx
I, = [udx
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4 Finite Difference M ethod

To apply the finite difference method for solvirngetMKdV equation, firstly we
present the following notations for the derivatives
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(u_j )t ] Uij{L u|]

Wy, ot -u)+ a-o)ul, -ul,)
I X 2h

(u j) U 0(uij++21 - 2uij++ll + 2uij_+11 + uij—+2l) - (1_ 6)(uij+2 - 2uij+l + 2uij—l - Uij—z)
i/ xxx 2h3

(4)

where 0< 6 < 1, h and k are the spatial and temporal step se&grectively and;x
=ih, 4=k, i=01, ..andj=0,1, .. where swgueipt j denotes a quantity
associated with time leve] &nd subscript i denotes a quantity associated with
space mesh point.XThe scheme requires two initial time levels, s® wge the
exact solution (2) att=0and t = k.

Substitute Eq.(4) in Eqg.(1), then the resultingeblgic system of equations takes
the form

ul™ -y + g(u-j )2 ¢ (uij++1l - Uij—+11)Jr @- 9)(“ij+1 - uij—l)

2h
v Uy — 20l +2ulF —ul) + - g)(ul, —2ul, +2ul, —uly) -0
2h® ’
5)

where j=0,1,2,..., 1=1,2,...,N-1

5 Linear Sability Analysis

The Von Neumann stability theory [1] will be appliand the growth of a Fourier
mode

n_ zn ikjh
U=t ©)
where k is the mode number and h is the elemest witl be determined for a
2
linearization of the numerical scheme. In this iear termY Yx is locally

. : . . 2
constant. This is equivalent to assuming that treesponding valueY are also
constant [3] and equal itb.

Substituting (6) into Eq.(5) we obtain.
&Mt =gé! (7)

where g is the growth factor is thus
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_A+i(l-6)B
C A-iB (8)
e A : _ &k _ k
where A=1,B = 2sin jh(-pU +2p,(cosjh -1)), p, —%and P, T
Stability can be concluded in different cases:
1. 0 = 0, gives an explicit scheme and the linearizeldese is unstable,
sincdg| >1.
2. 0=1, gives the fully implicit scheme and the lingad scheme is
unconditionally stable, sin¢g <1.
3. 0=0.5, gives the Crank-Nicolson scheme and the fined scheme is

unconditionally stable, sinbj =1.

6  Numerical Applications

It has been shown in Section 2 that the MKdV equmatias an analytical solution
of the form (2). In this work, we present some ntioa experiments to assign the
numerical solution of single solitary wave, in dduh to determine the solution of
two and three soliton interactions at differentditavels.

6.1 Single Solitary Waves

In this test we choose the initial condition frome xact solution

u(x,0) = \/%sedw{\/% (x- xo)},

To illustrate the validity of our scheme in caseadingle soliton, we use the, -
norm to compare the numerical solution with thecésalution, also quantities, |
I,, I3 and } are shown to measure conservation laws for thersehln case 1, we
chooseA x = 0.LAt = 001, £ =3 u=1andc=0.845 as shown in "Table" 1.

9)

Table 1: Invariants and error norm for single solitary wave
h=0.1=k=0.01£ =3, = landC=0.2 0<x<80

T L.-error h lo I3 I4

0.1 | 9.4179E-5| 4.44279 2.1908 0.438274 0.0788365
0.2 | 1.5926 E-4| 4.4427 2.1907 0.438217 0.0788886
0.3 | 2.0619 E-4| 4.4426 2.1906 0.43816 0.0788884
0.4 | 23711 E-4| 4.4425 2.1905 0.438104 0.0788761
0.5 | 2.6244 E-4| 4.4424 2.1904 0.438047 0.0788634
0.6 | 2.8110 E-4| 4.4423 2.1903 0.43799 0.0788464
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0.7 | 2.9482E-4| 4.4422 2.1902 0.43793 0.0788586
0.8 | 3.0133 E-4| 4.4421 2.1901 0.43788 0.0788661
0.9 | 3.1064 E-4| 4.4420 2.1900 0.43782 0.0789231
1.0 | 3.1027E-4| 4.44192 2.18994 0.437763 0.079070

Table 2: Invariants and error norm for single solitary wale 2nd Scheme
h=0.1=k=0.01£=3 x=1andc=0.3, 0<x< 80

T L,-error h lo I3 I4
0.1 | 9.6546E-5| 4.4428 2.19078 0.438262 0.0788272
0.2 | 6.2638E-4| 4.4427 2.19066 0.438193 0.07887
0.3 | 2.1449E-4| 4.4426 2.19055 0.438124 0.0788808
0.4 | 24938E-4| 4.4425 2.19043 0.438055 0.0788675
0.5 | 2.7377E-4| 4.4424 2.19032 0.437986 0.0788502
0.6 | 29141E-4| 4.4423 2.1902 0.437918 0.078831
0.7 | 3.0437E-4| 4.4423 2.19009 0.437849 0.0788104
0.8 | 3.1388E-4| 4.4422 2.18997 0.43778 0.0787901
0.9 | 3.2048E-4| 4.4421 2.18986 0.437711 0.0787629
1.0 | 3.2521E-4| 4.44198 2.18974 0.437642 0.0787611

The results shown in "Tables" 1 and 2 show thattitenge in the invariants, Il,,
I3 and L are very small as follows: 8.2 xI0, 1x10 ~, 6x10* and 6.6x10,

respectively.
0.6
0.4+

- - 80
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Fig. 1: Single solitary wave of the first scheme with &Mh=0.1, k=0.01 at
times: T=0, T=5 and T=10
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Fig. 2: Single solitary wave of the second scheme with&40=0.1, k=0.01 at

6.2

times: T=0, T=5 and T=10

I nteraction of Two Soliton

In this test we choose the initial condition as $hen of two solitary waves of the

form

u(x,0) =a, sed{\/g(x - X; )],
u

Where g =

_ 6
a‘i_\/jll :L2 (:DO

0.2, ¢ =0.1, x = 15, % = 25. The conserved quantities are given in

"Table" 3 and "Table" 4.

Table 3: The computed values of the conservations laws forawliton of the 1st

Scheme witt2 X= 0LAt= 0.01' E=3 U =1’ 0<x<80

T I P I3

1.0 7.52781 2.94444 0.66715
2.0 7.48285 2.9481 0.66283
3.0 7.45274 2.95242 0.665289
4.0 7.39747 2.96155 0.664989
5.0 7.43042 2.97498 0.658588

The conserved quantities for two soliton of theskdteme are given in "Table" 3,
we found during the interaction simulation. that tomputed quantities, Il, and

I3 change by less than 9%38x10% and 8x10'.
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Table4: The computed values of the conservations lawsaforsliton of the &
Scheme withl2 X = 0L At = 0.01' E=3 U :1, 0< x<80

T |1 |2 |3

1.0 8.88426 3.59982 0.859249

2.0 8.88525 3.59918 0.847121

3.0 8.88445 3.59805 0.83652

4.0 8.88488 3.59732 0.827262

5.0 8.88831 3.59768 0.819233
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Fig. 3: Interaction of two solitary waves at timéa) =T=0, (b) T=2,(c) T=5
The conserved quantities for two soliton of ti&szheme are given in "Table" 3,

we found during the interaction simulation. thag tomputed quantities, ll, and
Ischange by less than 4.1x3,8.1x10% and 4x1C¢

6.3 Interaction of Three Soliton

In this test we choose the initial condition forah waves
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-y S (x— _ [%e o
u(x,O)—iZ:l:aised{\/;(x xi)}, a \/?,I 123,

where ¢=2, =1, g=0.5, =15, %=25, %=35 . The conserved quantities are
given in "Table" 5, 6.

Table5: The computed values of the conservations laws feetkoliton of the
1st Scheme witft X = 0LAt=001 £=3 =1 0<x<80

T l1 P I3

0.0 13.3286 6.09900 1.90112
1.0 13.3271 6.09748 1.86964
2.0 13.3260 6.09608 1.84270
3.0 13.3248 6.09481 1.81528
4.0 13.3280 6.09369 1.78710
5.0 13.3203 6.09266 1.75979

The conserved quantities for three soliton of tedheme are given in "Table" 5
, we found during the interaction simulation. tiia@ computed quantities, ll,
and k change by less than 8.2x3,6.3x10% and 0.14 respectively.

Table 6: The computed values of the conservations lawshieet soliton of the
2"9Scheme withh= 01k = 001le=3 u=1, 0<x<80

T I P I3

0.0 13.3286 6.09900 1.90112
1.0 13.3257 6.09593 1.86863
2.0 13.3227 6.09282 1.84073
3.0 13.3193 6.08958 1.81250
4.0 13.3148 6.08621 1.78366
5.0 13.3110 6.08286 1.75590

The conserved quantities for three soliton of tifeseheme are given in "Table"
6, we found during the interaction simulation. thia computed quantities, Il,
and k change by less than 1.7%4,0..6x10° and 0.14
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Fig. 4. Interaction three solitary waves at timgg:=T=0, (b) T=5

7  Thelnvariant Imbedding M ethod

The general implicit form is:

- p&u +( p, (u/ ) +2p2)6uj+1+u'j+l+(p1(u )? _2p2)6u|1+11+ pzaJij:zl:
P, (- 9)“. » H(P (U =2p,)A-O)u), +u! +(—p(u))? +2p,)A-G)ul, - p, L-O),,
(11)

We solve the scheme (11) by the invariant imbeddiethod [6]. This system can
be written in the form

s +(-a+ AT + ! + (@ = BT + ptu; = 12)
Where

F=ul-0)u; +(@-B)A-0)ull + '™ +(-a+ B)A- O/} - ulL-6)u';
Let its solution be
u™ = Ault +Bull +C, I =N-1N-2..1 (13)

By substituting equation (13) into (12) and comp@rthe coefficients, one gets
the relations
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A= —
V=LA + 1B ;B +(a - B)B,)
g = WBioAL—(@=PA,—(-a+[)b
" y+((@- BBy~ 1B_,B 1 — A,)E
C = F-0((a-P)Ciy+ LGy +1B_,Ciy)
" y-6((a-B)B - A, — 1B ,B ) (14)

Taking i = 0 in (13) we get #0, B,=0 and @ = w where ¢ is known from the
boundary condition. Taking i=-1 in (13) we get; A1, B;=0 and G=0 ,the
scalar A and B are computed from (14) and are used to find thetisa
u’**from equation (13).

7.1 Numerical Applications

It has been shown in this Section that the MKdV agm has an analytical
solution of the form (2). In this work, we preseaoime numerical experiments to
assign the numerical solution of single solitarywan addition to determine the
solution of two soliton interactions at differemhe levels.

7.1.1 Single Solitary Waves

To illustrate the validity of our scheme in caseaddingle soliton, we use the-L
norm to compare the numerical solution with thecéxsolution, also quantities

I,1,,1; and | ,are shown to measure conservation laws for thensehén this
case, we choosax = 02,At =001, € =3 x =1andc=0.3 with range [0, 80].

Table7: Ax=02At=001, =3 y=1landc= 0.3 0<x<80

T Lo-error h Iy I3 I4

1.0 | 1.9842E-3 4.44199 2.18995 3.8175E-2 7.8484E-2
2.0 | 2.5119E-3 4.44107 2.18901 3.7979E-2 7.9924E-2
3.0 | 2.9937E-3 4.44010 2.18807 3.7394E-2 8.5221E-2
4.0 | 3.5185E-3 4.43974 2.18713 3.6768E-2 8.8609E-2
5.0 | 4.2136E-3 4.43812 2.18619 3.6296E-2 9.7301E-2

The invariantsy I, I3 and k are changed by 3.8 xI6, 3.7x107°, 1.8x10°, and
6.8x10° percent, respectively, throughout "Table" 7.
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Fig. 5: Single solitary wave, ¢=0.3, h=0.1, k=0.01
7.1.2 Interaction of Two Solitary Waves

In this test we choose the initial condition as $hen of two solitary waves of the
form

u(x,0) alsem(((x xl)j+azsed1(\/7(x xz)j 6C1 JA=12

Where ¢ = 2, ¢ = 1, x = 15, % = 25. The conserved quantities are given in
"Table" 8.

Table 8: Interaction of two solitary waves

T 11 12 13

1.0 8.63906 9.03663 7.94016
2.0 8.46653 8.65149 6.80785
3.0 8.36797 8.38153 6.02332
4.0 8.24351 8.17557 5.46112
5.0 8.15655 8.00870 5.18743

The conserved quantities are given in "Table" 8. Mlend that the computed
guantities 4, I, and § change by less than 0.48, 1.7and 2.7.
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(a) 0 20 40 60 80 (b) 0 20 40 60 80

Fig. 6: Interaction two solitary waves at times:
(@) =T=0,(b) T=1

7.1.3 Interaction of Three Soliton

In this test we choose the initial condition forah waves

- S & — = % i =
u(x,O)—iZ:l:a,-sedwN;(x )g)} a \/j,l 123

where ¢=2, =1, ¢=0.5, %x=15, %=25, %=35. The conserved quantities are
given in "Table" 9.

Table9: Interaction of three solitary waves

T I I I3

1.0 13.07780 11.85946 8.88135
2.0 12.90114 11.46870 7.74215
3.0 12.80053 11.19353 6.95347
4.0 12.67308 10.98244 6.38317
5.0 12.57683 10.80949 6.10943

The conserved quantities are given in "Table" 9. \Wendl that the computed
guantities 4, I, and § change by less than 0.5, 1.04 and 2.7.
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Fig. 7: Interaction three solitary waves at timén:=T=0, (b) T=2

8 Conclusions

In this paper, the finite difference method wasl@opto study the solitary waves
of the MKdV equation. We test our schemes througigle solitary wave in
which the analytical solution is known, and thenteexled it to study the
interaction of two and three solitons. We have gastithat the schemes keep the
conserved quantities are almost constants durmgdlculations.
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