
EXISTENCE OF MULTIPLE CRITICAL POINTS FOR

AN ASYMPTOTICALLY QUADRATIC FUNCTIONAL

WITH APPLICATIONS

SHUJIE LI AND JIABAO SU

Abstract. Morse theory for isolated critical points at infinity is used for
the existence of multiple critical points for an asymptotically quadratic func-
tional. Applications are also given for the existence of multiple nontrivial
periodic solutions of asymptotically Hamiltonian systems.

1. Introduction and preliminaries

It is known that the objective of the Morse theory is the relation between
the topological type of critical points of a function f and the topological
structure of the manifold on which the function is defined. The topolog-
ical type of a critical point x is described by the critical groups Ck(f, x)
for which there have been many known results, cf ([3], [8], [7], etc.). The
topological structure of the manifold M is described by its Betti number
βk = dimHk(M). One can make use of the Morse inequalities to gain the
existence of unknown critical points to f once one gets some precise infor-
mation related to Ck(f, x) and βk or Hk(M).

In this paper we prove some abstract multiple critical point theorems via
Morse theory, and then apply these theorems to the study of the existence
of multiple periodic solutions for a second order Hamiltonian system. In this
section we state some known results concerned with the Betti number βk.
Let us begin with some notions. Let X be a Hilbert space and f : X → R

1

be a C1-function. We write K = {x ∈ X : f ′(x) = 0} and fa = {x ∈ X :
f(x) ≤ a} for a ∈ R

1. The following definition is due to [1].

Definition 1.1. Suppose that f(K) is bounded from below by a ∈ R
1 and

that f satisfies (PS)c for all c ≤ a. Then the group

Ck(f,∞) := Hk(X; fa), k ∈ Z,
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is said to be the k-th critical group of f at infinity. Here H∗(·, ·) denotes a
singular relative homology group with the abelian coefficient group G.

From this definition we see that the topology of the pair (X, fa) contains
all the information about the critical points of f because we require that
f(K) be bounded from below by a ∈ R

1. Therefore we need precise estimates
for Ck(f,∞) (actually the Betti number βk = dimHk(X, fa)), for k ∈ Z.
This has been done for some type of an indefinite functional, say, for example,
an asymptotically quadratic functional. One can refer to [3] or [1].

In [1], Bartsch and Li given some precise descriptions of the critical group
Ck(f,∞) under the following framework:

(A∞) f(x) = 1
2〈Ax, x〉 + g(x), where A : X → X is a self-adjoint linear

operator such that 0 is isolated in the spectrum of A. The map g ∈ C2(X,R1)
satisfies g′′(x) → 0 as ‖x‖ → ∞. Moreover g and g′ map bounded sets into
bounded sets and g′ is compact. f satisfies (PS)c for c << 0 and f(K) is
bounded from below.

In this case we may say A = f ′′(∞) and f ′′ is continuous at ∞.
Let (A∞) hold. Set V := KerA and W = V ⊥. We split W into W+ ⊕W−

according to the spectrum of A such that A|W+ (resp. A|W −) is positive
(resp. negative) definite. Let µ := dimW− be the Morse index of f at
infinity and ν := dimV be the nullity of f at infinity.

Proposition 1.1. If (A∞) holds then

Ck(f,∞) = 0 for k 
∈ [µ, µ+ ν].

This is also true if µ = ∞ or ν = ∞. If µ < ∞ and ν = 0, then

Ck(f,∞) ∼= δkµG.

Proposition 1.2. Let f satisfy (A∞).
a) Ck(f,∞) ∼= δkµG provided f satisfies the following angle condition at

infinity:
(AC+∞) There exists M > 0 and α ∈

(
0, π2

)
such that 〈f ′(x), v〉 ≥ 0

for any x = v + w ∈ X = V ⊕ W with ‖x‖ ≥ M and ‖w‖ ≤ ‖x‖ sinα.
b) Ck(f,∞) ∼= δk,µ+νG provided f satisfies the following condition at in-

finity:
(AC−∞) There exists M > 0 and α

(
0, π2

)
such that 〈f ′(x), v〉 ≤ 0 for

any x = v + w ∈ X = V ⊕ W with ‖x‖ ≥ M and ‖w‖ ≤ ‖x‖ sinα.

There are many well-known results related to the critical groups of f at
an isolated critical point for which one can refer to [8], [3], [7] or others. In
[1] a result similar to Prop. 1.2 was given.

Proposition 1.3. Suppose that θ is an isolated critical point of f such that
0 is isolated in the spectrum A0 := d2f(θ). Let µ0 and ν0 be the Morse index
and nullity of θ respectively and ν0 < ∞ and µ0 < ∞. Then

a) Ck(f, θ) ∼= δkµ0G provided f satisfies the following angle condition at
θ:
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(AC+
0 ) There exists ρ > 0 and α ∈

(
0, π2

)
such that 〈f ′(x), v〉 ≥ 0

for any x = v + w ∈ X = V0 ⊕ W0 with ‖x‖ ≤ ρ and ‖w‖ ≤ ‖x‖ sinα.
b) Ck(f, θ) ∼= δkµ0+ν0G provided f satisfies the following angle condition

at θ:
(AC−

0 ) There exists ρ > 0 and α ∈
(
0, π2

)
such that 〈f ′(x), v〉 ≤ 0

for any x = v + w ∈ X = V0 ⊕ W0 with ‖x‖ ≤ ρ and ‖w‖ ≤ ‖x‖ sinα.
Here, V0 := Ker(A0) and W0 := V ⊥

0 .

One can refer to [1] for the details of the proofs of Propositions 1.1–1.3. In
applications one has to verify that f satisfies the (PS) condition. We remark
that f satisfies the (PS)c condition for every c ∈ R

1 provided f satisfies the
strong angle conditions at infinity:

(SAC+∞) (or (SAC−∞)). There exist M > 0, β > 0 and α ∈
(
0, π2

)
such

that 〈f ′(x), v
‖v‖〉 ≥ β > 0 (or resp. 〈f ′(x), v

‖v‖〉 ≤ −β < 0) for any x =

v + w ∈ X = V ⊕ W with ‖x‖ ≥ M and ‖w‖ ≤ ‖x‖ sinα.

More precisely, we have

Lemma 1.1. Let f satisfy (A∞) and (SAC+∞) (or (SAC−∞)). Then f sat-
isfies the (PS)c condition at every c ∈ R

1, i.e. any sequence {xn} ⊂ X for
which f(xn) → c and f ′(xn) → 0 as n → ∞ has a convergent subsequence.

Proof. Let {xn} ⊂ X be such that

(1.1) f(xn) → c as n → ∞,

(1.2) f ′(xn) → 0 as n → ∞.

We first show that {xn} is bounded. Suppose not, then

(1.3) ‖xn‖ → ∞ as n → ∞.

Write xn = w+
n + vn +w−

n and wn = w+
n +w−

n where w±
n ∈ W±, vn ∈ V and

wn ∈ W respectively.
Now for any y ∈ X, we have

(1.4) 〈f ′(xn), y〉 = 〈Axn, y〉 + 〈g′(xn), y〉.
Let λ be the smallest positive point in the spectrum of A and take y = w+

n

in (1.4) then we get

(1.5) λ‖w+
n ‖2 ≤ 〈f ′(xn), w+

n 〉 − 〈g′(xn), w+
n 〉.

Given ε > 0, using (1.2), (1.3) and g′′(xn) → 0 as n → ∞, it follows that
there are some constants c, d > 0 such that

(1.6) λ‖w+
n ‖2 ≤ ε‖xn‖ ‖w+

n ‖ + c‖w+
n ‖ + d

for n large enough. Hence from (1.6), (1.3) and the fact that ε was chosen
arbitrarily we gain

(1.7)
‖w+

n ‖
‖xn‖ → 0 as n → ∞.
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Similarly we can show

(1.8)
‖w−

n ‖
‖xn‖ → 0 as n → ∞.

Hence

(1.9)
‖vn‖
‖xn‖ → 1 and

‖wn‖
‖xn‖ → 0 as n → ∞.

Then for M > 0 and α ∈
(
0, π2

)
we have

(1.10) ‖xn‖ ≥ M and ‖wn‖ ≤ ‖xn‖ sinα

for all n large enough. Thus the strong angle conditions yields∣∣∣∣〈f ′(xn),
vn

‖vn‖〉
∣∣∣∣ ≥ β for all n large enough.

This contradicts to the following

(1.12) lim
n→∞〈f ′(xn),

vn

‖vn‖〉 = 0

and hence {xn} is bounded. Since g′ is compact and V is finite dimensional,
by the standard argument we gain the existence of a convergent subsequence
of {xn}. The proof is complete.

This paper is organized in the following way: In section 2 we prove some
abstract critical point theorems by means of Proposition 1.2 and 1.3 and the
Morse theory. In section 3, as applications, we deal with the existence of
multiple nontrivial periodic solutions for asymptotically Hamiltonian system.
As we will see that the main difficulty is to verify the strong angle conditions
which can be guaranteed by the so-called “pinching” condition.

2. Some abstract critical point theorems

In this section we give some abstract multiple critical point theorems
under the framework constructed in [1]. In the following we will denote by
µi and νi the Morse index and nullity of critical points xi of a functional f .
We first consider the case that θ is a nondegenerate critical point of f .

Theorem 2.1. Let f satisfy (A∞) and (SAC+∞) (or (SAC−∞)) and θ be
a nondegenerate critical point of f with Morse index µ0. If µ0 
= µ (or
µ0 
= µ+ν) then f has at least one nontrivial critical point x1 
= θ. Moreover
if ν1 ≤ |µ0 − µ| (or ν1 ≤ |µ0 − (µ + ν)|) then f has at least two nontrivial
critical points.

Proof. We would like to point out that the techniques for proving this the-
orem are essentially the same as those for proving [3, Chapter 2, Corollary
5.2]. Also, see [4]. We only sketch out the proof in the case (SAC+∞) holds.
It follows from Lemma 1.1 and Proposition 1.2 (a) that f satisfies (PS)
condition and

Ck(f,∞) ∼= δkµG, k ∈ Z.
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Since θ is nondegenerate with Morse index µ0,

Ck(f, θ) ∼= δkµ0G, k ∈ Z.

Hence we have by µ0 
= µ that

Ck(f,∞) 
∼= Ck(f, θ), k ∈ Z

from which we get the first conclusion that f has at least one critical point
x1 
= θ. By a result due to [5], we get

Ck(f, x1) ∼= 0, for k 
∈ [µ1, µ1 + ν1].

Suppose that f has no more other critical points then the relation between
the µ-th Morse type number and the µ-th Betti number (cf. [3]) told us that

Cµ(f, x1) 
∼= 0.

Hence
µ1 ≤ µ ≤ µ1 + ν1.

When µ = µ1 or µ = µ1 + ν1, using the splitting theorem and the critical
group characterization of the local minimum and the local maximum (cf. [8,
Corollary 8.4]) we get

Ck(f, x1) ∼= δkµG, k ∈ Z.

The Morse inequality now reads as

(−1)µ = (−1)µ0 + (−1)µ.

This is impossible.
We now consider the case µ1 < µ < µ1 + ν1. Combine with the condition

ν1 ≤ |µ0 − µ| we have

µ0 < µ1 or µ0 > µ1 + ν1.

For the case µ0 < µ1 < µ the µ0 + 1-th Morse inequality reads as

−1 ≥ 0.

This is a contradiction. For the case µ0 > µ1 + ν1 > µ, the µ1 + ν1-th Morse
inequality reads as

(2.1)
µ1+ν1∑
k=0

(−1)µ1+ν1−krank Ck(f, x1) ≥ (−1)µ1+ν1−µ,

and the µ1 + ν1 − 1-th Morse inequality reads as

(2.2)
µ1+ν1−1∑

k=0

(−1)µ1+ν1−1−k rank Ck(f, x1) ≥ (−1)µ1+ν1−µ−1.

Keeping in mind that Ck(f, x1) = 0 for k ≤ µ1 and k ≥ µ1 + ν1, it follows
from (2.1) and (2.2) that

µ1+ν1∑
k=µ1

(−1)µ1+ν1−k(rank Ck(f, x1) − δkµ) = 0.
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Hence the µ0 + 1-th Morse inequality now reads as

−1 ≥ 0.

This is also a contradiction. Therefore we gain the conclusion that f has at
least two nontrivial critical points. The proof is complete.

The next two theorems are concerned with the case θ is a degenerate critical
point of f .

Theorem 2.2. Let f satisfy (A∞) and (SAC+∞). Let θ be a degenerate
critical point and the angle condition (AC+

0 ) (or (AC−
0 )) hold. If µ0 
= µ

(or µ0 + ν0 
= µ) then f has at least one nontrivial critical point x1 
= θ.
Moreover if ν1 ≤ |µ0 − µ| (or ν1 ≤ |µ0 + ν0 − µ|) then f has at least two
nontrivial critical points.

Theorem 2.3. Let f satisfy (A∞) and (SAC−∞). Let θ be a degenerate crit-
ical point of f and (AC+

0 ) (or (AC−
0 )) hold. If µ0 
= µ + ν (or µ0 + ν0 
=

µ + ν) then f has at least one nontrivial critical point x1 
= θ. Moreover if
ν1 ≤ |µ0 − (µ + ν)| (or ν1 ≤ |(µ0 + ν0) − (µ + ν)|) then f has at least two
nontrivial critical points.

The proofs of Theorem 2.2 and 2.3 are similar to that of Theorem 2.1 so
we omit the details.

Remark 2.1. In [3] or [9] the same conclusion as Theorem 2.1 was obtained
under the following framework:

Let f : X → R
1 be such that f(x) = 1

2〈Ax, x〉 + g(x) and satisfy
(A1) A|X± has a bounded inverse on X±,
(A2) γ = dim(X− ⊕ X0) < ∞,
(A3) g ∈ C2(X,R1) has a compact, bounded differential g′ and g(x0) →

−∞ as ‖x0‖ → ∞ for x0 ∈ X0, where X = X+ ⊕X0 ⊕X− according to the
spectrum decomposition of the self-adjoint linear operator A.

We would like to point out that the above framework differs from ours for
there is a strong assumption requiring g′ is bounded which is not need in
our case.

3. Applications to a second order hamiltonian system

We consider the following second order Hamiltonian system

(3.1)

{
− ··

x= k2x+ F ′
x(t, x),

x(0) = x(2π), ẋ(0) = ẋ(2π),

where k ∈ N and F : R
1 × R

N → R
1, is a C2-function and satisfies

(F1) F (t, θ) = 0, F ′
x(t, θ) = θ and F (t+ 2π, x) = F (t, x), (t, x) ∈ R

1 × R
N ,

(F2) lim
|x|→∞

F ′′
x (t, x) = 0 uniformly in t ∈ R

1.
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Here and in the following, for x, y ∈ R
N , the symbol xy will denote the inner

product in R
N , similarly if A is a N × N matrix, Ax will denote the usual

matrix product. |x| will denote the R
N -norm for x ∈ R

N .
It is known that the eigenvalues of the linear problem

(3.2)




− ··
x= λx, t ∈ (0, 2π),

x(0) = x(2π),
ẋ(0) = ẋ(2π),

are m2,m = 0, 1, 2, · · · , and the multiplicity of m2 for m ≥ 1 are 2N and
the corresponding eigenspaces are span{ej sinmt, ej cosmt, j = 1, 2, · · · , N}
where (e1, e2, · · · , eN ) is the standard basis of R

N .
We are interested in the existence of multiple nontrivial 2π-periodic solu-

tion of (3.1).

Theorem 3.1. Let F satisfy (F1), (F2) and the following conditions:
(F3) There exists m ∈ N with m 
= k such that

m2I < F ′′
x (t, θ) + k2I < (m+ 1)2I

where I is the N × N identity matrix.
(F4) (the pinching condition) There exist C1, C2, R > 0 and 0 < r < 1 such
that

F ′
x(t, x)x > 0, |F ′

x(t, x)x| > C1|x|1+r,

|F ′
x(t, x)| < C2|x|r, for a.e. t ∈ [0, 2π] and x ∈ R

N with |x| ≥ R.

Then (3.1) has at least two nontrivial 2π-periodic solutions.

Let us introduce the Sobolev space

X := H1([0, 2π],RN ) =
{
x ∈ L2([0, 2π],RN )

∣∣∣∣ ẋ ∈ L2([0, 2π],RN ),
x(0) = x(2π), ẋ(0) = ẋ(2π)

}

with the usual norm

‖x‖ =
(∫ 2π

0
|ẋ|2 + |x|2

) 1
2

, for x ∈ X.

Then X is a Hilbert space. Define, for x ∈ X, the functional

(3.3) f(x) =
1
2

∫ 2π

0
|ẋ|2 − 1

2
k2
∫ 2π

0
|x|2 −

∫ 2π

0
F (t, x).

Then f ∈ C2(X,R1) and its derivative is given by

(3.4) 〈f ′(x), y〉 =
∫ 2π

0
ẋẏ − k2

∫ 2π

0
xy −

∫ 2π

0
F ′

x(t, x)y

for x, y ∈ X. Thus finding solutions of (3.1) is equivalent to finding critical
points of f in X.
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We split X into V ⊕ W+ ⊕ W− = V ⊕ W according the eigenvalue k2 of
(3.2) where

V := Ker(− ··
x −k2x),

W− := ⊕k−1
j=0{Ker(− ··

x −j2x)},
W+ = (W− ⊕ V )⊥ and W = W+ ⊕ W−.

Lemma 3.1. Suppose that F satisfies (F1), (F2) and (F4). Then the func-
tional f defined by (3.3) satisfies (SAC−∞) hence (AC−∞).

Proof. Since the embedding X ↪→ Y := C([0, 2π],RN ) is continuous and
dimV < +∞, there exist a, b > 0 such that

(3.5) ‖x‖Y ≤ a‖x‖, for x ∈ Y,

(3.6) ‖v‖ ≤ b‖v‖Y , for v ∈ V.

Since V = span{(e1, · · · , eN ) sin kt, (e1, · · · , eN ) cos kt} it is obvious that, for
any v ∈ V \{θ},

meas{t ∈ [0, 2π]|v(t) = θ} = 0.
Thus, using (3.8) in [2] for any given δ > 0 small, there exists some constant
α(δ) > 0 such that

(3.7) meas{t ∈ [0, 2π]| |v(t)| < α(δ)‖v‖Y } < δ for v ∈ V \{θ}.
Hence

(3.8) meas{t ∈ [0, 2π]| |v(t)| > α(δ)‖v‖Y } ≥ 2π − δ for v ∈ V \{θ}.
Write

(3.9) Ωδ = {t ∈ [0, 2π]| |v(t)| > α(δ)‖v‖Y }, v ∈ V \{θ}.
Let

(3.10) C(M, ε) = {x = v + w ∈ X|‖x‖ ≥ M, ‖w‖ ≤ ε‖x‖},
where M > 0 and ε > 0 will be chosen below.

It follows from (3.10) that for x = v + w ∈ C(M, ε)

(3.11) ‖w‖ ≤ ε√
1 − ε2

‖v‖,

(3.12) ‖x‖ ≤ 1√
1 − ε2

‖v‖.

Now for x = v + w ∈ C(M, ε)

(3.13) |w(t)| ≤ ‖w‖Y ≤ abε√
1 − ε2

‖v‖Y , t ∈ [0, 2π].

(3.14) |w(t)| ≤ ‖w‖Y ≤ aε‖x‖, t ∈ [0, 2π].

Hence if we choose ε small enough such that

(3.15)
abε√
1 − ε2

<<
1
2
α(δ),
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then

(3.16) |x(t)| > 1
2
|v(t)| ≥ 1

2
α(δ)‖v‖Y ≥

√
1 − ε2

2b
α(δ)‖x‖, for t ∈ Ωδ.

It follows from (3.16) that

(3.17) |x(t)| > R, for t ∈ Ωδ

if we take M large where R is given in (F4).
Write Ω′ = [0, 2π] − Ωδ and Ω′ = Ω′

1 + Ω′
2 where

Ω′
1 = {t ∈ Ω′ : |x(t)| ≥ R}, Ω′

2 = {t ∈ Ω′ : |x(t)| < R}.

Now for x ∈ C(M, ε)
∫ 2π

0
F ′

x(t, x)v =
∫ 2π

0
F ′

x(t, x)x −
∫ 2π

0
F ′

x(t, x)w.

Using (3.10)–(3.17) and (F1), (F2) and (F4), we have

∫ 2π

0
F ′

x(t, x)x =

(∫
Ωδ+Ω′

1+Ω′
2

)
F ′

x(t, x)x

≥
∫
Ωδ

F ′
x(t, x)x −

∫
Ω′

1

|F ′
x(t, x)||x(t)| −

∫
Ω′

2

|F ′
x(t, x)||x(t)|

≥
∫
Ωδ

C1|x(t)|1+r −
∫
Ω′

1

C2|x(t)|1+r − C

> (2π − δ)C1

(√
1 − ε2

2b
α(δ)

)1+r

‖x‖1+r

− C2δa
1+r(ε+ α(δ))1+r‖x‖1+r − C

= 2πC1

(√
1 − ε2

2b
α(δ)

)1+r

‖x‖1+r

− δ


C1

(√
1 − ε2

2b
α(δ)

)1+r

+ C2a
1+r(ε+ α(δ))1+r


 ‖x‖1+r − C

and ∫ 2π

0
F ′

x(t, x)w ≤
∫

|x(t)|≥R
|F ′

x(t, x)||w(t)| +
∫

|x(t)|≤R
|F ′

x(t, x)||w(t)|

≤ εC‖x‖1+r + C.

Here we use C denotes various constants. Hence

(3.19)
∫ 2π

0
F ′

x(t, x)v > η‖x‖1+r − C
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where

η = 2πC1

(√
1 − ε2

2b
α(δ)

)1+r

− δ


C1

(√
1 − ε2

2b
α(δ)

)1+r

+ C2a
1+r(ε+ α(δ))1+r


− Cε.

If we take δ > 0 small enough hence choose ε > 0 small enough (notice
(3.15)) then η > 0. It follows from (3.19) that for x = v + w ∈ C(M, ε)

〈f ′(x),
v

‖v‖〉 = −
∫ 2π

0
F ′

x(t, x)
v

‖v‖ < −η‖x‖r +
c

‖v‖ < −β < 0

for some β > 0 if we take M > 0 large enough. Hence the strong angle
condition (SAC−∞) holds if we take α ∈

(
0, π2

)
be such that sinα = ε. The

proof is complete.

Now we begin to prove Theorem 3.1.

Let A be the self-adjoint extension of the linear operator − d2

dt2
− k2, then

for x, y ∈ X, we have

(3.20) 〈Ax, y〉 =
∫ 2π

0
ẋẏ − k2

∫ 2π

0
xy

Define a map g : X → R
1 as follows:

(3.21) g(x) = −
∫ 2π

0
F (t, x), for x ∈ X.

Then the functional f has the form

(3.22) f(x) =
1
2
〈Ax, x〉 + g(x), x ∈ X.

Proof of Theorem 3.1. It is easy to see that f satisfies (A∞) and (SAC−∞)
by Lemma 3.1 and Lemma 1.1. The Morse index µ and the nullity ν of f at
infinity are given by

(3.23) µ = dimW− = 2N(k − 1) +N, ν = dimV = 2N.

By (F1) and (F3) we see that θ is a nondegenerate critical point of f with
Morse index µ0 = 2Nm+N. From m 
= k we see that µ0 
= µ+ ν. Hence f
has at least one critical point x1 
= θ by virtue of Theorem 2.1.

Since

Ker(d2f(x1)) = {x ∈ H1([0, 2π],RN )|− ··
x= k2x+ F ′′(t, x1)x},

we conclude that
ν1 = dimKer(d2f(x1)) ≤ 2N.

Thus
|µ0 − (µ+ ν)| = 2N |m − k| ≥ 2N ≥ ν1.
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So that we gain the conclusion that f has at least two nontrivial critical
points by applying Theorem 2.1 once more. That is (3.1) has at least two
nontrivial 2π-periodic solution.

Remark 3.1. The same conclusion is valid if F satisfies (F1) (F2), (F3) with
m 
= k − 1 and the following
(F4)′ There exist C1, C2, R > 0 and 0 < r < 1 such that

F ′
x(t, x)x < 0, |F ′

x(t, x)x| > C1|x|1+r,

|F ′
x(t, x)| < C2|x|r, for x ∈ R

N with |x| ≥ R and for a.e. t ∈ [0, 2π].

Remark 3.2. We would like to point out that the same conclusion as The-
orem 3.1 was obtained in[9] under a different framework [see Remark 2.1].
However, there was an important condition which requiring |F ′

x(t, x)| bounded
was ignored in [9].

From now on we consider the case that θ is degenerate. For this aim we
make the following assumption:
(F5) There exists some integer m ∈ N such that

F ′′
x (t, θ) = (m2 − k2)I.

It follows from (F5) that F ′
x(t, x) can be written as

F ′
x(t, x) = (m2 − k2)x+G′

x(t, x)

in a neighborhood of θ, where G : R
1 × R

N → R
1 is of class C2 and satisfies

(G1) G(t, θ) = 0, G′
x(t, θ) = θ and G(t+ 2π, x) = G(t, x)

for (t, x) ∈ R
1 × R

N . and

(G2) |G′
x(t, x)| = ◦(|x|) as |x| → 0, x 
= θ.

Therefore (3.4) has the form

(3.24) 〈f ′(x), y〉 =
∫ 2π

0
ẋẏ − m2

∫ 2π

0
xy −

∫ 2π

0
G′

x(t, x)y for x, y ∈ X.

near θ.
Now we split X into V0 ⊕ W0 according the eigenvalue m2 of (3.2) where

V0 = Ker(− ··
x −m2x) and W0 = V ⊥

0 .

Theorem 3.2. Let F satisfy (F1), (F2), (F4), (F5) with m 
= k and the fol-
lowing:
(G3) There exist C3, C4 > 0 and s > 1 such that

G′
x(t, x)x > 0, |G′

x(t, x)x| > C3|x|1+s,

|G′
x(t, x)| < C4|x|s, for a.e. t ∈ [0, 2π] and x ∈ R

N with |x| ≤ 1.

Then (3.1) has at least two nontrivial 2π-periodic solutions.
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Proof. We only need to verify the angle condition (AC−
0 ) of Proposition 1.3.

Let C(ρ, ε) = {x = v + w ∈ X = V0 ⊕ W0|‖x‖ ≤ ρ, ‖w‖ ≤ ε‖x‖} where
ρ > 0, ε > 0 will be given below. It is easy to see that by the same reasons
we can obtain (3.5)–(3.16) if we replace V by V0 and W by W0 and C(M, ε)
by C(ρ, ε) respectively. Now for x ∈ C(ρ, ε) we have

(3.25) |x(t)| ≤ ‖x‖Y ≤ a‖x‖ ≤ aρ, t ∈ [0, 2π].

Hence if we take ρ small then

(3.26) |x(t)| ≤ 1 for all x ∈ C(ρ, ε) and t ∈ [0, 2π].

Thus for x = v + w ∈ C(ρ, ε)∫ 2π

0
G′

x(t, x)v =
∫ 2π

0
G′

x(t, x)x −
∫ 2π

0
G′

x(t, x)w

> C3

∫ 2π

0
|x|1+s − C4

∫ 2π

0
|x|s|w|

> C3

∫
Ωδ

|x|1+s − C3

∫
Ω′

|x|1+s − C4

∫ 2π

0
|x|s|w|

> (2π − δ)C3

(√
1 − ε2

2b
α(δ)

)1+s

‖x‖1+s − C3δa
s+1(ε+ α(δ))1+s‖x‖1+s

− 2πC4a
1+sε‖x‖1+s

=


2πC3

(√
1 − ε2

2b
α(δ)

)1+s

−δC3


(

√
1 − ε2

2b
α(δ)

)1+s

+ a1+s(ε+ α(δ))1+s


− 2πC4a

1+sε


 ‖x‖1+s

= ξ‖x‖1+s.

Notice (3.15), if we take δ > 0 small enough and then take ε > 0 small
enough then ξ > 0. Hence

〈f ′(x), v〉 = −
∫ 2π

0
G′

x(t, x)v < −ξ‖x‖1+s < 0

for any x = v+w ∈ C(ρ, ε). Let α ∈
(
0, π2

)
be such that sinα = ε then the

angle condition (AC−
0 ) holds.

Now we can apply Theorem 2.3 by keeping in mind that m 
= k to gain
the conclusion. The proof is complete.

Remark 3.3. The same conclusion is also true if we let (F1), (F2), (F4) and
(F5) with m 
= k + 1 and
(G3)′ There exist C3, C4 > 0 and s > 1 such that

G′
x(t, x)x < 0, |G′

x(t, x)x| > C3|x|1+s,

|G′
x(t, x)| < C4|x|s, for a.e. t ∈ [0, 2π] and x ∈ R

N with |x| ≤ 1.

hold.
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Remark 3.4. We can mix the hypothesis of the above theorems. In other
words, the same conclusion is true under either
(i) (F1), (F2), (F4)′, (F5) with m 
= k − 1 and (G3) or
(ii) (F1), (F2), (F4)′, (F5) with m 
= k and (G3)′.
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