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We first introduce a modified proximal point algorithm for maximal monotone opera-
tors in a Banach space. Next, we obtain a strong convergence theorem for resolvents of
maximal monotone operators in a Banach space which generalizes the previous result by
Kamimura and Takahashi in a Hilbert space. Using this result, we deal with the convex
minimization problem and the variational inequality problem in a Banach space.

1. Introduction

Let E be a real Banach space and let T ⊂ E×E∗ be a maximal monotone operator. Then
we study the problem of finding a point v ∈ E satisfying

0∈ Tv. (1.1)

Such a problem is connected with the convex minimization problem. In fact, if f : E→
(−∞,∞] is a proper lower semicontinuous convex function, then Rockafellar’s theorem
[14, 15] ensures that the subdifferential mapping ∂ f ⊂ E×E∗ of f is a maximal mono-
tone operator. In this case, the equation 0∈ ∂ f (v) is equivalent to f (v)=minx∈E f (x).

In 1976, Rockafellar [17] proved the following weak convergence theorem.

Theorem 1.1 (Rockafellar [17]). Let H be a Hilbert space and let T ⊂H ×H be a maximal
monotone operator. Let I be the identity mapping and let Jr = (I + rT)−1 for all r > 0. Define
a sequence {xn} as follows: x1 = x ∈H and

xn+1 = Jrnxn (n= 1,2, . . .), (1.2)

where {rn} ⊂ (0,∞) satisfies liminfn→∞ rn > 0. If T−10 �= ∅, then the sequence {xn} con-
verges weakly to an element of T−10.

This is called the proximal point algorithm, which was first introduced by Martinet [11].
If T = ∂ f , where f : H → (−∞,∞] is a proper lower semicontinuous convex function,
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then (1.2) is reduced to

xn+1 = argmin
y∈H

{
f (y) +

1
2rn

∥∥xn− y
∥∥2
}

(n= 1,2, . . .). (1.3)

Later, many researchers studied the convergence of the proximal point algorithm in a
Hilbert space; see Brézis and Lions [4], Lions [10], Passty [12], Güler [7], Solodov and
Svaiter [19] and the references mentioned there. In particular, Kamimura and Takahashi
[8] proved the following strong convergence theorem.

Theorem 1.2 (Kamimura and Takahashi [8]). Let H be a Hilbert space and let T ⊂H ×H
be a maximal monotone operator. Let Jr = (I + rT)−1 for all r > 0 and let {xn} be a sequence
defined as follows: x1 = x ∈H and

xn+1 = αnx+
(
1−αn

)
Jrnxn (n= 1,2, . . .), (1.4)

where {αn} ⊂ [0,1] and {rn} ⊂ (0,∞) satisfy limn→∞αn = 0,
∑∞

n=1αn =∞, and limn→∞ rn =
∞. If T−10 �= ∅, then the sequence {xn} converges strongly to PT−10(x), where PT−10 is the
metric projection from H onto T−10.

Recently, using the hybrid method in mathematical programming, Kamimura and
Takahashi [9] obtained a strong convergence theorem for maximal monotone operators
in a Banach space, which extended the result of Solodov and Svaiter [19] in a Hilbert
space. On the other hand, Censor and Reich [6] introduced a convex combination which
is based on Bregman distance and studied some iterative schemes for finding a common
asymptotic fixed point of a family of operators in finite-dimensional spaces.

In this paper, motivated by Censor and Reich [6], we introduce the following itera-
tive sequence for a maximal monotone operator T ⊂ E×E∗ in a smooth and uniformly
convex Banach space: x1 = x ∈ E and

xn+1 = J−1(αnJx+
(
1−αn

)
JJrnxn

)
(n= 1,2, . . .), (1.5)

where {αn} ⊂ [0,1], {rn} ⊂ (0,∞), J is the duality mapping from E into E∗, and Jr =
(J + rT)−1J for all r > 0. Then we extend Kamimura-Takahashi’s theorem to the Banach
space (Theorem 3.3). It should be noted that we do not assume the weak sequential con-
tinuity of the duality mapping [1, 5, 13]. Finally, we apply Theorem 3.3 to the convex
minimization problem and the variational inequality problem.

2. Preliminaries

Let E be a (real) Banach space with norm ‖ · ‖ and let E∗ denote the Banach space of
all continuous linear functionals on E. For all x ∈ E and x∗ ∈ E∗, we denote x∗(x) by
〈x,x∗〉. We denote by R and N the set of all real numbers and the set of all positive
integers, respectively. The duality mapping J from E into E∗ is defined by

J(x)=
{
x∗ ∈ E∗ :

〈
x,x∗

〉= ‖x‖2 = ∥∥x∗∥∥2
}

(2.1)



F. Kohsaka and W. Takahashi 241

for all x ∈ E. If E is a Hilbert space, then J = I , where I is the identity mapping. We some-
times identify a set-valued mapping A : E → 2E

∗
with its graph G(A) = {(x,x∗) : x∗ ∈

Ax}. An operator T ⊂ E×E∗ with domain D(T)= {x ∈ E : Tx �= ∅} and range R(T)=⋃{Tx : x ∈ D(T)} is said to be monotone if 〈x− y,x∗ − y∗〉 ≥ 0 for all (x,x∗),(y, y∗) ∈
T . We denote the set {x ∈ E : 0∈ Tx} by T−10. A monotone operator T ⊂ E×E∗ is said
to be maximal if its graph is not properly contained in the graph of any other monotone
operator. If T ⊂ E× E∗ is maximal monotone, then the solution set T−10 is closed and
convex. A proper function f : E→ (−∞,∞] (which means that f is not identically ∞) is
said to be convex if

f
(
αx+ (1−α)y

)≤ α f (x) + (1−α) f (y) (2.2)

for all x, y ∈ E and α ∈ (0,1). The function f is also said to be lower semicontinuous if
the set {x ∈ E : f (x)≤ r} is closed in E for all r ∈R. For a proper lower semicontinuous
convex function f : E→ (−∞,∞], the subdifferential ∂ f of f is defined by

∂ f (x)= {x∗ ∈ E∗ : f (x) +
〈
y− x,x∗

〉≤ f (y)∀y ∈ E
}

(2.3)

for all x ∈ E. It is easy to verify that 0 ∈ ∂ f (v) if and only if f (v) =minx∈E f (x). It is
known that the subdifferential of the function f defined by f (x)= ‖x‖2/2 for all x ∈ E is
the duality mapping J . The following theorem is also well known (see Takahashi [21] for
details).

Theorem 2.1. Let E be a Banach space, let f : E→ (−∞,∞] be a proper lower semicontin-
uous convex function, and let g : E→R be a continuous convex function. Then

∂( f + g)(x)= ∂ f (x) + ∂g(x) (2.4)

for all x ∈ E.

A Banach space E is said to be strictly convex if

‖x‖ = ‖y‖ = 1, x �= y =⇒
∥∥∥∥x+ y

2

∥∥∥∥ < 1. (2.5)

Also, E is said to be uniformly convex if for each ε ∈ (0,2], there exists δ > 0 such that

‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε =⇒
∥∥∥∥x+ y

2

∥∥∥∥≤ 1− δ. (2.6)

It is also said to be smooth if the limit

lim
t→0

‖x+ ty‖−‖x‖
t

(2.7)

exists for all x, y ∈ {z ∈ E : ‖z‖ = 1}. We know the following (see Takahashi [20] for de-
tails):

(1) if E is smooth, then J is single-valued;
(2) if E is strictly convex, then J is one-to-one and 〈x− y,x∗ − y∗〉 > 0 holds for all

(x,x∗),(y, y∗)∈ J with x �= y;
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(3) if E is reflexive, then J is surjective;
(4) if E is uniformly convex, then it is reflexive;
(5) if E∗ is uniformly convex, then J is uniformly norm-to-norm continuous on each

bounded subset of E.

Let E be a smooth Banach space. We use the following function studied in Alber [1],
Kamimura and Takahashi [9], and Reich [13]:

φ(x, y)= ‖x‖2− 2〈x, J y〉+‖y‖2 (2.8)

for all x, y ∈ E. It is obvious from the definition of φ that (‖x‖−‖y‖)2 ≤ φ(x, y) for all
x, y ∈ E. We also know that

φ(x, y)= φ(x,z) +φ(z, y) + 2〈x− z, Jz− J y〉 (2.9)

for all x, y,z ∈ E. The following lemma was also proved in [9].

Lemma 2.2 (Kamimura-Takahashi [9]). Let E be a smooth and uniformly convex Banach
space and let {xn} and {yn} be sequences in E such that either {xn} or {yn} is bounded. If
limn→∞φ(xn, yn)= 0, then limn→∞‖xn− yn‖ = 0.

Let E be a strictly convex, smooth, and reflexive Banach space, and let T ⊂ E×E∗ be
a monotone operator. Then T is maximal if and only if R(J + rT)= E∗ for all r > 0 (see
Barbu [2] and Takahashi [21]). If T ⊂ E×E∗ is a maximal monotone operator, then for
each r > 0 and x ∈ E, there corresponds a unique element xr ∈D(T) satisfying

J(x)∈ J
(
xr
)

+ rTxr . (2.10)

We define the resolvent of T by Jrx = xr . In other words, Jr = (J + rT)−1J for all r > 0. The
resolvent Jr is a single-valued mapping from E into D(T). If E is a Hilbert space, then Jr is
nonexpansive, that is, ‖Jrx− Jr y‖ ≤ ‖x− y‖ for all x, y ∈ E (see Takahashi [20]). It is easy
to show that T−10 = F(Jr) for all r > 0, where F(Jr) denotes the set of all fixed points of
Jr . We can also define, for each r > 0, the Yosida approximation of T by Ar = (J − JJr)/r.
We know that (Jrx,Arx)∈ T for all r > 0 and x ∈ E. Let C be a nonempty closed convex
subset of the space E. By Alber [1] or Kamimura and Takahashi [9], for each x ∈ E, there
corresponds a unique element x0 ∈ C (denoted by PC(x)) such that

φ
(
x0,x

)=min
y∈C

φ(y,x). (2.11)

The mapping PC is called the generalized projection from E onto C. If E is a Hilbert space,
then PC is coincident with the metric projection from E onto C. We also know the fol-
lowing lemma.

Lemma 2.3 ([1], see also [9]). Let E be a smooth Banach space, let C be a nonempty closed
convex subset of E, and let x ∈ E and x0 ∈ C. Then the following are equivalent:

(1) φ(x0,x)=miny∈C φ(y,x);
(2) 〈y− x0, Jx− Jx0〉 ≤ 0 for all y ∈ C.
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3. Strong convergence theorem

The resolvents of maximal monotone operators have the following property, which was
proved in the case of the resolvents of normality operators in Kamimura and Takahashi
[9].

Lemma 3.1. Let E be a strictly convex, smooth, and reflexive Banach space, let T ⊂ E×E∗

be a maximal monotone operator with T−10 �= ∅, and let Jr = (J + rT)−1J for each r > 0.
Then

φ
(
u, Jrx

)
+φ
(
Jrx,x

)≤ φ(u,x) (3.1)

for all r > 0, u∈ T−10, and x ∈ E.

Proof. Let r > 0, u∈ T−10, and x ∈ E be given. By the monotonicity of T , we have

φ(u,x)= φ
(
u, Jrx

)
+φ
(
Jrx,x

)
+ 2
〈
u− Jrx, JJrx− Jx

〉
= φ

(
u, Jrx

)
+φ
(
Jrx,x

)
+ 2r

〈
u− Jrx,−Arx

〉
≥ φ

(
u, Jrx

)
+φ
(
Jrx,x

)
.

(3.2)

�

Let E be a strictly convex, smooth, and reflexive Banach space, and let J be the duality
mapping from E into E∗. Then J−1 is also single-valued, one-to-one, and surjective, and it
is the duality mapping from E∗ into E. We make use of the following mapping V studied
in Alber [1]:

V
(
x,x∗

)= ‖x‖2− 2
〈
x,x∗

〉
+
∥∥x∗∥∥2

(3.3)

for all x ∈ E and x∗ ∈ E∗. In other words, V(x,x∗) = φ(x, J−1(x∗)) for all x ∈ E and
x∗ ∈ E∗. For each x ∈ E, the mapping g defined by g(x∗)= V(x,x∗) for all x∗ ∈ E∗ is a
continuous and convex function from E∗ into R. We can prove the following lemma.

Lemma 3.2. Let E be a strictly convex, smooth, and reflexive Banach space, and let V be as
in (3.3). Then

V
(
x,x∗

)
+ 2
〈
J−1(x∗)− x, y∗

〉≤V
(
x,x∗ + y∗

)
(3.4)

for all x ∈ E and x∗, y∗ ∈ E∗.

Proof. Let x ∈ E be given. Define g(x∗) = V(x,x∗) and f (x∗) = ‖x∗‖2 for all x∗ ∈ E∗.
Since J−1 is the duality mapping from E∗ into E, we have

∂g
(
x∗
)= ∂

(− 2〈x,·〉+ f
)(
x∗
)=−2x+ 2J−1(x∗) (3.5)

for all x∗ ∈ E∗. Hence, we have

g
(
x∗
)

+ 2
〈
J−1(x∗)− x, y∗

〉≤ g
(
x∗ + y∗

)
, (3.6)
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that is,

V
(
x,x∗

)
+ 2
〈
J−1(x∗)− x, y∗

〉≤V
(
x,x∗ + y∗

)
(3.7)

for all x∗, y∗ ∈ E∗. �

Now we can prove the following strong convergence theorem, which is a generalization
of Kamimura-Takahashi’s theorem (Theorem 1.2).

Theorem 3.3. Let E be a smooth and uniformly convex Banach space and let T ⊂ E×E∗ be
a maximal monotone operator. Let Jr = (J + rT)−1J for all r > 0 and let {xn} be a sequence
defined as follows: x1 = x ∈ E and

xn+1 = J−1(αnJx+
(
1−αn

)
JJrnxn

)
(n= 1,2, . . .), (3.8)

where {αn} ⊂ [0,1] and {rn} ⊂ (0,∞) satisfy limn→∞αn = 0,
∑∞

n=1αn =∞, and limn→∞ rn =
∞. If T−10 �= ∅, then the sequence {xn} converges strongly to PT−10(x), where PT−10 is the
generalized projection from E onto T−10.

Proof. Put yn = Jrnxn for all n∈N. We denote the mapping PT−10 by P. We first prove that
{xn} is bounded. From Lemma 3.1, we have

φ
(
Px,xn+1

)= φ
(
Px, J−1(αnJx+

(
1−αn

)
J yn
))

=V
(
Px,αnJx+

(
1−αn

)
J yn
)

≤ αnV(Px, Jx) +
(
1−αn

)
V
(
Px, J yn

)
= αnφ(Px,x) +

(
1−αn

)
φ
(
Px, Jrnxn

)
≤ αnφ(Px,x) +

(
1−αn

)
φ
(
Px,xn

)
(3.9)

for all n ∈ N. Hence, by induction, we have φ(Px,xn) ≤ φ(Px,x) for all n ∈ N. Since
(‖u‖−‖v‖)2 ≤ φ(u,v) for all u,v ∈ E, the sequence {xn} is bounded. Since φ(Px, yn) =
φ(Px, Jrnxn)≤ φ(Px,xn) for all n∈N, {yn} is also bounded. We next prove

limsup
n→∞

〈
xn−Px, Jx− JPx

〉≤ 0. (3.10)

Put zn = xn+1 for all n ∈ N. Since {zn} is bounded, we have a subsequence {zni} of {zn}
such that

lim
i→∞

〈
zni −Px, Jx− JPx

〉= limsup
n→∞

〈
zn−Px, Jx− JPx

〉
(3.11)

and {zni} converges weakly to some v ∈ E. From the definition of {xn}, we have

Jzn− J yn = αn
(
Jx− J yn

)
(3.12)

for all n∈N. Since {yn} is bounded and αn→ 0 as n→∞, we have

lim
n→∞

∥∥Jzn− J yn
∥∥= lim

n→∞αn
∥∥Jx− J yn

∥∥= 0. (3.13)
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Since E is uniformly convex, E∗ is uniformly smooth, and hence the duality mapping J−1

from E∗ into E is uniformly norm-to-norm continuous on each bounded subset of E∗.
Therefore, we obtain from (3.13) that

lim
n→∞

∥∥zn− yn
∥∥= lim

n→∞
∥∥J−1(Jzn)− J−1(J yn)∥∥= 0. (3.14)

This implies that yni ⇀ v as i→∞, where⇀ implies the weak convergence. On the other
hand, from rn→∞ as n→∞, we have

lim
n→∞

∥∥Arnxn
∥∥= lim

n→∞
1
rn

∥∥Jxn− J yn
∥∥= 0. (3.15)

If (z,z∗)∈ T , then it holds from the monotonicity of T that

〈
z− yni ,z

∗ −Arni
xni
〉≥ 0 (3.16)

for all i ∈ N. Letting i→∞, we get 〈z− v,z∗〉 ≥ 0. Then, the maximality of T implies
v ∈ T−10. Applying Lemma 2.3, we obtain

limsup
n→∞

〈
zn−Px, Jx−JPx〉= lim

i→∞
〈
zni−Px, Jx−JPx〉=〈v−Px, Jx−JPx〉 ≤ 0. (3.17)

Finally, we prove that xn → Px as n→∞. Let ε > 0 be given. From (3.10), we have
m∈N such that

〈
xn−Px, Jx− JPx

〉≤ ε (3.18)

for all n≥m. If n≥m, then it holds from (3.18) and Lemmas 3.1 and 3.2 that

φ
(
Px,xn+1

)=V
(
Px,αnJx+

(
1−αn

)
J yn
)

≤V
(
Px,αnJx+

(
1−αn

)
J yn−αn(Jx− JPx)

)
− 2
〈
J−1(αnJx+

(
1−αn

)
J yn
)−Px,−αn(Jx− JPx)

〉
=V

(
Px,

(
1−αn

)
J yn +αnJPx

)
+ 2
〈
xn+1−Px,αn(Jx− JPx)

〉
≤ (1−αn

)
V
(
Px, J yn

)
+αnV(Px, JPx) + 2αn

〈
xn+1−Px, Jx− JPx

〉
≤ (1−αn

)
φ
(
Px, yn

)
+αnφ(Px,Px) + 2αnε

= (1−αn
)
φ
(
Px, Jrnxn

)
+ 2αnε

≤ (1−αn
)
φ
(
Px,xn

)
+ 2αnε

= 2ε
{

1− (1−αn
)}

+
(
1−αn

)
φ
(
Px,xn

)
.

(3.19)
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Therefore, we have

φ
(
Px,xn+1

)
≤ 2ε

{
1− (1−αn

)}
+
(
1−αn

)[
2ε
{

1− (1−αn−1
)}

+
(
1−αn−1

)
φ
(
Px,xn−1

)]
= 2ε

{
1− (1−αn

)(
1−αn−1

)}
+
(
1−αn

)(
1−αn−1

)
φ
(
Px,xn−1

)

≤ ··· ≤ 2ε

{
1−

n∏
i=m

(
1−αi

)}
+

n∏
i=m

(
1−αi

)
φ
(
Px,xm

)
(3.20)

for all n≥m. Since
∑∞

i=1αi =∞, we have
∏∞

i=m(1− αi)= 0 (see Takahashi [21]). Hence,
we have

limsup
n→∞

φ
(
Px,xn

)= limsup
l→∞

φ
(
Px,xm+l+1

)

≤ limsup
l→∞

[
2ε

{
1−

m+l∏
i=m

(
1−αi

)}
+

m+l∏
i=m

(
1−αi

)
φ
(
Px,xm

)]= 2ε.
(3.21)

This implies limsupn→∞φ(Px,xn)≤ 0 and hence we get

lim
n→∞φ

(
Px,xn

)= 0. (3.22)

Applying Lemma 2.2, we obtain

lim
n→∞

∥∥Px− xn
∥∥= 0. (3.23)

Therefore, {xn} converges strongly to PT−10(x). �

4. Applications

In this section, we first study the problem of finding a minimizer of a proper lower semi-
continuous convex function in a Banach space.

Theorem 4.1. Let E be a smooth and uniformly convex Banach space and let f : E →
(−∞,∞] be a proper lower semicontinuous convex function such that (∂ f )−1(0) �= ∅. Let
{xn} be a sequence defined as follows: x1 = x ∈ E and

yn = argmin
y∈E

{
f (y) +

1
2rn
‖y‖2− 1

rn

〈
y, Jxn

〉}
(n= 1,2, . . .),

xn+1 = J−1(αnJx+
(
1−αn

)
J yn
)

(n= 1,2, . . .),

(4.1)

where {αn} ⊂ [0,1] and {rn} ⊂ (0,∞) satisfy limn→∞αn = 0,
∑∞

n=1αn =∞, and limn→∞ rn =
∞. Then the sequence {xn} converges strongly to P(∂ f )−1(0)(x).

Proof. By Rockafellar’s theorem [14, 15], the subdifferential mapping ∂ f ⊂ E × E∗ is
maximal monotone (see also Borwein [3], Simons [18], or Takahashi [21]). Fix r > 0,
z ∈ E, and let Jr be the resolvent of ∂ f . Then we have

Jz ∈ J
(
Jrz
)

+ r∂ f
(
Jrz
)

(4.2)



F. Kohsaka and W. Takahashi 247

and hence,

0∈ ∂ f
(
Jrz
)

+
1
r
J
(
Jrz
)− 1

r
Jz = ∂

(
f +

1
2r
‖ · ‖2− 1

r
Jz
)(

Jrz
)
. (4.3)

Thus, we have

Jrz = argmin
y∈E

{
f (y) +

1
2r
‖y‖2− 1

r
〈y, Jz〉

}
. (4.4)

Therefore, yn = Jrnxn for all n ∈ N. Using Theorem 3.3, {xn} converges strongly to
P(∂ f )−1(0)(x). �

We next study the problem of finding a solution of a variational inequality. Let C be a
nonempty closed convex subset of a Banach space E and let A : C→ E∗ be a single-valued
monotone operator which is hemicontinuous, that is, continuous along each line segment
in C with respect to the weak∗ topology of E∗. Then a point v ∈ C is said to be a solution
of the variational inequality for A if

〈y− v,Av〉 ≥ 0 (4.5)

holds for all y ∈ C. We denote by VI(C,A) the set of all solutions of the variational in-
equality for A. We also denote by NC(x) the normal cone for C at a point x ∈ C, that is,

NC(x)= {x∗ ∈ E∗ :
〈
y− x,x∗

〉≤ 0∀y ∈ C
}
. (4.6)

Theorem 4.2. Let C be a nonempty closed convex subset of a smooth and uniformly con-
vex Banach space E and let A : C→ E∗ be a single-valued, monotone, and hemicontinuous
operator such that VI(C,A) �= ∅. Let {xn} be a sequence defined as follows: x1 = x ∈ E and

yn =VI
(
C,A+

1
rn

(
J − Jxn

))
(n= 1,2, . . .),

xn+1 = J−1(αnJx+
(
1−αn

)
J yn
)

(n= 1,2, . . .),

(4.7)

where {αn} ⊂ [0,1] and {rn} ⊂ (0,∞) satisfy limn→∞αn = 0,
∑∞

n=1αn =∞, and limn→∞ rn =
∞. Then, the sequence {xn} converges strongly to PVI(C,A)(x).

Proof. By Rockafellar’s theorem [16], the mapping T ⊂ E×E∗ defined by

Tx =

A(x) +NC(x), if x ∈ C,

∅, otherwise,
(4.8)

is maximal monotone and T−10 = VI(C,A). Fix r > 0, z ∈ E, and let Jr be the resolvent
of T . Then we have

Jz ∈ J
(
Jrz
)

+ rT
(
Jrz
)

(4.9)
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and hence,

−A(Jrz)+
1
r

(
Jz− J

(
Jrz
))∈NC

(
Jrz
)
. (4.10)

Thus, we have 〈
y− Jrz,A

(
Jrz
)

+
1
r

(
J
(
Jrz
)− Jz

)�≥ 0 (4.11)

for all y ∈ C, that is,

Jrz =VI
(
C,A+

1
r

(
J − Jz

))
. (4.12)

Therefore, yn = Jrnxn for all n ∈ N. Using Theorem 3.3, {xn} converges strongly to
PVI(C,A)(x). �
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[7] O. Güler, On the convergence of the proximal point algorithm for convex minimization, SIAM J.
Control Optim. 29 (1991), no. 2, 403–419.

[8] S. Kamimura and W. Takahashi, Approximating solutions of maximal monotone operators in
Hilbert spaces, J. Approx. Theory 106 (2000), no. 2, 226–240.

[9] , Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim. 13
(2002), no. 3, 938–945.
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