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We devote this paper to quasiautonomous second-order differential equations in Hilbert
spaces governed by maximal monotone operators. Some bilocal boundary conditions are
associated. We discuss the continuous dependence of the solution both on the operator
and on the boundary values. One uses the methods of nonlinear analysis. Some applica-
tions to internal approximate schemes are given.

1. Introduction

The main purpose of this paper is to prove the continuous dependence on A, a, b, f of
the solution of the second-order evolution equation

pu′′(t) + ru′(t)∈ Au(t) + f , a.e. t ∈ (0,T), (1.1)

subject to the two-point boundary condition

u(0)= a, u(T)= b. (1.2)

Here A : D(A)⊆H →H is a maximal monotone operator (possibly multivalued) in a
real Hilbert space H , D(A) is its domain, a,b ∈ D(A), f ∈ L2(0,T ;H), and p, r are two
continuous functions from [0,T] to R.

In [10, 11], Barbu proved the existence of the solution in the case p ≡ 1, r ≡ 0. The
author considered the boundary value problems

u′′(t)∈Au(t) + f (t), a.e. t ∈ (0,T),

u(0)= a, u(T)= b,
(1.3)

u′′(t)∈Au(t), a.e. t ∈ (0,∞),

u(0)= a, sup
t≥0

∥∥u(t)
∥∥ <∞, (1.4)

where a,b ∈D(A) and f ∈ L2(0,T ;H). Denoting by ua the solution of (1.4) and by S1/2(t)
the extension to the closure D(A) of D(A) of the mapping a �→ ua(t), one obtains a semi-
group of nonlinear contractions {S1/2(t), t ≥ 0} on D(A). Let −A0

1/2 be its infinitesimal
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generator and A1/2 the unique extension of A0
1/2 to a maximal monotone operator. The

operator A1/2 is called the square root of A. Regularity properties of S1/2(t) are presented
in [10, 11, 13].

Brézis [14] replaced the condition u(0)= a in (1.4) by u′(0)∈ ∂ j(u(0)− a), where ∂ j
is the subdifferential of a lower-semicontinuous, convex, and proper function j : H →R.
Problems (1.3) and (1.4) were also studied in Banach spaces [21, 22, 23]. The semigroup
{S1/2(t), t ≥ 0} is defined in this case too [22]. Other contributions to the theory of
second-order differential equations (1.3) and (1.4) can be found in [16, 18, 19, 24, 25, 26].

Aftabizadeh and Pavel [1, 2] generalized problem (1.3) to (1.1) with the boundary
condition

u′(0)∈ α
(
u(0)− a

)
, −u′(T)∈ β

(
u(T)− b

)
(1.5)

with α, β being maximal monotone operators in H . If we take α= β = ∂ j, where j : H →
R,

j(x)=
0, x = 0,

+∞, otherwise,
(1.6)

then D(∂ j)= {0} and thus (1.5) becomes (1.2). A more general boundary condition can
be found in [4]. Antiperiodic solutions for a particular case of (1.1) are given in [3]. In
[12], another extension of the equation in (1.3) is studied under a boundary condition of
subdifferential type.

As a consequence of [1, Theorem 3.2], it follows that if A is maximal monotone in H ,
a,b ∈ D(A), f ∈ L2(0,T ;H) and p,r : [0,T]→ R are continuous functions, p(t) ≥ c > 0
on [0,T], then problem (1.1)-(1.2) has a unique solution u∈W2,2(0,T ;H).

Discrete variants of (1.3) and (1.4) are studied in [20].
In [5], it is shown that the application which associates to {A,a,b} the unique solution

u of (1.3) with f ≡ 0 is continuous in the following sense. Consider the boundary value
problem (1.3) (with f ≡ 0) and the sequence of problems

u′′n (t)∈Anun(t), a.e. t ∈ (0,T),

un(0)= an, un(T)= bn,
(1.7)

where A, An are maximal monotone operators in H , a,b ∈ D(A), an,bn ∈ D(An) with
0∈A0∩An0. If an→ a, bn→ b in H and(

I + λAn
)−1

ξ −→ (I + λA)−1ξ as n−→∞, (1.8)

for all ξ ∈H , and for all λ > 0, then the solution un of (1.7) converges to the solution u of
(1.3) (with f ≡ 0), uniformly on [0,T].

In [6], we have a similar result on (0,∞). The case of the first-order differential equa-
tions is analyzed in [7, 15]. The continuous dependence on data for the antiperiodic so-
lutions to a class of second-order evolution equations with constant coefficients is given
in [3].
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If An and A satisfy condition (1.8), we say that An converges to A in the sense of the re-
solvent. This and other types of convergences of the sequences of operators can be found
in [8]. They are of physical interest because of their applications in the homogenization
theory, singular perturbation problems, convergence problems in optimal control, sto-
chastic optimization, and so forth. In [22], the authors show that in Banach spaces with
some specific properties, the convergence in the sense of resolvent of a sequence (An) to
A implies the convergence of (An

1/2) to A1/2 in the same sense.
In the present paper, we prove that the unique solution u of problem (1.1)-(1.2) de-

pends strongly continuous on the data A, a, b, f . More exactly, we take the sequence of
evolution equations

pu′′n (t) + ru′n(t)∈Anun(t) + fn, a.e. t ∈ (0,T), (1.9)

subject to the boundary conditions

un(0)= an, un(T)= bn. (1.10)

Here (An) is a sequence of maximal monotone operators in H , an,bn ∈D(An)= the do-
main of An, fn ∈ L2(0,T ;H). We show that, under some additional conditions, if an→ a,
bn → b in H , fn → f in L2(0,T ;H), and (An) converges to A in the sense of the resol-
vent, then the solution un of (1.9)-(1.10) converges in C([0,T];H) to the solution u of
(1.1)-(1.2).

Using an idea from [1, 2], in the next sections, one uses the weighted space � =
L2
r̃/ p(0,T ;H), where

r̃(t)= exp

(∫ t

0

r(s)
p(s)

ds

)
, t ∈ [0,T]. (1.11)

Therefore, the scalar product in � is

〈u,v〉 =
∫ T

0

r̃(t)
p(t)

(
u(t),v(t)

)
dt ∀u,v ∈ L2(0,T ;H), (1.12)

and the corresponding norm is

|u| =
(∫ T

0

r̃(t)
p(t)

∥∥u(t)
∥∥2
dt

)1/2

∀u∈ L2(0,T ;H), (1.13)

where (·,·) and ‖ · ‖ are the scalar product and the norm of H , respectively. Actually,
the spaces L2(0,T ;H) and � contain the same functions and have equivalent norms. The
difference between them is that the operator

Bu=−pu′′ − ru′ = − p

r̃

(
r̃u′
)′

,

D(B)= {u∈W2,2(0,T ;H), u(0)= a, u(T)= b
} (1.14)
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is maximal monotone only in � (see [1]). Taking into account this remark, we may write
(1.1) in the form

p

r̃

(
r̃u′
)′ ∈Au+ f , a.e. t ∈ (0,T). (1.15)

In Section 2, we recall some definitions and results from the theory of maximal mono-
tone operators. The main result is stated in Section 3 and proved in Section 4. The proof
combines an idea related to the case p ≡ 1, r ≡ 0, f ≡ 0 (see [5]) with some techniques
from the existence theory (see [1, 2]). In the last section, we give a numerical approxima-
tion of (1.1)-(1.2) with f ≡ 0 by an internal approximating scheme (see [9]).

2. Preliminaries

Throughout this paper, H is a real Hilbert space of norm ‖ · ‖ and scalar product (·,·).
Denote by “→” and “⇀” the strong and the weak convergence in all the involved spaces,
respectively.

The nonlinear multivalued operator A with the domain D(A) and the range R(A) is
said to be monotone if (y1− y2,x1− x2)≥ 0 for all yi ∈ Axi, xi ∈D(A), i= 1,2. The oper-
ator A is called maximal monotone if it is monotone and it has not any proper monotone
extension. It is known that A is maximal monotone if and only if A is monotone and
R(A+ λI)=H for all λ > 0 (or equivalently, for some λ > 0) (see [13, Theorem 1.2, page
39]). For x ∈D(A), let A0x be the element of least norm in Ax, that is,∥∥A0x

∥∥= inf
{‖y‖, y ∈ Ax

}
. (2.1)

The single-valued operatorA0 which associates to each x ∈D(A) the elementA0x is called
the minimal section of A. For every maximal monotone operator A, one can define the
resolvent Jλ and the Yosida approximation Aλ of A, namely,

Jλ = (I + λA)−1, Aλ = I − Jλ
λ

, λ > 0. (2.2)

The realization of A in L2(0,T ;H) is the operator � given by

D(�)= {u∈ L2(0,T ;H), u(t)∈D(A) a.e. on (0,T),

∃v ∈ L2(0,T ;H) such that v(t)∈Au(t) a.e. on (0,T)
}

,
(2.3)

�u= {v ∈ L2(0,T ;H), v(t)∈Au(t) a.e. on (0,T)
}
. (2.4)

If A is maximal monotone in H , then � is maximal monotone in L2(0,T ;H). If Aλ

and �λ are Yosida approximations of A and �, respectively, then (�λu)(t)= Aλu(t) for
all λ > 0, a.e. t ∈ [0,T], for u∈ L2(0,T ;H).

Definition 2.1. A sequence {An} of maximal monotone operators in H is said to be con-
vergent to A in the sense of the resolvent if

(
I + λAn

)−1
ξ −→ (I + λA)−1ξ as n−→∞, ∀ξ ∈H , ∀λ > 0. (2.5)
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The following characterization of the convergence in the sense of resolvent is true even
in reflexive Banach spaces (see [8, page 365]).

Theorem 2.2. If A : D(A) ⊆ H → H and An : D(An) ⊆ H → H are maximal monotone
operators in the Hilbert space H , then An converges to A in the sense of the resolvent if and

only if An is graph-convergent to A (denoted An G→ A as n→∞), that is, for all x ∈ D(A),
and for all y ∈ Ax, there exist xn ∈D(An), yn ∈Anxn such that xn→ x, yn→ y in H .

We recall now the definition of the Mosco convergence of a sequence of functions and
a result concerning the equivalence between the Mosco convergence of the functions (ϕn)
and the convergence in the sense of the resolvent of the subdifferential operators (∂ϕn)
(see [8, Theorem 3.66, page 373]).

Definition 2.3. If ϕ,ϕn : H → (−∞,∞] is a sequence of convex, lower-semicontinuous,
proper functions, then ϕn is convergent to ϕ in the sense of Mosco (see [7, 8]) if

(a) there exists {xn} ⊂H , xn→ x, such that ϕn(xn)→ ϕ(x);
(b) for all {xn} ⊂H with xn⇀ x, liminfn→∞ϕn(xn)≥ ϕ(x).

Theorem 2.4. If ϕn,ϕ : H → (−∞,∞] are convex, lower-semicontinuous, proper functions,
then the following statements are equivalent:

(a) ϕn→ ϕ in the sense of Mosco;
(b) (I + λ∂ϕn)−1ξ → (I + λ∂ϕ)−1ξ, for all λ > 0 and for all ξ ∈H and there exist (u,v)∈

∂ϕ, and (un,vn)∈ ∂ϕn such that un→ u, vn→ v in H and ϕn(un)→ ϕ(u).

3. The main result

Consider the boundary value problems

pu′′ + ru′ ∈Au+ f , a.e. t ∈ (0,T), (3.1)

u(0)= a, u(T)= b, (3.2)

pu′′n + ru′n ∈ Anun + fn, a.e. t ∈ (0,T), (3.3)

un(0)= an, un(T)= bn. (3.4)

We now state our basic assumptions:

(H1) A, An are nonlinear (possibly multivalued) maximal monotone operators in the
real Hilbert space H , with the domains D(A), D(An) and 0 ∈ D(A)∩D(An) for
all n∈N, n≥ 1;

(H2) a,b ∈D(A), an, bn ∈D(An) are given elements;
(H3) f , fn ∈ L2(0,T ;H);
(H4) p,r : [0,T]→R are continuous functions, p(t)≥ c > 0 for all t ∈ [0,T].

These hypotheses assure the existence and the uniqueness in W2,2(0,T ;H) of the solu-
tions to problems (3.1)-(3.2) and (3.3)-(3.4), respectively. In addition, suppose that

(H5) if (An)0 is the minimal section of An, then (An)0an and (An)0bn are bounded in
H ;

(H6) an→ a, bn→ b in H and fn→ f in L2(0,T ;H);
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(H7) (An) converges to A in the sense of the resolvent, that is,(
I + λAn

)−1
ξ −→ (I + λA)−1ξ, n−→∞, ∀ξ ∈H , ∀λ > 0. (3.5)

The continuous dependence on data result for the problem (3.1)-(3.2) may now be
stated.

Theorem 3.1. If hypotheses (H1)–(H7) hold and u, un are the solutions of problems (3.1)-
(3.2) and (3.3)-(3.4), respectively, then un(t) → u(t) uniformly on [0,T] and u′n → u′ in
L2(0,T ;H) as n→∞.

The proof of this theorem is the purpose of the next section.

Remark 3.2. In [7, Theorem 3.2, page 62 and Proposition 3.7, page 64], the author es-
tablishes some conditions when the sum An +Bn converges to A+B in the sense of the
resolvent. Here An and Bn are supposed to be maximal monotone operators convergent
to A and B, respectively, in the sense of the resolvent.

Theorem 3.1 above is not a consequence of these general perturbation results. Indeed,
problems (3.1)-(3.2) and (3.3)-(3.4) can be written in L2(0,T ;H) as

− f ∈ Bu+ �u, − fn ∈ Bnun + �nun, (3.6)

respectively, where �, �n are the realizations of A, An in L2(0,T ;H), B is given in (1.14),
and Bn is analogous to B, but with an, bn instead of a, b. It is known that B, Bn are
maximal monotone in L2(0,T ;H) (see [1]). Moreover, B = ∂ϕ, Bn = ∂ϕn, where ϕ,ϕn :
L2(0,T ;H)→ (−∞,∞] are defined by

ϕ(u)=


1
2

∫ T

0
r̃(t)

∥∥u′(t)∥∥2
dt, u∈W1,2(0,T ;H), u(0)= a, u(T)= b,

+∞, otherwise,

ϕn(u)=


1
2

∫ T

0
r̃(t)

∥∥u′(t)∥∥2
dt, u∈W1,2(0,T ;H), u(0)= an, u(T)= bn,

+∞, otherwise.

(3.7)

We show that ϕn is not Mosco convergent to ϕ. To do this, consider u ∈W1,2(0,T ;H)
with u(T) �= b and

un(t)=


an, t = 0,

bn, t = T ,

u(t) +
C

n
, 0 < t < T ,

(3.8)

where C is a constant in H . It is clear that un → u in L2(0,T ;H) and liminfn→∞ϕn(un) <
ϕ(u)= +∞. Thus condition (b) in Definition 2.3 is not satisfied. Then ϕn does not con-
verge to ϕ in the sense of Mosco. Theorem 2.4 implies that ∂ϕn is not convergent to ∂ϕ in
the sense of the resolvent. So Attouch’s results for the convergence of the sum �n +Bn are
not applicable here, even if �n→� in L2(0,T ;H) in the sense of the resolvent.
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A particular case of Theorem 3.1 is obtained assuming that A and An are subdifferen-
tial mappings and replacing (H7) by the condition

(H7)′ ϕn→ ϕ in the sense of Mosco.
In this case, we find (in view of Theorem 2.4) the following consequence of Theorem

3.1.

Corollary 3.3. If A = ∂ϕ and An = ∂ϕn, where ϕn, ϕ : H → (−∞,∞] are convex, lower-
semicontinuous, proper functions with 0 ∈ D(∂ϕ), 0 ∈ D(∂ϕn), then under hypotheses
(H2)–(H6), (H7)′, the convergences un(t)→ u(t) uniformly on [0,T] and u′n→ u′ in L2(0,
T ;H) as n→∞ are obtained.

4. The proof of Theorem 3.1

The proof of the main result combines some ideas from [1, 2, 5]. For every given λ > 0,
we put

yλ =
(
I +
√
λA
)−1

a, zλ =
(
I +
√
λA
)−1

b,

ynλ =
(
I +
√
λAn

)−1
a, znλ =

(
I +
√
λAn

)−1
b.

(4.1)

By hypothesis (3.5), it follows that

ynλ −→ yλ, znλ −→ zλ, An
λξ −→ Aλξ as n−→∞, (4.2)

for all λ > 0, and for all ξ ∈H , where An
λ is the Yosida approximation of An.

Let wλ, vλ, wnλ, vnλ be the solutions of the auxiliary boundary value problems

pw′′λ + rw′λ ∈ Awλ + f , a.e. t ∈ (0,T),

wλ(0)= yλ, wλ(T)= zλ,
(4.3)

pv′′λ + rv′λ = Aλvλ + f , a.e. t ∈ (0,T),

vλ(0)= yλ, vλ(T)= zλ,
(4.4)

pw′′nλ + rw′nλ ∈ Anwnλ + fn, a.e. t ∈ (0,T),

wnλ(0)= ynλ, wnλ(T)= znλ,
(4.5)

pv′′nλ + rv′nλ = An
λvnλ + fn, a.e. t ∈ (0,T),

vnλ(0)= ynλ, vnλ(T)= znλ,
(4.6)

respectively. From the general theory recalled in Section 1, we know that each of these
problems has a unique solution in W2,2(0,T ;H).

For every t ∈ [0,T], λ > 0, and n∈N, we can write∥∥un(t)−u(t)
∥∥≤ ∥∥un(t)−wnλ(t)

∥∥+
∥∥wnλ(t)− vnλ(t)

∥∥
+
∥∥vnλ(t)− vλ(t)

∥∥+
∥∥vλ(t)−wλ(t)

∥∥
+
∥∥wλ(t)−u(t)

∥∥,

(4.7)

∣∣u′n−u′
∣∣≤ ∣∣u′n−w′nλ

∣∣+
∣∣w′nλ− v′νλ

∣∣+
∣∣v′nλ− v′λ

∣∣+
∣∣v′λ−w′λ

∣∣+
∣∣w′λ−u′

∣∣. (4.8)
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Recall that | · | denotes the norm in L2(0,T ;H). We intend to take the superior limit as
n→∞ and then the limit as λ→ 0 in both (4.7) and (4.8). In order to do this, we estimate
each term in (4.7) and (4.8). One begins with some boundedness results.

Lemma 4.1. Under the hypotheses of Theorem 3.1, if wnλ is the solution of problem (4.5),
then for every fixed λ > 0,

limsup
n→∞

∥∥w′nλ(0)
∥∥≤ c1

(∥∥A√λa∥∥+
∥∥A√λb∥∥+

∥∥yλ∥∥+
∥∥zλ∥∥+ 1

)
,

limsup
n→∞

∥∥w′nλ(T)
∥∥≤ c2

(∥∥A√λa∥∥+
∥∥A√λb∥∥+

∥∥yλ∥∥+
∥∥zλ∥∥+ 1

)
,

(4.9)

limsup
n→∞

∣∣w′nλ∣∣≤ c3
(∥∥A√λa∥∥+

∥∥A√λb∥∥+
∥∥yλ∥∥+

∥∥zλ∥∥+ 1
)
, (4.10)

limsup
n→∞

∣∣w′′nλ∣∣≤ c4
(∥∥A√λa∥∥+

∥∥A√λb∥∥+
∥∥yλ∥∥+

∥∥zλ∥∥+ 1
)
, (4.11)

limsup
n→∞

∣∣wnλ

∣∣
C ≤ c5

(∥∥A√λa∥∥+
∥∥A√λb∥∥+

∥∥yλ∥∥+
∥∥zλ∥∥+ 1

)
, (4.12)

where | · |C is the norm in C([0,T];H), that is, |u|C = supt∈[0,T]‖u(t)‖.

Proof. One approximates (4.5) by

pw′′nλµ + rw′nλµ = An
µwnλµ +µwnλµ + fn, a.e. t ∈ (0,T),

wnλµ(0)= ynλ, wnλµ(T)= znλ,
(4.13)

where An
µ = (1/µ)[I − (I + µAn)−1]. We show that wnλµ is bounded in C([0,T];H) with

respect to µ and wnλµ→wnλ in C([0,T];H) as µ→ 0.
One writes the equation in (4.13) as in (1.15), multiply it by (r̃/ p)wnλµ and integrate

over [0,T], to obtain

∫ T

0

((
r̃w′nλµ

)′
,wnλµ

)
dt

=
∫ T

0

r̃

p

(
An
µwnλµ,wnλµ

)
dt+µ

∫ T

0

r̃

p

∥∥wnλµ

∥∥2
dt+

∫ T

0

r̃

p

(
fn,wnλµ

)
dt.

(4.14)

Here and everywhere below, we omit the variable t at the functions under integrals.
Without loss of generality, suppose that 0∈ An0. Otherwise, we replace Anu by Ãnu=

Anu− (An)00 and fn by f̃n = fn + (An)00. Since An
µ is monotone, by the above equality

and (H4), we obtain

c
∣∣w′nλµ∣∣2

+µ
∣∣wnλµ

∣∣2 ≤ r̃(T)
∥∥w′nλµ(T)

∥∥ ·∥∥znλ∥∥+
∥∥w′nλµ(0)

∥∥ ·∥∥ynλ∥∥+
∣∣ fn∣∣ ·∣∣wnλµ

∣∣.
(4.15)

Since

wnλµ(t)= ynλ +
∫ t

0
w′nλµ(s)ds, t ∈ [0,T], (4.16)
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we deduce that

∥∥wnλµ(t)
∥∥≤ ∥∥ynλ∥∥+

√
T

(∫ T

0

∥∥w′nλµ∥∥2
ds

)1/2

, t ∈ [0,T], (4.17)

so ∣∣wnλµ

∣∣≤ C1
(∥∥ynλ∥∥+

∣∣w′nλµ∣∣). (4.18)

The constant C1 and all the constants below are positive and independent of n, λ, and µ.
Using (4.18) in (4.15), we find

c
∣∣w′nλµ∣∣2 ≤ r̃(T)

∥∥w′nλµ(T)
∥∥ ·∥∥znλ∥∥+

∥∥w′nλµ(0)
∥∥ ·∥∥ynλ∥∥

+C1
∣∣ fn∣∣(∥∥ynλ∥∥+

∣∣w′nλµ∣∣), (4.19)

hence, by virtue of boundedness of fn,

∣∣w′nλµ∣∣≤ C2

(∥∥ynλ∥∥1/2 ·∥∥w′nλµ(0)
∥∥1/2

+
∥∥znλ∥∥1/2 ·∥∥w′nλµ(T)

∥∥1/2
+
∥∥ynλ∥∥1/2

+ 1
)
. (4.20)

We now multiply (4.13) by w′′nλµ and integrate from t = 0 to t = T :

∫ T

0
p
∥∥w′′nλµ∥∥2

dt+
∫ T

0
r
(
w′nλµ,w′′nλµ

)
dt

=
∫ T

0

(
An
µwnλµ,w′′nλµ

)
dt+µ

∫ T

0

(
wnλµ,w′′nλµ

)
dt+

∫ T

0

(
fn,w′′nλµ

)
dt.

(4.21)

The functions x �→ An
µx and t �→ wnλµ(t) are Lipschitz continuous, so the application

t �→ An
µwnλµ(t) is differentiable a.e. on [0,T]. Since x �→ An

µx is monotone, we also have
((An

µwnλµ(t))′,w′nλµ(t))≥ 0 a.e. t ∈ (0,T). Then,

(
An
µwnλµ,w′′nλµ

)≤ (An
µwnλµ,w′nλµ

)′
. (4.22)

On the other hand,

(
wnλµ,w′′nλµ

)= (wnλµ,w′nλµ
)′ −∥∥w′nλµ∥∥2 ≤ (wnλµ,w′nλµ

)′
. (4.23)

Now (4.22), (4.23), and (4.21) yield

∫ T

0
p
∥∥w′′nλµ∥∥2

dt ≤ (An
µznλ,w′nλµ(T)

)− (An
µ ynλ,w′nλµ(0)

)
+µ
(
znλ,w′nλµ(T)

)−µ
(
ynλ,w′nλµ(0)

)
+

(∫ T

0

∥∥ fn∥∥2
dt

)1/2

+

(∫ T

0
r2
∥∥w′nλµ∥∥2

dt

)1/2
(∫ T

0

∥∥w′′nλµ∥∥2
dt

)1/2

,

(4.24)
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therefore via (H4),

c

(∫ T

0

∥∥w′′nλµ∥∥2
dt

)1/2

≤
(∫ T

0

∥∥ fn∥∥2
dt

)1/2

+

(∫ T

0
r2
∥∥w′nλµ∥∥2

dt

)1/2

+
√
c
(∥∥An

µ ynλ
∥∥1/2

+
√
µ
∥∥ynλ∥∥1/2

)∥∥w′nλµ(0)
∥∥1/2

+
√
c
(∥∥An

µznλ
∥∥1/2

+
√
µ
∥∥znλ∥∥1/2

)∥∥w′nλµ(T)
∥∥1/2

.

(4.25)

Inequality (4.20) leads to

(∫ T

0

∥∥w′′nλµ∥∥2
dt

)1/2

≤ C3 +C4

(∥∥(An
)0
ynλ
∥∥1/2

+
∥∥ynλ∥∥1/2

)∥∥w′nλµ(0)
∥∥1/2

+C5

(∥∥(An
)0
znλ
∥∥1/2

+
∥∥znλ∥∥1/2

)∥∥w′nλµ(T)
∥∥1/2

+C6
∥∥ynλ∥∥1/2

(4.26)

for small µ > 0. Observe that

a− ynλ√
λ

= An√
λ
a∈ Anynλ,

b− znλ√
λ

= An√
λ
b ∈Anznλ. (4.27)

Therefore, we get

∥∥∥(An
)0
ynλ
∥∥∥≤ ∥∥∥An√

λ
a
∥∥∥,

∥∥∥(An
)0
znλ
∥∥∥≤ ∥∥∥An√

λ
b
∥∥∥. (4.28)

So, (4.26) gives

(∫ T

0

∥∥w′′nλµ∥∥2
dt

)1/2

≤ C3 +C4

(∥∥An√
λ
a
∥∥1/2

+
∥∥ynλ∥∥1/2

)∥∥w′nλµ(0)
∥∥1/2

+C5

(∥∥An√
λ
b
∥∥1/2

+
∥∥znλ∥∥1/2

)∥∥w′nλµ(T)
∥∥1/2

+C6
∥∥ynλ∥∥1/2

.

(4.29)

To estimate w′nλµ(0) and w′nλµ(T), we write

w′nλµ(0)= 1
T

[
znλ− ynλ−

∫ T

0

(∫ t

0
w′′nλµ(s)ds

)
dt

]
,

w′nλµ(T)= 1
T

[
znλ− ynλ +

∫ T

0

(∫ T

t
w′′nλµ(s)ds

)
dt

]
.

(4.30)

Now (4.29) and (4.30) imply

∥∥w′nλµ(0)
∥∥≤ C7

(∥∥ynλ∥∥+
∥∥znλ∥∥)+C8

(∥∥An√
λ
a
∥∥1/2

+
∥∥ynλ∥∥1/2

)∥∥w′nλµ(0)
∥∥1/2

+C9

(∥∥An√
λ
b
∥∥1/2

+
∥∥znλ∥∥1/2

)∥∥w′nλµ(T)
∥∥1/2

+C10,
(4.31)
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and analogously for ‖w′nλµ(T)‖. Hence,

∥∥w′nλµ(0)
∥∥1/2 ≤ C11

(∥∥An√
λ
a
∥∥1/2

+
∥∥An√

λ
b
∥∥1/2

+
∥∥ynλ∥∥1/2

+
∥∥znλ∥∥1/2

+ 1
)

,∥∥w′nλµ(T)
∥∥1/2 ≤ C12

(∥∥An√
λ
a
∥∥1/2

+
∥∥An√

λ
b
∥∥1/2

+
∥∥ynλ∥∥1/2

+
∥∥znλ∥∥1/2

+ 1
)
.

(4.32)

Using (4.32) in (4.29) and (4.20), respectively, we infer that

∣∣w′′nλµ∣∣≤ C13

(∥∥An√
λ
a
∥∥+

∥∥An√
λ
b
∥∥+

∥∥ynλ∥∥+
∥∥znλ∥∥+ 1

)
,∣∣w′nλµ∣∣≤ C14

(∥∥An√
λ
a
∥∥+

∥∥An√
λ
b
∥∥+

∥∥ynλ∥∥+
∥∥znλ∥∥+ 1

)
.

(4.33)

The last inequality, together with (4.17), leads to

∣∣wnλµ

∣∣
C ≤ C15

(∥∥An√
λ
a
∥∥+

∥∥An√
λ
b
∥∥+

∥∥ynλ∥∥+
∥∥znλ∥∥+ 1

)
. (4.34)

Inequalities (4.32)–(4.34) show that w′nλµ(0) and w′nλµ(T) are bounded in H , w′′nλµ, w′nλµ
are bounded in L2(0,T ;H), and wnλµ is bounded in C([0,T];H), all of them with respect
to µ. By (4.13) we have also the boundedness of An

µwnλµ in L2(0,T ;H) (in µ).
We prove now that (w′nλµ)µ is strongly convergent in C([0,T];H). To do this, we write

(4.13) for µ and ν, subtract them, multiply by (r̃/ p)(wnλµ − wnλν), and integrate over
[0,T]. With the aid of

Jnµwnλµ +µAn
µwnλµ =wnλµ, (4.35)

one arrives at

−
∫ T

0
r̃
∥∥w′nλµ−w′nλν

∥∥2
dt =

∫ T

0

r̃

p

(
An
µwnλµ−An

νwnλν, Jnµwnλµ− Jnν wnλν
)
dt

+
∫ T

0

r̃

p

(
An
µwnλµ−An

νwnλν,µAn
µwnλµ− νAn

νwnλν
)
dt

+
∫ T

0

r̃

p

(
µwnλµ− νwnλν,wnλµ−wnλν

)
dt.

(4.36)

Since An
µwnλµ ∈ An(Jnµwnλµ) and An is monotone, this implies that

∫ T

0
r̃
∥∥w′nλµ−w′nλν

∥∥2
dt

≤ (µ+ ν)

[∫ T

0

r̃

p

(
An
µwnλµ,An

νwnλν
)
dt+

∫ T

0

r̃

p

(
wnλµ,wnλν

)
dt

]
.

(4.37)

The boundedness in L2(0,T ;H) of wnλµ and An
µwnλµ with respect to µ shows that

∣∣w′nλµ−w′nλν

∣∣2 ≤ Knλ
1 (µ+ ν), (4.38)
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where Knλ
1 depends linearly on ‖An√

λ
a‖, ‖An√

λ
b‖, ‖ynλ‖, ‖znλ‖ and is independent of µ

and ν. Consequently, (w′nλµ)µ strongly converges in L2(0,T ;H), say

w′nλµ −→ gnλ in L2(0,T ;H) as µ−→ 0. (4.39)

Now we have the estimate∥∥w′nλµ(t)− gnλ(t)
∥∥2−∥∥w′nλµ(t0)− gnλ

(
t0
)∥∥2

≤ 2

(∫ T

0

∥∥w′nλµ− gnλ
∥∥2
dt

)1/2(∫ T

0

∥∥w′′nλµ− g′nλ
∥∥2
dt

)1/2 (4.40)

with t0 ∈ [0,T] such as ‖w′nλµ(t0)− gnλ(t0)‖ → 0 as µ→ 0. Since (w′′nλµ)µ is bounded in
L2(0,T ;H) with respect to µ, one deduces the convergence

w′nλµ −→ gnλ in C([0,T];H) as µ−→ 0. (4.41)

From (4.16) and (4.41), we obtain that

wnλµ(t)−→ ynλ +
∫ t

0
gnλ(s)ds

not.= hnλ(t), t ∈ [0,T]. (4.42)

It follows that hnλ(0) = ynλ and hnλ is differentiable on [0,T] with h′nλ = gnλ. Hence,
w′nλµ → h′nλ in C([0,T];H), wnλµ⇀ hnλ, w′′nλµ⇀ h′′nλ in L2(0,T ;H), and hnλ(T) = znλ. By
(4.35) we get

Jnµwnλµ⇀ hnλ as µ−→ 0 in L2(0,T ;H). (4.43)

Denoting by B1 the operator

B1u=−pu′′ − ru′ = − p

r̃

(
r̃u′
)′

,

D(B1)= {u∈W2,2(0,T ;H), u(0)= ynλ, u(T)= znλ
}

,
(4.44)

we may write (4.13) under the form

−B1wnλµ−µwnλµ− fn ∈�n
(
�n
µwnλµ

)
, (4.45)

where �n
µ is the realization of Jnµ in L2(0,T ;H), (�n

µu)(t) = Jnµ u(t) a.e. t ∈ [0,T] for u ∈
L2(0,T ;H).

Observe that −B1wnλµ− µwnλµ− fn⇀−B1hnλ− fn. Taking into account the maximal
monotonicity of �n in L2(0,T ;H) and (4.43), in order to take the limit in (4.45), it is
enough to prove that〈−B1wnλµ−µwnλµ− fn,�n

µwnλµ
〉−→ 〈−B1hnλ− fn,hnλ

〉
. (4.46)

Using (4.35) and the boundedness of B1wnλµ, �nwnλµ, wnλµ, and �n
µwnλµ, it suffices to

show the convergence〈−B1wnλµ− fn,wnλµ
〉−→ 〈−B1hnλ− fn,hnλ

〉
. (4.47)
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But 〈 fn,wnλµ〉 → 〈 fn,hnλ〉 and by virtue of (4.41) we get

〈−B1wnλµ,wnλµ
〉= r̃(T)

(
w′nλµ(T),znλ

)− (w′nλµ(0), ynλ
)−∫ T

0
r̃
∥∥w′nλµ∥∥2

dt

−→ r̃(T)
(
h′nλ(T),znλ

)− (h′nλ(0), ynλ
)−∫ T

0
r̃
∥∥h′nλ∥∥2

dt

= 〈−B1hnλ,hnλ
〉
.

(4.48)

Thus (4.46) is proved. Now we may pass to the limit as µ → 0 in (4.45) and find
that hnλ ∈D(An) and −B1hnλ− fn ∈�nhnλ. Since wnλ verifies the same equation, by the
uniqueness one deduces hnλ = wnλ. Therefore, wnλµ ⇀ wnλ, w′′nλµ ⇀ w′′nλ in L2(0,T ;H),
w′nλµ → w′nλ in C([0,T];H), wnλµ(t)→ wnλ(t) for all t ∈ [0,T]. Now (4.9)–(4.12) follow
from (4.32)–(4.34). The proof is finished. �

We now give a boundedness result for the solution (un) of (3.4)-(3.5).

Lemma 4.2. If the hypotheses of Theorem 3.1 are satisfied, then {u′n(0)} and {u′n(T)} are
bounded in H , {u′n}, {u′′n } are bounded in L2(0,T ;H), and {un} is bounded in C([0,T];H).

Proof. Consider the boundary value problem

pu′′nµ + ru′nµ = An
µunµ +µunµ + fn, a.e. t ∈ (0,T),

unµ(0)= an, unµ(T)= bn.
(4.49)

Following the computation from the proof of Lemma 4.1, we get an estimate of the form
(4.20) with an, bn instead of ynλ, znλ. Since (an), (bn) are bounded, this can be written as∣∣u′nµ∣∣≤ k1

∥∥u′nµ(0)
∥∥1/2

+ k2
∥∥u′nµ(T)

∥∥1/2
+ k3, (4.50)

where k1,k2,k3 > 0 are independent of n and µ.
Similarly, one obtains an inequality of the form (4.26), namely,∣∣u′′nµ∣∣≤ k4 + k5

(∥∥(An)0an
∥∥1/2

+
∥∥an∥∥1/2

)∥∥u′nµ(0)
∥∥1/2

+ k6

(∥∥(An)0bn
∥∥1/2

+
∥∥bn∥∥1/2

)∥∥u′nµ(T)
∥∥1/2

+ k7
∥∥an∥∥1/2

.
(4.51)

Hypotheses (H5) and (H6) imply the existence of some constants k8,k9,k10 > 0 (inde-
pendent of n and µ) such that∣∣u′′nµ∣∣≤ k8

∥∥u′nµ(0)
∥∥1/2

+ k9
∥∥u′nµ(T)

∥∥1/2
+ k10. (4.52)

Next, as in (4.31), one arrives at∥∥u′nµ(0)
∥∥≤ k11

∥∥u′nµ(0)
∥∥1/2

+ k12
∥∥u′nµ(T)

∥∥1/2
+ k13, (4.53)

and an analogous inequality for ‖u′nµ(T)‖, with all constants independent of n and µ. This
provides upper bounds for ‖u′nµ(0)‖, ‖u′nµ(T)‖ and via (4.50), (4.52), for |u′nµ|, |u′′nµ|. By

unµ(t)= an +
∫ T

0 u′nµ(s)ds, t ∈ [0,T], we find an upper bound for unµ in C([0,T];H).
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Now, as in the proof of the previous lemma, one shows that unµ⇀ un, u′′nµ⇀ u′′n in
L2(0,T ;H), u′nµ→ u′n in C([0,T];H), and unµ(t)→ un(t) for t ∈ [0,T] (as µ→ 0).

Since ‖u′n(0)‖ ≤ liminfµ→0‖u′nµ(0)‖ and ‖u′n(T)‖ ≤ liminfµ→0‖u′nµ(T)‖, one deduces
that u′n(0) and u′n(T) are bounded in H . Analogously, u′n, u′′n are bounded in L2(0,T ;H)
and un in C([0,T];H), as claimed. �

Using the same method we can state that the solution (vnλ) of (4.6) is bounded with
respect to n for any fixed λ > 0. Since (4.6) already contains the Yosida approximation An

λ

of An, we avoid the new parameter µ and work directly with (4.6). One obtains estimates
similar to (4.20), (4.29), and (4.32), where ‖ynλ‖, ‖znλ‖, ‖An√

λ
a‖, ‖An√

λ
b‖ are bounded

with respect to n, for every given λ > 0. Indeed, by (4.2) we have the convergences ynλ →
yλ, znλ→ zλ, An√

λ
a→ A√λa, An√

λ
b→ A√λb as n→∞ for every λ > 0, therefore

sup
n∈N

∥∥ynλ∥∥= Bλ <∞, sup
n∈N

∥∥znλ∥∥= Cλ <∞,

sup
n∈N

∥∥An√
λ
a
∥∥=Dλ <∞, sup

n∈N

∥∥An√
λ
b
∥∥= Eλ <∞.

(4.54)

These lead to the following result.

Lemma 4.3. For every fixed λ > 0, v′nλ(0), v′nλ(T) are bounded in H with respect to n, {v′nλ},
{v′′nλ} are bounded in L2(0,T ;H) and {vnλ} is bounded in C([0,T];H).

Repeating the proof of Lemma 4.1 for problem (4.3), we get the following.

Lemma 4.4. The solution wλ of (4.3) is bounded in C([0,T];H), w′λ, w′′λ are bounded in
L2(0,T ;H) and w′λ(0), w′λ(T) are bounded in H .

Now we are going to estimate each term in (4.7) and (4.8). We begin with the following
lemma.

Lemma 4.5. Under the hypotheses of Theorem 3.1, for every given λ > 0,

limsup
n→∞

∣∣u′n−w′nλ
∣∣≤ c6

(∥∥A√λa∥∥1/2
+
∥∥A√λb∥∥1/2

+
∥∥yλ∥∥1/2

+
∥∥zλ∥∥1/2

+ 1
)(∥∥a− yλ

∥∥1/2
+
∥∥b− zλ

∥∥1/2
)

,
(4.55)

limsup
n→∞

∣∣un−wnλ

∣∣
C ≤ c7

(∥∥A√λa∥∥1/2
+
∥∥A√λb∥∥1/2

+
∥∥yλ∥∥1/2

+
∥∥zλ∥∥1/2

+ 1
)(∥∥a− yλ

∥∥1/2
+
∥∥b− zλ

∥∥1/2
)

+
∥∥a− yλ

∥∥. (4.56)

Proof. Subtracting (3.3) and the equation from (4.5), multiplying by (r̃/ p)(un −wnλ),
and integrating over [0,T] by parts, we get via the monotonicity of An,

r̃(T)
(
u′n(T)−w′nλ(T),bn− znλ

)− (u′n(0)−w′nλ(0),an− ynλ
)≥ ∫ T

0
r̃
∥∥u′n−w′nλ

∥∥2
dt,

(4.57)
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so

c
∣∣u′n−w′nλ

∣∣2 ≤ r̃(T)
∥∥u′n(T)−w′nλ(T)

∥∥ ·∥∥bn− znλ
∥∥

+
∥∥u′n(0)−w′nλ(0)

∥∥ ·∥∥an− ynλ
∥∥. (4.58)

According to (4.9) and Lemma 4.2, this yields (4.55). Next, from

un(t)−wnλ(t)= an− ynλ +
∫ T

0

(
u′n−w′nλ

)
(s)ds, t ∈ [0,T], (4.59)

and (4.55), we derive (4.56). �

For the second terms in (4.7) and (4.8), we can also find upper bounds with the aid of
yλ, zλ, A√λa, A√λb.

Lemma 4.6. Suppose that the above hypotheses hold and let wnλ, vnλ be the solutions of
boundary value problems (4.5) and (4.6), respectively. Then

limsup
n→∞

∣∣w′nλ− v′nλ
∣∣≤ c8

√
λ
(∥∥A√λa∥∥+

∥∥A√λb∥∥+
∥∥yλ∥∥+

∥∥zλ∥∥+ 1
)

, (4.60)

limsup
n→∞

∣∣wnλ− vnλ
∣∣
C ≤ c8

√
Tλ
(∥∥A√λa∥∥+

∥∥A√λb∥∥+
∥∥yλ∥∥+

∥∥zλ∥∥+ 1
)
. (4.61)

Proof. One subtracts (4.5) and (4.6), multiplies by (r̃/ p)(wnλ− vnλ), and integrates from
t = 0 to t = T to obtain

∫ T

0

((
r̃w′nλ− r̃v′nλ

)′
,wnλ− vnλ

)
dt =

∫ T

0

r̃

p

(
αnλ−An

λvnλ,wnλ− vnλ
)
dt. (4.62)

Here we have denoted for simplicity by αnλ the element pw′′nλ + rw′nλ− fn ∈ Anwnλ. Inte-
grating by parts and writing vnλ in the right-hand side as vnλ = Jnλ vnλ + λAn

λvnλ, we obtain
via the monotonicity of An,

∫ T

0
r̃
∥∥w′nλ− v′nλ

∥∥2
dt ≤ λ

∫ T

0

r̃

p

(
αnλ−An

λvnλ,An
λwnλ

)
dt. (4.63)

This, together with (αnλ−An
λvnλ,An

λvnλ)≤ (1/2)‖αnλ‖2, implies

∫ T

0
r̃
∥∥w′nλ− v′nλ

∥∥2
dt ≤ Cλ

(
1 +

∣∣w′′nλ∣∣2
+
∣∣w′nλ∣∣2

)
, (4.64)

and in view of (4.10) and (4.11), we arrive at (4.60). With the aid of the equality wnλ(t)−
vnλ(t)= ∫ t0(w′nλ− v′nλ)(s)ds, t ∈ [0,T], we can see that (4.61) is also verified. �

Analogously with Lemmas 4.5 and 4.6, we derive the following results.
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Lemma 4.7. If u and wλ are the solutions of the boundary value problems (3.1)-(3.2) and
(4.3), then for every λ > 0,

∣∣u′ −w′λ
∣∣≤ c9

(∥∥a− yλ
∥∥1/2

+
∥∥b− zλ

∥∥1/2
)

,∣∣u−wλ

∣∣
C ≤

∥∥a− yλ
∥∥+ c10

(∥∥a− yλ
∥∥1/2

+
∥∥b− zλ

∥∥1/2
) (4.65)

with c9, c10 being positive constants.

Lemma 4.8. If wλ and vλ are the solutions of (4.3) and (4.4), then

∣∣w′λ− v′λ
∣∣≤ c11

√
λ,

∣∣wλ− vλ
∣∣
C ≤ c12

√
λ. (4.66)

Finally, it will be established that v′nλ− v′λ and vnλ− vλ tend to 0 as n→∞, for all λ > 0,
in L2(0,T ;H) and in C([0,T];H), respectively.

Lemma 4.9. Suppose the assumptions of Theorem 3.1 are satisfied. Then, for every λ > 0,

lim
n→∞

∣∣v′nλ− v′λ
∣∣= 0, lim

n→∞
∣∣vnλ− vλ

∣∣
C = 0. (4.67)

Proof. Subtract (4.6) and (4.4), multiply by (r̃/ p)(vnλ − vλ), and integrate over [0,T],
deducing thus the equality

r̃(T)
(
v′nλ(T)− v′λ(T),znλ− zλ

)− (v′nλ(0)− v′λ(0), ynλ− yλ
)−∫ T

0
r̃
∥∥v′nλ− v′λ

∥∥2
dt

=
∫ T

0

r̃

p

(
An
λvnλ−An

λvλ,vnλ− vλ
)
dt+

∫ T

0

r̃

p

(
An
λvλ−Aλvλ,vnλ− vλ

)
dt

+
∫ T

0

r̃

p

(
fn− f ,vnλ− vλ

)
dt

(4.68)

or, in view of the monotonicity of An
λ ,

c
∣∣v′nλ− v′λ

∣∣2 ≤ r̃(T)
∥∥v′nλ(T)− v′λ(T)

∥∥ ·∥∥znλ− zλ
∥∥+

∥∥v′nλ(0)− v′λ(0)
∥∥ ·∥∥ynλ− yλ

∥∥
+

(∫ T

0

r̃

p

∥∥An
λvλ−Aλvλ

∥∥2
dt

)1/2

+

(∫ T

0

r̃

p

∥∥ fn− f
∥∥2
dt

)1/2


×
(∫ T

0

r̃

p

∥∥vnλ− vλ
∥∥2
dt

)1/2

.

(4.69)

According to the boundedness from Lemma 4.3, this leads to

∣∣v′nλ− v′λ
∣∣2 ≤ kλ

(∥∥ynλ− yλ
∥∥+

∥∥znλ− zλ
∥∥+

∣∣An
λvλ−Aλvλ

∣∣+
∣∣ fn− f

∣∣) (4.70)

for all λ > 0, n∈N, where kλ is independent of n. By (4.2) we infer that

An
λvλ(t)−→ Aλvλ(t) uniformly on [0,T], as n−→∞. (4.71)
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Using this, together with (H6) and the other convergences from (4.2) into (4.70), we find
the first part of (4.67). The second limit is immediate.

The end of the proof of Theorem 3.1. We come back to (4.7) and (4.8) and apply Lemmas
4.5–4.9. Therefore, for small λ > 0,

limsup
n→∞

∣∣un−u
∣∣
C

≤ c13

(∥∥A√λa∥∥1/2
+
∥∥A√λb∥∥1/2

+
∥∥yλ∥∥1/2

+
∥∥zλ∥∥1/2

+ 1
)(∥∥a− yλ

∥∥1/2
+
∥∥b− zλ

∥∥1/2
)

+ 2
∥∥a− yλ

∥∥+ c8

√
Tλ
(∥∥A√λa∥∥+

∥∥A√λb∥∥+
∥∥yλ∥∥+

∥∥zλ∥∥+ 1
)

+ c12

√
λ,

(4.72)

where c13 > 0 is independent of λ. A similar inequality is available for limsupn→∞ |u′n−u′|.
Taking into account the boundedness of A√λa and A√λb and the convergences yλ →

a, zλ → b, we may pass to the limit as λ→ 0 in the above inequality and conclude that
un(t)→ u(t) as n→∞, uniformly on [0,T]. Analogously, u′n → u′ in L2(0,T ;H) and the
proof is complete. �

5. Internal approximations

In this section, we give a numerical approximation of the solution u of the problem

pu′′(t) + ru′(t)= Au(t), 0 < t < T ,

u(0)= a, u(T)= b,
(5.1)

by the solution uN of an internal scheme of approximation.
Suppose that H is a separable real Hilbert space, provided with the scalar product (·,·)

and the corresponding norm ‖ · ‖ and

p,r : [0,T]−→R are continuous, p(t)≥ c > 0 ∀t ∈ [0,T]. (5.2)

Consider the univoque operator A : H →H satisfying the following assumption:

(H8) A is monotone, hemicontinuous, and everywhere defined on H .

Then A is maximal monotone in H (see [13, page 40]), and therefore for all a,b ∈H ,
problem (5.1) has a unique solution u∈W2,2(0,T ;H) (see [1]).

Let {ei}∞i=1 be an orthonormal basis in H . For any fixed positive integer N , denote by
PN the orthogonal projector given by PNx =

∑N
i=1(x,ei)ei for all x ∈H and let HN = PNH .

It is known that P2
N = PN and PN is selfadjoint, that is, (PNx, y)= (x,PN y) for all x, y ∈H

(see, e.g., [17]).
One defines the operator AN : D(AN )=HN ⊂H →H , AN = PNA. So, for every x̃N =

PNx ∈HN (with x ∈H), we have ANx̃N ∈HN and

ANx̃N = PNAPNx = PNA

 N∑
i=1

(
x,ei

)
ei

 . (5.3)
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It is easy to check that, in view of (H8), the operator AN is monotone, hemicontinuous,
univoque, and everywhere defined on HN . Consequently, it is maximal monotone in HN .

Consider now the approximating problem

pu′′N (t) + ru′N (t)=ANuN (t), 0 < t < T ,

uN (0)= PNa, uN (T)= PNb.
(5.4)

It is clear that (5.4) has a unique solution uN ∈W2,2(0,T ;HN ).
Assume in addition that A0= 0 and A is bounded, that is, it maps bounded sets onto

bounded sets.
We now show that

(
I + λAN

)−1
PNx −→ (I + λA)−1x (N −→∞), ∀λ > 0, ∀x ∈H. (5.5)

To do this, we put yN = (I + λAN )−1PNx and y = (I + λA)−1x. Therefore, we get yN ∈HN

and

yN −PN yN + λ
(
PNAyN −PNAy

)= 0. (5.6)

Multiplying by yN−PN y inH , we obtain ‖yN−PN y‖2 + λ(PNAyN−PNAy, yN−PN y)= 0.
Since PN is selfadjoint, P2

N = PN , and PN yN = yN , one deduces that

∥∥yN −PN y
∥∥2

+ λ
(
AyN −Ay, yN − y

)
+ λ
(
AyN −Ay, y−PN y

)= 0. (5.7)

The sequence {yN} is bounded in H for every fixed λ > 0. Indeed, since A0 = 0 and
(I + λAN )−1 is a contraction, it follows that

∥∥yN∥∥= ∥∥∥(I + λAN
)−1

PNx−
(
I + λAN

)−1
0
∥∥∥≤ ∥∥PNx∥∥. (5.8)

Hence, {yN} is bounded in H .
Passing to the superior limit as N →∞ in (5.7) and using the monotonicity and the

boundedness of A, we find that yN → y in H as N →∞, that is, (5.5) holds.
Using again the boundedness of A and that fact that PN is selfadjoint with P2

N = PN ,
we can easily show that ANPNa and ANPNb are bounded in H . Thus condition (H5) is
verified.

As a consequence of Theorem 3.1, we state the following internal approximating result.

Proposition 5.1. Assume that (5.2) holds, A : H → H is a bounded operator satisfying
(H8), A0 = 0 and a,b ∈ H are given. Denoting by u and uN the unique solutions of the
boundary values problems (5.1) and (5.4), respectively, where AN = PNA : HN → HN , the
convergences uN (t)→ u(t) uniformly on [0,T] and u′N → u′ in L2(0,T ;H) as N →∞ are
obtained.
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