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We devote this paper to quasiautonomous second-order differential equations in Hilbert
spaces governed by maximal monotone operators. Some bilocal boundary conditions are
associated. We discuss the continuous dependence of the solution both on the operator
and on the boundary values. One uses the methods of nonlinear analysis. Some applica-
tions to internal approximate schemes are given.

1. Introduction

The main purpose of this paper is to prove the continuous dependence on A4, a, b, f of
the solution of the second-order evolution equation

pu”’(t)+ru'(t) € Au(t)+ f, ae.te(0,T), (1.1)
subject to the two-point boundary condition
u(0) = a, u(T) =b. (1.2)

Here A: D(A) € H — H is a maximal monotone operator (possibly multivalued) in a
real Hilbert space H, D(A) is its domain, a,b € D(A), f € L*(0,T;H), and p, 1 are two
continuous functions from [0, T'] to R.

In [10, 11], Barbu proved the existence of the solution in the case p = 1, r = 0. The
author considered the boundary value problems

u”(t) € Au(t)+ f(t), ae.te(0,T),
u(0) = a, u(T)="b,
u’(t) € Au(t), ae.te (0,0),

(1.3)

u(0) = a, su£||u(t)|| < 0o, (1.4)

where a,b € D(A) and f € L?(0, T; H). Denoting by u, the solution of (1.4) and by S, (t)
the extension to the closure D(A) of D(A) of the mapping a — u,(t), one obtains a semi-
group of nonlinear contractions {S;/,(¢), t = 0} on D(A). Let —A?/z be its infinitesimal
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generator and Aj/, the unique extension of AJ,, to a maximal monotone operator. The
operator Ay, is called the square root of A. Regularity properties of S;,,(¢) are presented
in [10, 11, 13].

Brézis [14] replaced the condition #(0) = a in (1.4) by u'(0) € dj(u(0) — a), where dj
is the subdifferential of a lower-semicontinuous, convex, and proper function j: H — R.
Problems (1.3) and (1.4) were also studied in Banach spaces [21, 22, 23]. The semigroup
{S12(t), t = 0} is defined in this case too [22]. Other contributions to the theory of
second-order differential equations (1.3) and (1.4) can be found in [16, 18, 19, 24, 25, 26].

Aftabizadeh and Pavel [1, 2] generalized problem (1.3) to (1.1) with the boundary

condition
u'(0) € a(u(0) —a), —u'(T) € B(u(T) - b) (1.5)

with a, f being maximal monotone operators in H. If we take & = § = dj, where j: H —
R,

0, =0,
j(x) ={ * (1.6)

+o00, otherwise,

then D(dj) = {0} and thus (1.5) becomes (1.2). A more general boundary condition can
be found in [4]. Antiperiodic solutions for a particular case of (1.1) are given in [3]. In
[12], another extension of the equation in (1.3) is studied under a boundary condition of
subdifferential type.

As a consequence of [1, Theorem 3.2], it follows that if A is maximal monotone in H,
a,b € D(A), f € L*(0,T;H) and p,r: [0,T] — R are continuous functions, p(t) > ¢ >0
on [0, T], then problem (1.1)-(1.2) has a unique solution u € W>2(0, T; H).

Discrete variants of (1.3) and (1.4) are studied in [20].

In [5], it is shown that the application which associates to {A,a,b} the unique solution
u of (1.3) with f = 0 is continuous in the following sense. Consider the boundary value
problem (1.3) (with f = 0) and the sequence of problems

u, (t) € A"u,(t), ae.te(0,T),

un(0) =an,  un(T) = by, (1.7)

where A, A" are maximal monotone operators in H, a,b € D(A), a,,b, € D(A") with
0 A0NA"0.Ifa, — a, b, — bin H and

(I+MA") & — (I+)MA) ' asn — o, (1.8)

forall £ € H, and for all A > 0, then the solution u, of (1.7) converges to the solution u of
(1.3) (with f =0), uniformly on [0, T].

In [6], we have a similar result on (0, 00). The case of the first-order differential equa-
tions is analyzed in [7, 15]. The continuous dependence on data for the antiperiodic so-
lutions to a class of second-order evolution equations with constant coefficients is given
in [3].
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If A" and A satisfy condition (1.8), we say that A" converges to A in the sense of the re-
solvent. This and other types of convergences of the sequences of operators can be found
in [8]. They are of physical interest because of their applications in the homogenization
theory, singular perturbation problems, convergence problems in optimal control, sto-
chastic optimization, and so forth. In [22], the authors show that in Banach spaces with
some specific properties, the convergence in the sense of resolvent of a sequence (A") to
A implies the convergence of (A}/,) to A/, in the same sense.

In the present paper, we prove that the unique solution u of problem (1.1)-(1.2) de-
pends strongly continuous on the data A, a, b, f. More exactly, we take the sequence of
evolution equations

pu,, (1) +ru,(t) € Auy(t) + fu, ae.t€(0,7T), (1.9)
subject to the boundary conditions
bln(O) = an, un(T) = bn- (110)

Here (A") is a sequence of maximal monotone operators in H, a,,b, € D(A") = the do-
main of A", f, € L*(0,T;H). We show that, under some additional conditions, if a, — a,
b, - binH, f, - f in L?(0,T;H), and (A") converges to A in the sense of the resol-
vent, then the solution u, of (1.9)-(1.10) converges in C([0,T];H) to the solution u of
(1.1)-(1.2).

Using an idea from [1, 2], in the next sections, one uses the weighted space & =
Lé/p(o, T;H), where

?(t)zexp(ﬂ%ds), e [0,T]. (L11)

Therefore, the scalar product in £ is

() = JOT zr% (), v(B)dt Vv € 120, T;H), (1.12)

and the corresponding norm is

T ¥ 12
lu| = (J r—||u(t)||2dt) Yue L*(0,T;H), (1.13)
o p(t)
where (-,-) and || - || are the scalar product and the norm of H, respectively. Actually,

the spaces L?(0, T; H) and & contain the same functions and have equivalent norms. The
difference between them is that the operator

1 ’ p ~ N/

Bu=- —ru =— ,

u=—-pu’ —ru S (*u') (1.14)
D(B) = {u € W**(0,T;H), u(0) = a, u(T) = b}
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is maximal monotone only in & (see [1]). Taking into account this remark, we may write
(1.1) in the form

2|~

(7u'),€Au+f, a.e.t€(0,T). (1.15)

In Section 2, we recall some definitions and results from the theory of maximal mono-
tone operators. The main result is stated in Section 3 and proved in Section 4. The proof
combines an idea related to the case p =1, r =0, f =0 (see [5]) with some techniques
from the existence theory (see [1, 2]). In the last section, we give a numerical approxima-
tion of (1.1)-(1.2) with f = 0 by an internal approximating scheme (see [9]).

2. Preliminaries

Throughout this paper, H is a real Hilbert space of norm || - || and scalar product (-,-).
Denote by “—” and “—” the strong and the weak convergence in all the involved spaces,
respectively.

The nonlinear multivalued operator A with the domain D(A) and the range R(A) is
said to be monotone if (y1 — y2,%1 —x2) = 0 for all y; € Ax;, x; € D(A), i = 1,2. The oper-
ator A is called maximal monotone if it is monotone and it has not any proper monotone
extension. It is known that A is maximal monotone if and only if A is monotone and
R(A+AI) = H for all A > 0 (or equivalently, for some A > 0) (see [13, Theorem 1.2, page
39]). For x € D(A), let A%x be the element of least norm in Ax, that is,

[|[A% | = inf {[|Iyll, y € Ax}. (2.1)

The single-valued operator A? which associates to each x € D(A) the element A%x is called
the minimal section of A. For every maximal monotone operator A, one can define the
resolvent ]y and the Yosida approximation A) of A, namely,

I-])

h=I+MA)"Y A= 1

A>0. (2.2)

The realization of A in L*(0, T; H) is the operator ${ given by
D(sA) = {u € L*(0,T;H), u(t) € D(A) a.e. on (0, T),

3v € L*(0, T; H) such that v(t) € Au(t) a.e. on (0,T)},
Au={v € L*(0,T;H), v(t) € Au(t) a.e. on (0, T)}. (2.4)

(2.3)

If A is maximal monotone in H, then & is maximal monotone in L2(0,T;H). If A,
and ) are Yosida approximations of A and o, respectively, then (A u)(t) = Ayu(t) for
allAl >0,a.e.t €[0,T], foru e L*(0, T;H).

Definition 2.1. A sequence {A"} of maximal monotone operators in H is said to be con-
vergent to A in the sense of the resolvent if

(I+MA") '€ — (I+)MA) '€ asn— o, VEEH, VA >0. (2.5)
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The following characterization of the convergence in the sense of resolvent is true even
in reflexive Banach spaces (see [8, page 365]).

TaEOREM 2.2. If A:D(A) € H — H and A" : D(A") € H — H are maximal monotone
operators in the Hilbert space H, then A" converges to A in the sense of the resolvent if and
only if A" is graph-convergent to A (denoted A" S Aasn— ), that is, for all x € D(A),
and for all y € Ax, there exist x, € D(A"), y, € A"x, such that x, — x, y, — y in H.

We recall now the definition of the Mosco convergence of a sequence of functions and
a result concerning the equivalence between the Mosco convergence of the functions (¢")
and the convergence in the sense of the resolvent of the subdifferential operators (dg")
(see [8, Theorem 3.66, page 373]).

Definition 2.3. If ¢,¢" : H — (—o0,00] is a sequence of convex, lower-semicontinuous,
proper functions, then ¢” is convergent to ¢ in the sense of Mosco (see [7, 8]) if

(a) there exists {x,} C H, x, — x, such that ¢"(x,) — ¢(x);

(b) forall {x,} ¢ H with x,, — x, liminf, .. ¢"(x,) = ¢(x).
THEOREM 2.4. If¢",¢: H — (=00, 0] are convex, lower-semicontinuous, proper functions,
then the following statements are equivalent:

(a) ¢" — ¢ in the sense of Mosco;

(b) (I+10¢™)71E — (I+Ad¢)~YE, for all A > 0 and for all & € H and there exist (u,v) €

09, and (uy,v,) € 09" such that u, — u, v, — v in H and ¢"(u,) — ¢(u).

3. The main result

Consider the boundary value problems

pu’ +ru’ € Au+ f, aete(0,T), (3.1)
u(0) = a, u(T)=0b, (3.2)

pu, +ru, € A"u,+ fu, ae.te(0,1), (3.3)
un(0) = ay, un(T) = by, (3.4)

We now state our basic assumptions:

(H1) A, A" are nonlinear (possibly multivalued) maximal monotone operators in the
real Hilbert space H, with the domains D(A), D(A") and 0 € D(A) N D(A") for
alneN, n>1;

(H2) a,b € D(A), ay, b, € D(A") are given elements;

(H3) f, fu € L*(0, T;H);

(H4) p,r:[0,T] — R are continuous functions, p(t) = ¢ >0 forall t € [0, T].

These hypotheses assure the existence and the uniqueness in W22(0, T; H) of the solu-
tions to problems (3.1)-(3.2) and (3.3)-(3.4), respectively. In addition, suppose that

(H5) if (A™)? is the minimal section of A", then (A")%a, and (A")°b,, are bounded in
H;

(H6) ay — a, b, — binHand f, — fin L*(0,T;H);
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(H7) (A™) converges to A in the sense of the resolvent, that is,
(I+AA") & — (I+MA) ¢, n— oo, VEEH, VA>0. (3.5)
The continuous dependence on data result for the problem (3.1)-(3.2) may now be
stated.

TueoreM 3.1. If hypotheses (H1)—(H?7) hold and u, u, are the solutions of problems (3.1)-
(3.2) and (3.3)-(3.4), respectively, then u,(t) — u(t) uniformly on [0,T] and u, — u’ in
L*(0,T;H) as n — oo,

The proof of this theorem is the purpose of the next section.

Remark 3.2. In [7, Theorem 3.2, page 62 and Proposition 3.7, page 64], the author es-
tablishes some conditions when the sum A" + B” converges to A + B in the sense of the
resolvent. Here A" and B” are supposed to be maximal monotone operators convergent
to A and B, respectively, in the sense of the resolvent.

Theorem 3.1 above is not a consequence of these general perturbation results. Indeed,
problems (3.1)-(3.2) and (3.3)-(3.4) can be written in L2(0, T; H) as

—f € Bu+duy, —fn € B"u, +A"uy, (3.6)

respectively, where o, " are the realizations of A, A" in L*(0, T;H), B is given in (1.14),
and B" is analogous to B, but with a,, b, instead of g, b. It is known that B, B" are
maximal monotone in L*(0,T;H) (see [1]). Moreover, B = dg, B" = d¢", where ¢,¢" :
L?(0,T;H) — (—o0, 00] are defined by

T
2| rol@iPdn we w015, u0) = g, ur) = b,
0

o(u) =
+00, otherwise,
LT (3.7)
") EJ Folluw ()] 'dt, we W20, T;H), u(0) = ag, u(T) = by,
" (u) = 0
+00, otherwise.

We show that ¢" is not Mosco convergent to ¢. To do this, consider u € W'2(0, T; H)

with u(T) # b and

an; t = 0)

Un(t) = 1 bw> t=T, (3.8)
u(t)-f—%, 0<t<T,

where C is a constant in H. It is clear that u,, — u in L?(0, T;H) and liminf,,—. ¢"(u,) <
@(u) = +oco. Thus condition (b) in Definition 2.3 is not satisfied. Then ¢" does not con-
verge to ¢ in the sense of Mosco. Theorem 2.4 implies that d¢" is not convergent to d¢ in
the sense of the resolvent. So Attouch’s results for the convergence of the sum " + B" are
not applicable here, even if #" — o in L?(0, T; H) in the sense of the resolvent.
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A particular case of Theorem 3.1 is obtained assuming that A and A" are subdifferen-
tial mappings and replacing (H7) by the condition

(H7)" ¢" — ¢ in the sense of Mosco.

In this case, we find (in view of Theorem 2.4) the following consequence of Theorem
3.1.

CoROLLARY 3.3. If A = d¢ and A" = 09", where ¢", ¢ : H — (—00,00] are convex, lower-
semicontinuous, proper functions with 0 € D(d¢), 0 € D(0d¢"), then under hypotheses
(H2)—(H6), (H7)', the convergences u,(t) — u(t) uniformly on [0, T] and u,, — u’ in L*(0,
T;H) as n — oo are obtained.

4. The proof of Theorem 3.1

The proof of the main result combines some ideas from [1, 2, 5]. For every given A > 0,
we put

= <I+\/XA>_la, Z) = (I+x/XA)_1b,

(4.1)
—1 -1
YA = (I+\/XA”) a, Zal = (I+\/XA"> b.
By hypothesis (3.5), it follows that
Y — b Zm — 2, A — A asn— oo, (4.2)
forall A >0, and for all £ € H, where A is the Yosida approximation of A”.
Let wy, v1, Wa1, Vix be the solutions of the auxiliary boundary value problems
pwy +rwy € Ami+ f, ae.te(0,T), (43)
4,
wi(0) =y, wi(T) =2y,
pvy+rvi=Awm+f, aete(0,T), (44)
4.4
(0) =, w(T) =2z,
pwiy+rw, € A"wa+ fn, ae.te(0,7T), (45)
4.5
wn(0) = Ynds wr(T) =z,
vi+trv, =Alva+ fu, ae t€(0,T),
PVir = A1 S (4.6)

an(o) = Ynk> Vn/I(T) = Zn)>

respectively. From the general theory recalled in Section 1, we know that each of these
problems has a unique solution in W22(0, T; H).
For every t € [0,T], A >0, and n € N, we can write

||”n(t) - u(t)H < ||un(t) - Wn/\(t)H + Hwn/l(t) - Vn/l(t)”
+ v (8) = (O] + [[va () = ma ()] (4.7)

+{|wa(t) — u(t)|],

= [ < gy —wip |+ Wiy =Vl + [ =l + -+ [wa -] (4.8)
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Recall that | - | denotes the norm in L?(0, T; H). We intend to take the superior limit as
n — oo and then the limit as A — 0 in both (4.7) and (4.8). In order to do this, we estimate
each term in (4.7) and (4.8). One begins with some boundedness results.

LEMMA 4.1. Under the hypotheses of Theorem 3.1, if wyy is the solution of problem (4.5),
then for every fixed A >0,

thUPHW O] = ci([|Azall+[[A bl +[Inll + [l + 1),
(4.9)
hmjuPIIWM (Dl = e2([|A zall + [|A bl | + |2l + |22 + 1),
limsup [wy, | =< c3 ([[A zall + [[A 5] + [l + |22 + 1), (4.10)
limsup [wy) | < ca([[A zall +[[Az0] + [l + |22l + 1), (4.11)
n—oo
limsup [wm | < es([[Azal| +[|A g0l + [0l + |22l + 1), (4.12)
Nn— 00
where | - | ¢ is the norm in C([0, T]; H), that is, |ulc = SUP,c(0,7] u(t)]l.
Proof. One approximates (4.5) by
DWWt Wi, = AWy + Wiy + fo,  ae t € (0,7), @13)

Wn/ly(o) = Ynd> Wn)ty(T) = Zn)>

where Al = (1/w)[I — (I +uA")~']. We show that wy, is bounded in C([0, T];H) with
respect to ¢ and wyy, — wp in C([0, T];H) as u — 0.

One writes the equation in (4.13) as in (1.15), multiply it by (#/p)wy, and integrate
over [0, T], to obtain

T
L ((Pa,) s Wt

T N
:j T (AW W) dt+,4j —||w,,M,|| dt+J p(fn,ww)dt.

0op

(4.14)

Here and everywhere below, we omit the variable ¢ at the functions under integrals.
Without loss of generality, suppose that 0 € A”0. Otherwise, we replace A"u by A"u =
u—(A")°0 and f, by fu = fu + (A")°0. Since A} is monotone, by the above equality

and (H4), we obtain

C|W;1/1,4|2+.“|Wﬂ/\/4| < (D)W (DI - [zl | + W O - [yl + [ ful - [ Wi |-
(4.15)

Since

t
Wt (£) = ym + JO W (S)ds, te[0,T], (4.16)
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we deduce that

T 1/2
||WW(t)||s||yM||+ﬁ(j0 ||W;W||zds> . telo,T], (4.17)
SO

| W | < Cu(llymll+ [wp, |- (4.18)

The constant C; and all the constants below are positive and independent of #, A, and p.
Using (4.18) in (4.15), we find

el Wi | < DN Wi (DI - zaa ] + [, O] - Lyl

+Col ful (lymll+ (Wi, 1)

nhu (4.19)

hence, by virtue of boundedness of f,,

1/2 / 1/2 1/2 / 1/2 1/2
[ WL = Collyamll™ - 11w, O + el - [l (DI + ]+ 1), (420)

We now multiply (4.13) by wn)w and integrate fromt=0tot = T:

[ plwiglFas [ rGuig o, a
T

T r (4.21)

— |, Amig et | o) des [ (s )t

The functions x — Ajlx and t — wy),(f) are Lipschitz continuous, so the application

t— AZW,W(t) is differentiable a.e. on [0, T]. Since x — Ajjx is monotone, we also have
((Aﬁwnw(t))’,w;w(t)) >0a.e.t€(0,T). Then,

(Apwno Win) < (Apwin win) (4.22)
On the other hand,
’r ’ ’ ’ 2 ’ ’
(Waras Wine) = W W) = Wil = (wineo wi,) (4.23)

Now (4.22), (4.23), and (4.21) yield

[ llwig e = (A2 w0, (1) ~ (A4, )

+ #(ZnA,W;AH(T)) - A"t(yn)\)w;t/\‘u(o))

| (o naras) (i)~ | (1 i)

(4.24)
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therefore via (H4),

([iwirar) = ([iairar)

172

T ) 172
(J) Pt

12 12 12 (4.25)
+Ve(llamymll” +yallyml ) 1w, O]
" / / /
+Ve(llagzmll” + allzall) Wi, (DI,
Inequality (4.20) leads to
"\t “CitC (A“)O " 2 " 1/2 W, (0) 1/2
([ v Pa) = 0 Iyl all )i 0 o
a0 172 1/2 1/2 1/2
+ G5 (1A 2" + llzaall ) Wi (DI + Coll ym|
for small 4 > 0. Observe that
a— Ynl n n b_zﬂ/\ n
i =A"ra€ Ay, 7 =A beA Zul. (4.27)
Therefore, we get
n\0 n n\0 n
[y < ||amzal,  ||A") zm]| <478 (4.28)
So, (4.26) gives
dallPde) < Cs+Cu(llAmall” + llyml ) w7
(J, s ) (1%l + Lyl i, O] )
w12 1/2 1/2 1/2
+Cs ([l + llzaall) Wi DI + Coll yml|
To estimate w,,,,(0) and w,,,,(T), we write
, 1 T t
me):T[zm— -], (j W(s)ds) }
, X - (4.30)
Wn)\/,;(T) = ?|:Zn/\_ynl+JO (Jt ”)W( )dS)d :|
Now (4.29) and (4.30) imply
1/2 1/2 1/2
Wi O] < Co (Il yml |+ [1zml]) + Cs ([1a"all" + [l ym] ) [ 1w, (O] s

+ Gy (1Al + [zl ) [, (DI + Cro,
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and analogously for ||w/, (T)I. Hence,

nAu

[woa 1" = Crr (11Aall + 475801 + ym["* + [zl + 1), w3
Wi (DI = Cra(1|A%all ™ + 1A%l + [Lym ]| + [z ]| +1). '
Using (4.32) in (4.29) and (4.20), respectively, we infer that
Wi = Crs(1|A%all +[|A75b]1+ Lyl + llzmal |+ 1), w3
Wi | = Cra(1|A%zall +[A75BI1+ Lyl + llzmal |+ 1) '
The last inequality, together with (4.17), leads to
| wana | ¢ < Cus (1A% gall + 1Al + ymal |+ |zaal] +1). (4.34)
Inequalities (4.32)—(4.34) show that W;M( ) and wnA (T) are bounded in H, Wn)w ;,M

are bounded in L*(0, T; H), and wyy,, is bounded in C( [0 T1;H), all of them with respect
to . By (4.13) we have also the boundedness ofAan;W in L2(0, T;H) (in u).

We prove now that (W;AH)‘M is strongly convergent in C([0, T]; H). To do this, we write
(4.13) for y and v, subtract them, multiply by (7/ P)(Wnhy — Wnry), and integrate over

[0, T']. With the aid of

];lwn/\y +[4A;Wn/ly = Wnw> (4.35)

one arrives at

~

T T
o ;o2 7
— J() r”WM# - Wn)WH dt = JO ; (AZWMH - Af,‘wn,\,,,]ﬁwn,\y — MWy ) dt
Ty
+ JO E(AZW"M' — AT Wi, JAG Wiry — VA Wi, )dt  (4.36)
T n~
»
+ JO E(VWM# — VWlys Wy — Wnly) dt.

Since Aﬁwm\# IS A”(]Ifwnw) and A" is monotone, this implies that

[ b il

r (4.37)

T ~
r
< (y +7) |:L E (Aﬁwn,\ﬂ,AZWn,w)dt + JO » (Wn)tﬂ,wn,w)dt]
The boundedness in L2(0, T;H) of W and AlWmy with respect to y shows that

7 7 2
Wi = Wi |- < KM (), (4.38)
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where K{“)L depends linearly on ||A alls ||A b|| lymll, lzsall and is independent of p

and v. Consequently, () strongly converges in L*(0, T; H), say
Wy, — g inL*(0,T;H) asy — 0. (4.39)

nAu

Now we have the estimate

HW;/\y(t)_gﬂ)t( || ||Wn/1;4 ) gﬂl(tO)H

T ) T , 172 (4.40)
<o [ i -sullae) ([ i -l

with ty € [0,T] such as ||W;M(to) g (o)l = 0 as y — 0. Since (an) is bounded in
L2(0, T;H) with respect to y, one deduces the convergence
Wi — & in C([0,T;H) asyp — 0. (4.41)

nA,

From (4.16) and (4.41), we obtain that

t
W () — Y + jo g ($)ds ™ (1), te [0,T). (4.42)

It follows that h,)(0) = y,1 and hyy is differentiable on [0,T] with k), = g.1. Hence,
w,’w - hy, in C([0, T;H), Wary — hms w;l')w — k) in L*(0,T;H), and h, (T) = z,1. By
(4.35) we get

]:WM/A —hy asy—0in L?(0,T;H). (4.43)

Denoting by B, the operator

12 7 p A
Biu=—-pu —ru =-5(ru’),
=k 7 () (4.44)
D(Bl) = {u € WZ’Z(O) T;H)a M(O) = Ynd> U(T) = Zi’l)t})
we may write (4.13) under the form
_Ban/\y - [/an/\y - fn ed" (}an/ly)) (445)

where }” is the realization of]” in L2(0,T;H), j”u) t) = ]ﬁu(t) ae. te€[0,T] forue
L*(0,T;H).

Observe that —Bywp, — 4Wnry — fu — —Biha — f,. Taking into account the maximal
monotonicity of &" in L?(0,T;H) and (4.43), in order to take the limit in (4.45), it is
enough to prove that

<_Blwn/\;4 — WWnu _fn’}zwnlpo - < Bihu — fm n/1> (4.46)

Using (4.35) and the boundedness of Bywu,, A" Wy, Wary, and }ﬁwm,,, it suffices to
show the convergence

<_BIWM;4 men)Ly) _’< Bihp) — fna f’l)t> (4.47)
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But { fu, Wary) — fu>hnr) and by virtue of (4.41) we get

T
<_BIWM;4>WM/4> = ?(T) (W;M(T):Zn/l) - (W;Ay(O)J’M) - JO ?”W;Ay”Zdt

T
N ?(T) (h;,m(T%Zn)t) - (h:d(o)a)/n)\) — J;) ?”h,,u\szt (4.48)

= ( _Blhnbhm\>~

Thus (4.46) is proved. Now we may pass to the limit as y — 0 in (4.45) and find
that h,y € D(A") and —Bihy) — f, € " hy). Since wy, verifies the same equation, by the
uniqueness one deduces h,1 = wpy. Therefore, wyi, — Wi, w;'w — w/, in L*(0,T;H),
w,’W — w,, in C([0, T];H), wuu(t) — wa(t) for all t € [0,T]. Now (4.9)—-(4.12) follow
from (4.32)—(4.34). The proof is finished. O

We now give a boundedness result for the solution (u,) of (3.4)-(3.5).

LeMMma 4.2. If the hypotheses of Theorem 3.1 are satisfied, then {u,(0)} and {u,(T)} are
bounded in H, {u,,}, {u)} are bounded in L*(0, T;H), and {u,} is bounded in C([0, T];H).

Proof. Consider the boundary value problem

P“;l,y + W;W = Ajuny +pttny + fo, a6t €(0,7),

Una(0) = @y, tyu(T) = by (4.49)

Following the computation from the proof of Lemma 4.1, we get an estimate of the form
(4.20) with a,, b, instead of y,, z,. Since (a,), (b,) are bounded, this can be written as

|t | < ety (O] + ke 1t (T2 + s, (4.50)

where ki, kz, k3 > 0 are independent of # and p.
Similarly, one obtains an inequality of the form (4.26), namely,

gy, < kat ks (1A ][ + [l [ g, 02

(4.51)
+ ke (1A Bl [ + 11l ) 145, (DI + K ][

Hypotheses (H5) and (H6) imply the existence of some constants kg, ko, k19 > 0 (inde-
pendent of n and y) such that

g, | < ksl O] + ko 1t (T2 + ke (4.52)

Next, as in (4.31), one arrives at

|1/2

2, (O)]] = ke ||t (O] + K| (T2 + s, (4.53)

and an analogous inequality for || u;w (T)Il, with all constants independent of n and y. This
provides upper bounds for IIM;W(O)II, IIu;,”(T)II and via (4.50), (4.52), for |5l 114, | By

Uny(t) = an + IOT u,’m(s)ds, t € [0,T], we find an upper bound for u,, in C([0, T];H).



80 Continuous dependence on data

n

Now, as in the proof of the previous lemma, one shows that u,, — s, uy, — u;; in
L*(0, T;H), u;ﬂ - uy, in C([0, T1;H), and up, () — u,(t) for t € [0,T] (as u — 0).

Since [|u;,(0)|| < liminf, o l|u;,,(0) |l and [l (T)|l < liminf, o llu,,(T)l, one deduces
that u/,(0) and u},(T) are bounded in H. Analogously, u),, u], are bounded in L?(0,T; H)

and u, in C([0,T];H), as claimed. O

Using the same method we can state that the solution (v,)) of (4.6) is bounded with
respect to n for any fixed A > 0. Since (4.6) already contains the Yosida approximation A}
of A", we avoid the new parameter y and work directly with (4.6). One obtains estimates
similar to (4.20), (4.29), and (4.32), where || yull, l1zall, IIA"ﬁaII, IIA'&XbII are bounded
with respect to n, for every given A > 0. Indeed, by (4.2) we have the convergences y,) —
oz — 21, Alpa — A ga, Apb — A jzbas n — oo for every A > 0, therefore

sup|[yml|| = By < o0, sup||zm|| = C) < o0,
neN neN

) ) (4.54)
sup||A”yal| = Dy < o0, sup||A";b|| = Ey < 0.

neN neN

These lead to the following result.

LemMAa 4.3. For every fixed A >0, v,,,(0), v, (T) are bounded in H with respect to n, {v,,},
{v/)\} are bounded in L*(0,T;H) and {v,)} is bounded in C([0,T];H).

Repeating the proof of Lemma 4.1 for problem (4.3), we get the following.

LemMma 4.4. The solution wy of (4.3) is bounded in C([0,T];H), w), w) are bounded in
L*(0,T;H) and w}(0), w,(T) are bounded in H.

Now we are going to estimate each term in (4.7) and (4.8). We begin with the following
lemma.

LEmMMA 4.5. Under the hypotheses of Theorem 3.1, for every given A > 0,

1/2 1/2 172

limsup |, — )y | < cs(||Azall" + 1Azl + |3l
o 12 12 12 (4.55)
+lall"2 +1) (lla -l +11b - 2[]"?),

1/2 1/2 ||1/2

limsup |, —win | ¢ < ¢ (||A zall > + 1A bl + |3
o 12 12 12 (4.56)
+lall"+1) (lla =yl + 116 - 21]]"*) +la - .

Proof. Subtracting (3.3) and the equation from (4.5), multiplying by (7/p)(u, — wa),
and integrating over [0, T] by parts, we get via the monotonicity of A”,

T
F(T) (up(T) = wyy (T), by — zm1) — (1,(0) = wiyy (0),a, — ymr) = L Flluy, — wiyll*dt,
(4.57)
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SO

clul, —wiy|* < F(T)|u,(T) = Wiy (T)]] - by — z]|

, , (4.58)
+{,(0) = win (O)|] - l|an = |-
According to (4.9) and Lemma 4.2, this yields (4.55). Next, from
T
Un(t) —wmr(t) = an — ym +J (u, —w,))(s)ds, te][0,T], (4.59)
0
and (4.55), we derive (4.56). O

For the second terms in (4.7) and (4.8), we can also find upper bounds with the aid of
s 2n, A a, A b

LEMMA 4.6. Suppose that the above hypotheses hold and let wp), va be the solutions of
boundary value problems (4.5) and (4.6), respectively. Then

limsup [, = vy | < csvVA(||A zal| + [|A 1Bl + 3] + ]2l + 1), (4.60)
limsup | war = vin | ¢ < csVTA(||A zal| +[|A bl + [yl + |zl [+ 1). (4.61)

Proof. One subtracts (4.5) and (4.6), multiplies by (7/p)(wny — vi1), and integrates from
t=0tot= T to obtain

T o~

T
L ((Fwpp = 7v0) s Wi — vin ) dt = L %(a,ﬂ — AV, Wi — Vi) dt. (4.62)

Here we have denoted for simplicity by a,,) the element pw)) +rw, — f, € A"wy,. Inte-
grating by parts and writing v, in the right-hand side as v,y = J{' v\ + AA}v,), we obtain
via the monotonicity of A",

LT Pllwan = viall*de <2 JOT 1: (et = Afva, Al wi ) dt. (4.63)
This, together with (a, — Afvi, Ajvin) < (1/2) [l am |I?, implies
Lo, ;o2 "2 ;2
[ Fllwia = vialFde < A1+ i P+ [win ), (4.64)
and in view of (4.10) and (4.11), we arrive at (4.60). With the aid of the equality w,\(t) —

v (t) = fot(w,’m —v,,)(s)ds, t € [0, T], we can see that (4.61) is also verified. ]

Analogously with Lemmas 4.5 and 4.6, we derive the following results.
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LemMa 4.7. If u and wy are the solutions of the boundary value problems (3.1)-(3.2) and
(4.3), then for every A >0,

[ =wil =es(lla—ll"*+llb-2l"),

(4.65)
lu—wilc <lla=nll+co(lla=nll"*+lb-z[")
with co, ¢19 being positive constants.
LemMa 4.8. If wy and vy are the solutions of (4.3) and (4.4), then
Wi —v | < eV, [wa—w]c < caVA. (4.66)

Finally, it will be established that v/, — v} and v,y — v) tend to 0 as n — oo, for allA > 0,
in L2(0, T;H) and in C([0, T]; H), respectively.

LEMMA 4.9. Suppose the assumptions of Theorem 3.1 are satisfied. Then, for every A >0,
lim |v); —v{| =0, lim |v, — )| =0. (4.67)

Proof. Subtract (4.6) and (4.4), multiply by (7/p)(vsa — 1), and integrate over [0,T],
deducing thus the equality

T
HT)(via(T) = ATz = 2) = (7 0) = Vi s = 1) = | Fllv =il

T o T r~
r r
= L I;(A’Zm —Ajva, v —wn)dt + JO » (Afvy — Apva,vir —va)dt (4.68)

TN
+J1) %(fn_favml_v)t)dt

or, in view of the monotonicity of A,

c[viy =i |2 < F(D)| v (T) = v (D] - ||z = zall + [[¥1 (0) = v (0)]] - [y = 2l

TF >\ ' )
+[<L ;||Am_Am|| dt) +<J0 ;an—fll df) } (4.69)

T,F 172
2
X(J —||VM—V,\|| dt) .
op

According to the boundedness from Lemma 4.3, this leads to
v =i ” < killlym =l +llzm =21l + [ A = A + [ £ = £1) (4.70)
forall A >0, n € N, where k; is independent of n. By (4.2) we infer that

A (t) — Ayva(t)  uniformly on [0,T], as n — co. (4.71)
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Using this, together with (H6) and the other convergences from (4.2) into (4.70), we find
the first part of (4.67). The second limit is immediate.
The end of the proof of Theorem 3.1. We come back to (4.7) and (4.8) and apply Lemmas
4.5—4.9. Therefore, for small A > 0,

limsup |u, —ul

<3 ([lAmall” +114 8l +all "+ llzal [ +1) (Hla = all ™ + 1o =22l %)
+2lla =yl + s VTAIA zall + 1A 701 + [l + [122][ +1) + e12VA,

1/2

(4.72)

where ¢;3 > 0 is independent of A. A similar inequality is available for limsup,,_, [u;, — u|.

Taking into account the boundedness of A ja and A ;b and the convergences y) —
a, zy — b, we may pass to the limit as A — 0 in the above inequality and conclude that
un(t) — u(t) as n — oo, uniformly on [0, T]. Analogously, ), — v’ in L>(0, T; H) and the
proof is complete. O

5. Internal approximations

In this section, we give a numerical approximation of the solution u of the problem

pu’(t)+ru'(t) = Au(t), 0<t<T,

.1
u(0)=a,  wT)=b, G0
by the solution uy of an internal scheme of approximation.

Suppose that H is a separable real Hilbert space, provided with the scalar product (-, -)
and the corresponding norm || - || and

p>r:[0,T] — R are continuous, p(t)=c>0 Vtel0,T]. (5.2)

Consider the univoque operator A : H — H satisfying the following assumption:
(H8) A is monotone, hemicontinuous, and everywhere defined on H.

Then A is maximal monotone in H (see [13, page 40]), and therefore for all a,b € H,
problem (5.1) has a unique solution u € W22(0,T; H) (see [1]).

Let {e;};2, be an orthonormal basis in H. For any fixed positive integer N, denote by
Py the orthogonal projector given by Pyx = SN | (x,e;)e; for all x € H and let Hy = PyH.
It is known that PIZ\, = Py and Py is selfadjoint, that is, (Pyx, y) = (x,Pyy) forallx,y € H
(see, e.g., [17]).

One defines the operator Ay : D(Ax) = Hy C H — H, Ay = PyA. So, for every Xy =
Pyx € Hy (with x € H), we have AxXy € Hy and

N
AN%N = PNAPN)C = PNA (Z(x,ei)ei) . (53)

i=1
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It is easy to check that, in view of (H8), the operator Ay is monotone, hemicontinuous,
univoque, and everywhere defined on Hy. Consequently, it is maximal monotone in Hy.
Consider now the approximating problem

puy(t) +ruy(t) = Ayun(t), 0<t<T,

un(0) = Pya, un(T) = Pyb. (5.4)

It is clear that (5.4) has a unique solution uy € W>2(0, T; Hy).

Assume in addition that A0 = 0 and A is bounded, that is, it maps bounded sets onto
bounded sets.

We now show that

(I+MAy) 'Pyx — (I+M4)'x (N — ), VA >0, Vx € H. (5.5)

To do this, we put yny = (I +AAx) 'Pyx and y = (I +AA) 'x. Therefore, we get yn € Hy
and

YN — PN)’N +A(PNA)/N — PNA)/) =0. (5.6)

Multiplying by yny — Py y in H, we obtain || yy — Py y 1|2 + A(PyAyy —PnAy, yn —Pny) = 0.
Since Py is selfadjoint, P3 = Py, and Py YN = YN, one deduces that

llyn = Pyl +A(Ayx = Ay, = ) +A(Ayx = Ay,y = Pyy) =0. (5.7)

The sequence {yy} is bounded in H for every fixed A > 0. Indeed, since A0 = 0 and
(I +AAN)~!is a contraction, it follows that

[yl = || +2Ax) " Pyx = (T+24y) "'0|| < |[Pya . (5.8)

Hence, {yn} is bounded in H.

Passing to the superior limit as N — o in (5.7) and using the monotonicity and the
boundedness of A, we find that yy — y in H as N — oo, that is, (5.5) holds.

Using again the boundedness of A and that fact that Py is selfadjoint with P§, = Py,
we can easily show that AyPya and AyPyb are bounded in H. Thus condition (H5) is
verified.

As a consequence of Theorem 3.1, we state the following internal approximating result.

ProrosITION 5.1. Assume that (5.2) holds, A: H — H is a bounded operator satisfying
(H8), A0 = 0 and a,b € H are given. Denoting by u and uy the unique solutions of the
boundary values problems (5.1) and (5.4), respectively, where Ay = PyA : Hy — Hy, the
convergences un(t) — u(t) uniformly on [0,T] and uy — v’ in L2(0,T;H) as N — oo are
obtained.
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