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We formulate and study robust control problems for a two-dimensional time-dependent
Ginzburg-Landau model with Robin boundary conditions on phase-field parameter,
which describes the phase transitions taking place in superconductor films with variable
thickness. The objective of such study is to control the motion of vortices in the supercon-
ductor films by taking into account the influence of noises in data. Firstly, we introduce
the perturbation problem of the nonlinear governing coupled system of equations (the
deviation from the desired target). The existence and the uniqueness of the solution of
the perturbation are proved as well as stability under mild assumptions. Afterwards, the
robust control problems are formulated in the case when the control is in the external
magnetic field and in the case when the control is in the initial condition of the vector
potential. We show the existence of an optimal solution, and we also find necessary con-
ditions for a saddle point optimality.

Copyright © 2006 Aziz Belmiloudi. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The aim of this contribution is the study of robust control problems to describe the phe-
nomenon of vortex structure in the superconducting phase transitions, using the time-
dependent Ginzburg-Landau (TDGL) complex superconductivity model. Such model
was derived by Gor’kov and Eliashberg in [28] from the microscopic BCS (Bardeen-
Cooper-Schieffer) theory [4] for a superconductor with paramagnetic impurities. It in-
volves the real vector potential U for the total magnetic field and a complex phase-field
variable ¢ so that |¢|? = ¢¢ (¢ is the complex conjugate of ¢) gives the relative density of
the superconducting charge carriers (Cooper pairs of electrons), which varies between 0
in the normal phase and 1 in the superconducting phase. The need for ¢ to be complex
is associated with the macroscopic quantum nature of superconductivity. Here we will
be connected with the response of a superconducting material to an applied magnetic
field under isothermal conditions below its critical temperature T, (the transition from
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2 Robust control of Ginzburg-Landau models

normally conducting to superconducting is usually associated with critical temperature).
The time evolution of (U, ¢) is then governed by the following system:

}’]p?_)—(f—lﬂKdIVpU )¢+b(U) - (pb(U))(¢) +pG(¢) =0 in2=Qx(0,T), i
I.1a
p%—U +curl (pcurl(U)) = V(div(pU)) + pR (b(U)(¢)$) = curl(pH) in 2,
subjected to the Robin-type boundary conditions
1 d¢ .
Eﬁzy(p, U-n=0, curl(U)=H inX=0Qx(0,T), (1.1b)
and the initial conditions
$(0) = ¢o, U(0)=U, inQ, (1.1¢)

where the operator b (the covariant derivative) and the function G are defined by: b(U) =
((i/x)V + U), b(U) = ((—i/x)V + U) and G(z) = (Iz|> — 1)z. The domain Q is an open
bounded domain in R? with Lipschitz boundary 9, n is the unit normal to the surface
of the superconductor I' = dQ) and ¢ is an arbitrary real number (the boundary condition
is appropriate for the superconductor interface with vacuum or an insulator if y = 0 and
for the superconductor interface with normal metal if y # 0). R(-) (resp., $(-)) denotes
the real part (resp., the imaginary part) of the quantity in (-) and curl denote the curl
operators defined by (on the (x, y)-plane)

curl(¢) = (aﬁ —%) (¢ is a scalar) -
curl(U) = % - aa—L; (U = (u1,up) is a vector).

H is the applied magnetic field, # is the nondimensional diffusivity and p > 0 is a smooth
function characterizing the vertical shape of the superconducting films and satisfying the
following hypothesis

p€CH(Q) suchthatpy <p<p;and|Vp| <pg, (1.3)

where (pg,p1,pa) are nonnegative constants.

The positive constant «x is the Ginzburg-Landau parameter with x = A/§, where & is
a coherence length describing the size of thermodynamic fluctuations in the supercon-
ducting phase, and A is the London penetration depth describing the depth to which an
external magnetic field can penetrate the superconductor. The parameter x determine the
type of superconducting material: x < 1/+/2 describes type-I superconductors, « > 1/1/2
describes type-II superconductors.
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Figure 1.1. The reaction of a superconducting material.

Most applications of superconducting materials involve type-II superconductors in
high magnetic fields. It is known that for the type-II superconductors, there is a critical
magnetic field which splits into a lower critical field H;. and an upper critical field H,,
(cf. Figure 1.1). For the magnetic fields below Hj. the material is in the superconducting
state and for magnetic field above H,, the material is in the normal state. For the mag-
netic fields between Hj. and H,. the material is in the mixed state. This mixed state is
described by physicists as follows: around some isolated points (called vortices, which are
most commonly arranged in a hexagonal arrangement, see Abrikosov [1]) inside the ma-
terial, the superconducting property is destroyed and the magnetic field become stronger
in the nearby regions surrounding these vortices. While elsewhere, the superconducting
property is still dominant and the field magnetic is excluded. Moreover, the motion of
the vortices depends highly on the magnetization processes of the material (this is the
result of the “Lorentz force”—that is more than anchorage forces of vortices and causes
the displacement of the vortex—on the magnetic flux line carried by the vortex due to the
transport current, e.g.). The motion of the vortices is undesirable, because this motion
dissipate energy and leads to an electric field. So it is very interesting to study the applied
magnetic in order to prevent their motion.

The objective of a robust control theory, which generalizes optimal control theory,
is to compensate the undesirable effects of system disturbances through control actions
such that a cost function achieves its minimum for the worst disturbances, that is, to find
the best control which takes into account the worst-case (maximal) disturbance. More
recently robust control frameworks have been the object of numerous studies either from
a theoretical or from a numerical point of view to some classes of infinite (or finite)-
dimensional linear or nonlinear systems (see, e.g., [5-8, 10, 18, 24-26, 29, 31, 36, 37, 40]
and the references therein).

Various problems associated with the Ginzburg-Landau models in superconductivity
have been studied these last years (the literature on such model is vast, see, for example,
[9, 11-13, 15, 17, 19-22, 30, 38, 39] and the references therein). For the optimal control
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problems associated with the TDGL models, we can mention [14] in which the authors
studied the control of the vortices in superconducting films through the external mag-
netic field. Here, we consider a robust control problem, for the TDGL models with a
Robin boundary condition on phase-field variable, which describes the phase transitions
taking place in superconductors films, in order to take account the influence of noises in
data. Indeed, such perturbations (noises) have the effect of impeding the ability of the
material to become superconducting.

1.1. Assumptions and notations. We denoteby V,, = {U € H'(Q); U -n=0o0n Q} and
V, the dual of V},. We denote by (,)v: v, the duality product between V; and V. For any
pair of real number r,s > 0, we introduce the Sobolev space H"*(9) defined by H(9) =
L2(0,T,H"(Q)) n H%(0, T,L*())), which is a Hilbert space normed by

T 12
(JO ||V||%{r(g)dt+||V||%1s(0,T’L2(Q))> > (1.4)

where H*(0, T, L?>(Q)) denotes the Sobolev space of order s of functions defined on (0, T)
and taking values in L?(Q) and defined by H*(0, T,L*(Q)) = [H™(0, T, L*(Q)),L*(2)]e,
where 6 € (0,1), s = (1 — 0)m, misan integer and H™(0, T,L*(Q)) = {v € L*(2) | d/v/ot}
€L*(92), Vj=1,m}.

Remark 1.1. (i) According to [27], we have the following embedding inequality on V,:
1012 < C(IU1I% + |[div(D)|I7. + [ curlU)][7.), VU € V. (1.5)

(ii) For v € H™$(9), the trace functions of v: 9/v/dn/ on X = 9 Q x (0, T) for an integer
j such that j € [0,r — (1/2)] exist and satisfy d/v/d n/ € H"»*i(X), where ri=r—j—1/2
ands; = s(r — j — 1/2)/r. Moreover the functions v — d/v/0on/ are continuous linear map-
pings from H™*(2) into H"i (Z) (see, e.g., [34, 35]).

If X denotes some Banach space of real-valued functions, the corresponding space of
complex-valued functions will be denoted by & and the corresponding space of vector-
valued functions, each of components belonging to X, will be denoted by X, and we use
Il - llx to denote the norms of spaces X, X or .

We can now introduce the following spaces: W,, = L>(0,T,V,) n H'(0,T,V}), E, =
L2(0,T,V,) nL®(0, T,L2(Q)), W = L2(0, T, ¥ (Q)) n H'(0, T, (#)'(Q)), € = L*(0, T,
#H1(Q)) NL2(0,T,£*(Q)) and L% (Q) = {¢p € L2(Q); |¢| is bounded a.e. in Q}.

Remark 1.2. (i) W and W,, are continuously embedded into C°([0, T],¥2(Q))) and C°({0,
T1,L2(Q)), respectively (see, e.g., [34, 35]).

(ii) Although £%(Q) is a subset of £ (Q)), we equipped this space by the standard
norm of the space £%(Q).
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The weak formulation associated to problem (1.1) is then to find (¢,U) € W X W,
such that

njﬂ p%—(fqu - ichQ divipU)pqdx + JQ pb(U)($)B(U)(q)dx

— iy Lp(/)qdl‘+ L)pG(gb)qu =0, aete(0,T), Vqe #'(Q),

J pa—Uvdx+J pcurl(U)curl(v)dx+J div(pU) div(v)dx (16)
o ot Q Q

+J PR(b(U)(¢)¢)vdx = J pHcurl(v)dx, ae.te(0,T), VvEV,,
Q Q
$(0)=¢o,  UO0)=Uy inQ

1.2. Preliminary results

Definition 1.3. Let J{; and ¥, be two arbitrary sets (whose nature will be stated precisely
at each situation) and denote K = J{; x H,.
A pair (f*,g*) € I is a saddle point of the cost function J on K if

J(f*.8) <J(f*.8%) <J(f.g"), V(f.g X (1.7)

LEMMA 1.4. Let Q C R™, m = 1, be an open and bounded set with a smooth boundary and
let q be a nonnegative integer. There exist the following results.

(1) H1(Q) C LP(Q), for all p € [1,2m/(m — 2q)], with continuous embedding (with the
exception that if 2q = m, then p € [1,+0o[ and if 2q > m, then p € [1,+0c0]).

(ii) (Gagliardo-Nirenberg inequalities). There exists C > 0 such that ||v|» <
ClviI% IvIL58, for all v e HI(Q), where 0 < 6 < 1 and p = 2m/(m —20q) (with the ex-
ception that if q — m/2 is a nonnegative integer, then 0 is restricted to 0).

For the proof of this lemma, see for example Adams [2].

Lemma 1.5. (i) Forallz € C, G(z)z € R.
(ii) For all (z1,22) € C%, G(z1) — G(z2) = (|1z11* + |22 > = 1)(z21 — 22) + z2122(Z1 — 22).

LemMa 1.6. For (@,u) and (y,v) sufficiently regular,
(@) b(w)(g) = b(v)(p) + (u— v)g;
(if) b(u)(9) — b(u)(y) = b(w)(p - y);
(iii) b(u) (@) - b(u)(9) = (/&})|Vol* + [ul*l9]* — (2/%) 9 (V) - u.

The proof of the previous lemmas are immediate.

LemwMmA 1.7. For (u,v,w,X) sufficiently regular,

@) Nl IV IX Ne < CollullF vl +SIVXIE + CoIvim + IvIE) X1, with §
chooses suitably at each situation,

ii L4 L4 L4 L+ = Ll L4 L4 12 2 L4 L4 2>

(i) Nl vl lwlz XN < CullullZllviiz + plIVXIE + CoUlwllz + Iwliz) 117
with y chooses suitably at each situation.
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Proof. (i) By using Gagliardo-Nirenberg inequalities (Lemma 1.4, with m = 2), we obtain
Nl vilzal X e < cllullFnliviie + e llvla X1 +eslivlla X2 | VX122 and then by
using the Young’s formula, we can deduce the result (i).

(i) Nl vl liwlicl X llzs < eollullZa v + e llwll 71X 1.

By using Gagliardo-Nirenberg inequalities, we can deduce that || wllf4 1 X IIf4 <
WL XN + callwllZ X N2 1V X Il 2.

According to Young’s formula, we can deduce the result (ii). O

1.3. Outline of paper. The rest of the paper is organized as follows. In Section 2, we
prove the existence and uniqueness of the problem (1.1). In Section 3, we introduce the
initial perturbation problem and prove the existence and the uniqueness of the perturba-
tion and obtain a stability result. In Section 4, we study the Fréchet differentiability of the
solution operator of the perturbation problem. This property is necessary to develop the
robust control problem. In Section 5, we study the robust control problem correspond-
ing to obtain the saddle point of the cost function J. The functional J is depending on the
disturbance (or noise), the control and the perturbation solution in the domain Q over
the time interval under consideration [0, T]. The robust problem is formulated in two
cases of control: firstly the control is in the external magnetic field and the disturbance is
in the external magnetic field or in the initial condition of the order parameter variable,
secondly the control is in the initial condition of the vector potential and the disturbance
is in the external magnetic field or in the initial condition of the order parameter vari-
able. We prove the existence of an optimal solution (saddle point), to the robust control
problem under consideration, and give necessary optimality conditions. The optimality
system is corresponding to identify the gradient of the cost function that is necessary to
develop a numerical computation in order to solve the robust control problem.

2. Existence and uniqueness of the solution of the TDGL model

The following results concern the existence and the uniqueness of the solution of the
Ginzburg-Landau model with Robin-type boundary conditions on phase-field parameter
(1.1).

THEOREM 2.1. For any (¢o, Up) € L2(Q) x L2(Q) satisfying ol < 1 a.e. in Q and H €
L%(2), there exists a unique solution (¢,U) € W X W, of (1.6) satisfying |¢| < 1 a.e. in 9.
Moreover, the following estimation exists:

1913 + 11Uy, < C(IH o) + 1ol 720y + 10l 2y )- (2.1)

Proof. The proof of this result is obtained by using the same technique as in, for example,
[14, 15]. Here, we sketch only the proof of the existence by using the method of lines.
The uniqueness is obtained by using the same technique as to prove the stability result in
Theorem 3.1.

To begin with, we introduce the following semidiscretized approximation problem: let
N =1 be an integer, let 7 = T/N be the time size, t; = jr, for j =0,...,N. The
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approximation problem is then to find (¢;,u;) € FHHQ) X V,, j = 1,N, such that

’IJ pliz it % qdx — ﬂvch div PUJ)¢1qu+J pb(U;) (¢,)b(U;) (q)dx

- iﬂj P¢jqu+J pG(¢;)gdx =0,
(2.2)

Uj-U;
LIP%VL{)H—J’ PR(Pi—1b(Uj—1) (¢j-1) vdx—f—J peurl (U;) curl(v)dx

+J div (pU;) div(v)dx = J pHjcurl(v)dx,
Q Q

where (¢, Up) is given by (1.6), and H;(+) = (1/7) f,j’;l H(-,t)dt, j =1,N.

We first notice that the first part and the second part of system (2.2) are independent
of each other. The second part of (2.2) is a linear elliptic problem for U; with (U;j_1,¢;-1)
given by the previous step. By using the standard argument we obtam the existence and
the uniqueness of U; € V,,. The first part of (2.2) is a semilinear elliptic problem with
respect to ¢;. By using the regularity of (Uj,¢;-1) and a standard argument, we obtain
the existence and the uniqueness of ¢;.

Prove now, by using the maximum principal, that [¢;| <1, Vj = 1.

Let us consider the following notation: r* = max(r,0) and r~ = (—r)* and then r =
r* —r~. Prove now that if [¢o| < 1 a.e. in Q) then [¢;jl <1, Vj=1a.e. in Q. Suppose now
that [¢; 1] < 1 a.e.in 2, and prove that |¢;| < 1 a.e. in Q. By choosing g = (Igbjl2 - 1)*%
in the first part of (2.2) and by taking the real part we have then

ﬂjﬂp(('gbj'zf_l)d“”{ PM""‘"LP%(%%I)WM
A IR
e[ 21Tl e [ ol (1= 1) =,
(2.3)
where O = {x € Q| |¢;|2 — 1 >0}. This implies (since |¢; 1| < 1)
'7[ |¢] d’” JPde"'JQP'b(UJ)(‘PJ’)|2(|¢j|2—1)+dx
% 2,€2| |¢j|2|2dx+JQP|¢j|2((|¢j|2—1)+)2dx50.
(2.4)

Therefore, we have that |¢;| < 1a.e.in Q.
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Prove now some estimates. First, we take (g,v) = ((p_j, U;) in (2.2), by using the uniform
boundness of the sequence (¢;);>1 and the discrete Gronwall’s formula we obtain the
following estimate

rr:l§X(||¢j||iz+||Uj||iz)+T > (195117 + Il div (U)[[7 + [l curl (U;)]17)
o J=LN (2.5)

2 2
C(I1gollz: +11Usllz: +1H1172(9))-

By taking now (gq,v) = (1/7)( ¢] ¢i-1,U; — Uj_1) in (2.2), by using the uniform bound-
ness of the sequence (¢;) ;> and the discrete Gronwall’s formula, we have

2

2
T Z ( —¢j-1)|| + %(”j_uj—l) )
j=1LN L2 12
+ 30 (951l + 1 div (U [1: + | curl (U)]I72) (2.6)

j=LN

2 2
< C(II¢oll7 +11Uo|[F + I H 122 ) )

By using (2.2), Green’s formula, the estimates (2.5), (2.6), the uniform boundness of
(¢j)j=1, and Lemma 1.4 we obtain the following estimation:

2

1
;(Uj_Ujfl)

%((Pj —9j-1)

H'(Q)

51

j=LN

y
Vi (2.7)

2 2
< C(II¢oll7 + 1 Uo7 + I H 122 ) )

The proof of theorem can be completed by standard convergence arguments (see, e.g.,
[32]), by taking advantage of the above estimates and by using the continuous mapping
from %€/2*(Q) into £2(I), 0 < s < 1/2, see, for example, [34, 35] (to pass to the limit in
term [ p¢;gdl). O

Remark 2.2. Throughout the paper, we suppose that the hypotheses of Theorem 2.1 are
satisfied, to ensure that the solution of problem (1.1), is in (W N £*(2)) X W,,.

3. Studying the perturbation problem

In the following, the solution (¢, U) of problem (1.1) will be treated as the target func-
tion. We are then interested in the robust regulation of the deviation of the problem from
the desired target (¢, U). We analyze the full nonlinear equation which models large per-
turbations (¢@,u) to the target (¢, U). Hence we consider the following system (for (¢, U)
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given satisfying the regularity of Theorem 2.1):

npg—(f — inxdiv (p(u+U))g — inkdivipu)g + b(u+U) - (pb(u+U))(g)
+(b(u+U) - (pb(u+U)) = b(U) - (pb(U)))(¢)
+p(G(¢p+9) - G(¢)) =0 in,
P2+ curl (peurlw)) - ¥ (div(pw)
+pR(b(u+U)(p+¢)@+) — b(U)($)) = curl(ph) in2,

subjected to the Robin-type boundary conditions

1 d¢ .
S = ug, u-n=0, curl(u) =h inZ,

and the initial conditions

¢(0) = 9o, u(0) =uy in Q.

If we set F(¢) = G(¢ + ¢) — G(¢), B(u) = b(U +u) then (3.1) is reduced to

ﬂP% —inrdiv (p(u+U))g — inkdiv(pu)¢
+B(w) - (pBw) 9+ )+ pF(g) = B(0) - (pB(0))(9) in9,
P2+ curl (peurl(w) — ¥ (div(pw) + PR (B g + ) 9+ 9))
— pR(BO)($)P) +curl(ph) 9,

subjected to the Robin-type boundary conditions

1 d¢ .
el 1 u-n=0, curl(u) =h inZ,

and the initial conditions
¢(0) = ¢o, u(0) =uy in Q.

Now we give the weak formulation associated to problem (3.2).

(3.1a)

(3.1b)

(3.1¢)

(3.2a)

(3.2b)

(3.2¢)

Multiplying the first part of (3.2) by g € #'(Q) and the second part by v € V,, and
integrating over Q) gives (according to the third part of (3.2)) the weak formulation
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(a.e. t€(0,T))

0
nJﬂpa—(fqu —ink JQ div (p(u+U))pqdx — imcjﬂ div(pu)pqdx — iu Lp(pqdl"
+ [ pB(g+ PBG@dx+ | pF(g)gdx = | pBO@BON@dx,
Q Q Q
J ov . .
p—vdx+J pcurl(u) curl(v)dx+J div(pu) div(v)dx
o ot Q Q

+ J PR((@+¢)B(u)(p+¢))vdx = J pR(PB(0)(¢))vdx + J phcurl(v)dx,
Q Q Q

(9(0),u(0)) = (@o, o).
(3.3)

3.1. The existence and the stability results. Now we show the existence of the solution
to the problem (3.3).

THEOREM 3.1. For any (@o,up) € L%(Q) X L2(Q) and h € L*(2), there exists (¢,u) €
(W NEL=2(Q)) x Wy, solution of (3.3). Moreover, the following estimation exists:

o1y + iy, < C(1I1AI1Z:0) + 19ol[22ay + ol 2 )- (3.4)

Proof. The proof of this result is a consequence of the result of Theorem 2.1, so we omit
the tedious details. O

Next we will establish a stability result which gives us uniqueness of solution of (3.2)
as a corollary.

THEOREM 3.2. Let (uo1, po1,h1) and (g2, 9oz, ha) be functions of L(Q) X L% (Q) X L*(2).
If (u1,01) € W, X (W NEL2(Q)) (resp., (2, 92) € Wy, X (W N L2(D))) is solution of (3.3)
with (@o1, o1, 1) (resp., (@02, Uoz,h1)) the given data, then the following estimation exists:

ol + ulldy, < C(Ilgollz +lluol 72 + 1AllE: o)), (3.5)

where ¢ = @1 — @2, = Uy — Uz, Yo = Po1 — P02, Uo = Ug1 — Ugz, and h = hy — hy.

Proof. Let (@i, ui, 9oi» Uoi» hi)i=1,2 be two solutions of (3.3) with (@i, 4oi)i=1,2 the initial data
respectively. We denote by ¢ = ¢1 — @2, u =ty — 2, P9 = P01 — Qo2, Uo = o1 — Uoa, and
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h = hy — h,. Then the couple (¢, u) is solution of

0
qjﬂpa—fqu—in;c(J div(pUz)(pqu+I div(pu)(/)lqu) —iprgoqu
J pB(u1)(9)B(u1)( q)dx+J pugB(uz)(q)dx
+JQpB(u1><¢z>uqu+jopw(gol) - Flg:))adx =0,
J p—vdx+J pcurl(u)curl(v)dx+JQdiv(pu)div(v)dx+L}p%(@B(ul)(¢1))vdx

+J p%(@zB(ul)(go))vdx+I u|¢2|2vdx=J phcurl(v)dx,
0 0 0

((P(0)> M(O)) = ((P0> ”0)7
(3.6)

where U; = u; + U and ¢; = ¢; + ¢, for i = 1,2 (according to the regularity of (¢;, ;) and
(¢,U), the couple (¢;, U;) isin (W N L2 (L)) X W,,).

By choosing (g,v) = (¢,u) in (3.6) and taking the real part of the first part of the
system, we have (according to Lemma 1.5 and to the expression of F)

dlel?
UJQP 0

; l|‘ dx+11KJ div(pu)ﬁ((p@)dxﬂ—J’ pB(u1)(9)B(u)(@)dx
Q Q
+L)pugt(gsz(uz)((p))dx+Jﬂpu%(B(ul)(¢2)¢)dx
+J (|¢1|2+|¢z|2—1)l<p|2dx+J PP ($162()2)dx = 0,
J p32|al de+J p| curl(u)] dx+J div(pu) div( u)dx+J PR (@B (u1) (¢1))udx
+L2pgi ¢,B(u1)(9)) u+JQ|u| | ¢ | dx=L2phcurl(u)dx,
(9(0),u(0)) = (@o, o)

(3.7)

and then (according to hypothesis (1.3), Lemma 1.6 and to the regularity of ¢, (¢;)i=1,2,
that is, in £*(9))

dllgllf:
2dt

SCIJQ|div(pu)||<p|dx+czjo|U1||¢||Vq)|dx+63j 1+|U1| )pl2dx

1Po + %Ilvfplliz

+c4L2(|v¢2| U+ |U1|)|¢||u|dx+c5JQ|V¢||u|dx,
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dllulli,
2dt

< cﬁ(LM | div(u)|dx+JQ|h| | curl(u)|dx) +C7JQ|M||(p|(|V¢1 |+ Uy |)dx

Po +po [l curl ()l [7: + [l vz

+CSJ \u||V¢|dx+c9J ul2dx,
Q Q

(9(0),u(0)) = (o, uo).
(3.8)

According to the regularity of U, ¢;, and by using Young’s inequality, we have then for all
d>0andy >0 (since H! C L*),

dllell?.  po 2
mpo— g+ 2||V(P||L2
< 8|l curl(u)| [} +[[ vl ) + L2 1991 +ciol| U4 gl Vgl
+611(|\U1||i4+||Uz||i4)||¢||%4+clz||u||L4||¢||L4||V¢z||p+cla(llfplliz+IIuII,Z_Z),
dllull?. 2
PO g + po (|| curl )7, + | div(w)][}. )

= B ((lcurl @ [ + | div(w)|I5:) + vl Vol + cualll1:

+asllulz ol (119l + Ul ) +eis (g3 + lull3.),
(¢(0),u(0)) = (9o, uo).

(3.9)
By using Gagliardo-Nirenberg inequalities (Lemma 1.4), we have
d
2 (g3 + ) + 19 132 + (1l curd(w) . + | divia) 1)
< el e (1 1V + 19) (gl lulE)

+c19 (|| Ul + 1| Ual [ + [0 + ||U2||i) lpllzz
(9(0),u(0)) = (¢o, o).

Since Uj, i = 1,2, are in L®(0, T,L2(Q))), by using again Gagliardo-Nirenberg inequalities,
we can deduce that (by integrating over (0,) for t € (0,T))

t t
loll2, + lull +J0 ||V<,o||§2als+J0 (Ilcurl(w)[[7 + || div(w)|l}. ) ds

t
2 2 2 2
< [ (14100l +1gall + 101G+ NCaIE ) (Ul + ) s 1D

+ e (llgollf + ol 2 + 1Al 0))-
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Gronwall’s formula implies

gl + l12l13, < C(Ilgollz: + [fuollZ: + l2o) )- (3.12)

By using (3.6), Green’s formula, the estimate (3.12), and Lemma 1.4, we can deduce the
result of the theorem. O

According to Theorem 3.2, we have the following result.
CoROLLARY 3.3. The solution of problem (3.3) is unique.

We are now going to study the differentiability of the operator solution of problem
(3.3).

4. Differentiability of the operator solution

Before proceeding with investigation of the Fréchet differentiability of the function % :
(9o, 1o, h) — (¢,u), which maps the source term (o, ug, h) € £2,(Q) x L2(Q) x L*(2) of
problem (3.3) into the corresponding solution (¢,u) € € x E,, we study the following
problem (%;): find (y,w) € € X E, such that (V(q,v) € #'(Q) x V,,and a.e. t € (0,T)):

)

n sza_vt]qu - imcL2 div (pUy)ygdx — imcLz div(pw)$1gdx — iy prq dr
+L)P(B(u)(llf)+¢>1W)E(u)(q)dx+JQpB(u)(gbl)wqu
+[_p(Cloi I = v+ gip)adx o,

ow _ ' B
J pfvdx+f pcurl(w)curl(v)dx+J dlv(pw)dlv(v)dx+J PR (WB(u)(¢1))vdx
Q ot Q Q Q

+J p(R($1B(w)(y)) +w| ¢ |2)vdx = J pkcurl(v)dx,
Q Q

(v(0),w(0)) = (yo,wo),
(4.1)

where Uy = U+uand ¢ = ¢+ 9.
Remark 4.1. The problem (P;) is the weak formulation of the following problem:

Wp(?’)_li/ — ink(div (pUs )y +div(pw)$1) + B(u) - (p(B(u)(y) +d1w)) +pB(u) (d1)w

+p(2le] =1y +4iy) =0 in,
p%:/ +curl (peurl(w)) + V (div(pw)) + pR (¥B(u)(¢1))

+p(R($1Bw)(v)) +w|¢1|?) = curl(pk) inQ,
(4.2a)
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subjected to the Robin-type boundary conditions

1 oy .
- n = = 4.2b
i Y, w-n=0, curllw) =k inZ, ( )
and the initial conditions
(W(O),W(O)) = (WO)WO) in Q. (42C)

TaeEOREM 4.2. If (u,¢) and (U,¢) are in W, X (W N L>(2)), then
(i) for any (yo,wo,k) € £2,(Q) x L2(Q) X L*(2.), there exists a unique couple of func-
tions (y,w) € € X E,, solution of problem (Pr), such that

Iyl + 1w, < Ce(llwollz: + lwoll7: + 1KlIZ: o)) (4.3)

(i) let (Woi, woirki), i = 1,2, be two couples of € £2,(Q) x L>(Q) X L>(2). If (v, w;) is
the solution of (P1), where the initial condition is (yoi, woi), i = 1,2, then

1 =yl g+l w1 —wal [, SCe(Hl//m *1//02||iz+)|W01*W02||iz+||k1*kz||iz(gz))- (4.4)

Proof. (i) The existence of the solution of (%) is obtained in the same way as to prove
the Theorem 2.1 and by using the regularity of (U, ¢;). The uniqueness is a consequence
of the estimate (4.3) (since the problem (%) is linear).

To prove the estimate (4.3), we put (¢,v) = (¥, w) in (P;) and we obtain

n JQP%de —inK JQ div (pUy) |y |2 dx — ink JQ div(pw) ¢ wdx
- iyjrplwlzdf+ sz | B(u)(y) |2dx+ IQp(B(u)(gbl)WnL ¢1B(u)(y))wdx

+Jﬂp((2|¢>1 = DIyl + i@ dx =0,

Jﬂpa‘zglz dx + Jﬂp | curl(w) | dx + L} div(pw) div(w)dx + JQpEJR(VB(u) (¢1))wdx

+J p(%(aB(u)(l//)) +wl ¢ lz)wdx = J pkcurl(w)dx,
Q Q

(v(0),w(0)) = (yo,wo).
(4.5)

By taking the real part of the first part of previous system, by using the same technique
as to prove the stability result and the regularity of (U, ¢1) (so we omit the details), we
obtain the estimate given in (i).

(ii) Since the problem (%) is linear, then the result (ii) is a consequence of the estimate
(4.3). (]
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We are now going to study the Fréchet differentiability of J.

THEOREM 4.3. (i) Let o, 90 + f € L% (Q) and (ug,h) € L?(Q) X L*(2) with F (o, uo,h)
and F (@ + B, up, h) being the corresponding solutions of (3.3). Then

1% (o + B, o, h) — F (o, o, h) — Fyy (9o, o, B) Bllig g, < ClIBIE, (4.6)

where % (q)o,uo,h) $2(Q) — € X E, is a linear operator, and (y,w) = @fp(q)o,ug,h)ﬂ is
the solutzon of the problem (1) satisfying (y,w)(t = 0) = (3,0) and k = 0 (denote this
problem by (Pgp)).

Moreover, for all X,S = ((po,,uol, = 582 (Q) x L2(Q) x L*(9), i = 1,2, the
following estimate exists: ||¢:F(Xh B — F( Xh )BlIZ g, < CelllBlls| |Xh||§£2><L2><L2(81) +
1811 1| Xn ll g2 x12x12(2) ), Where 9o = Qo1 — Po2, th = thor — ton, B = hy — hy and Xj, = X(l)
X\,

(ii) Let uo, up +z € L2(Q) and (9o, h) € L%, (Q) x L*(2) with F (@, ug,h) and F(¢o, uo
+ z,h) being the corresponding solutions of (3.3). Then

||F (po, to + 2, h) — F (9o, uo, h) — F, (9o, o, 1) 2|, < Cllzl2, (4.7)

where F,, (9o, to, h) : L2(Q) — € X E,, is a linear operator, and (y,w) = F,,(¢o, uo, h)z is the
solution of the problem (P) satisfying (w,w)(t = 0) = (0,z) and k = 0 (denote this problem

Moreover, for all XLEI) = (@oi> toi-hi) € LA (Q) x L2(Q) X L*(Q), i = 1,2, the following
estimate exists:

2
|, (x")z - F1(x2)] . s

= Ce(”Z”LZ||Xh||ggzxszL2(g) + ||Z||i2||Xh||§gz><Lz><L2(gz)))

where Po = Qo1 — Po2, Up = Up1 — U2, h= h1 — hz and Xh = X;(ll) —X;(lz).
(iii) Let h,h+ f € L*(2) and (@o,u) € £%(Q) x L2(Q) with F(¢o, uo,h) and F (g,
ug,h+ f) being the corresponding solutions of (3.3). Then

||9;((P0)u0>h+f) - 9‘:((POJ/lO)h) - 9;;,((P0>u01h)f||fg><]3n = C”f”:zéz; (49)

where F) (o, uo,h) : L*(2) — € X E,, is a linear operator, and (y,w) = F, (po, o, h) f is the
solution of the problem (%) satisfying (w,w)(t = 0) = (0,0) and k = f (denote this problem
by (Prn)).
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Moreover, for all X,Si) = (@oi> toirhi) € LA (Q) x L2(Q) X L*(Q), i = 1,2, the following
estimate exists:

o‘" WY ¢ g (v @) £
HJ"h X, )f J"h(Xh )f €xE, (4.10)

<C, (”fHLZ Q)||Xh||gzxszLz + ||f||L2 HXh”SBZxLZxLZ(Q),))a

where Po = Qo1 — Po2, Up = Up1 — U2, h= h1 — hz and Xh = X;(ll) —X;(lz).

Proof. According to Theorem 4.2, the problems (Pgp), (Pry), and (Ppp) have a unique
solution in € X E,,.

(i) Let be (¢, u) = F(¢po,uo,h) and (¢p,up) = F(@o + B, o, h). From the stability esti-
mate in Theorem 3.2, we know that

llos — 9l +lug — ully, < ClIBIZ.. (4.11)

E,

Denote ¢g =@ — ¢, Us=ug—u, Uy = U+u, ¢y =d+¢, 9* = ¢ — v, u* = Ug —w.
It is easy to see that (¢*,u*) satisfies the linear problem (a.e. t € (0,T))

e
ik L) div (pUy ) g* qdx + L) divipu*)$rgdx+ JQ div (pUp) gpq )
—iyjrpgo*qdnj p (1" + B(w) (9 ) + Upgrg) B(w) (g)dx
+LpU/s(Uﬁ¢1+B(u)(¢ﬁ)+Uﬁ¢/3)qu
v [ B qds | p((165°+22Gi00) g5+ 911 51)ads
+|_p(@19117 = 1g* + (91)'97)adx =0,

JQ s JQ pcurl(u*)curl(v)dx+JQ div(pu* ) div(v)dx
+Jop9{(¢_ﬁB(u)(¢ﬁ))vdx
+ [ pUs (23 Gigg) + 165 )ve+ [ pREBG9") +57Bw) (p0) v

+J pu*|¢1|2vdx=0,
Q

(¢*,u*)(0) = (0,0) in Q.
(4.12)
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By choosing (g,v) = (¢*,u*) in (4.12), we obtain (a.e. t € (0,T))

e g— . : —
njﬂp ;pt gu*dx—inK(Jlev(pU1)|<p*|2dx+L)dlv(pu*)gblgo*dx
+ L} div (pUp) ¢ﬁ§0_*dX>

—i | plg* AT+ | p(u” g+ Blu)(p*) + Upgy) Bl (g™

+ JQPUIS(UM[’I +B(u) (¢p) + Updp) p*dx + JQPB(u)(%)u*sT*dx

# | p(C1ga 12215 85+ 91199179

+J P((2|¢1|2—1)|(P*|2+(¢1<p_*)2>dx=0,

0

[ P25 e [ pleurt) e [ divipu)diviayde+ [ o (gBl (9y)ud
szat x+0pcuru x lepu w(u™)dx Qp ¢pB(u)(¢pp))u™dx

+ JQPUL?<2%(E¢18) + | gl 2>u*dx+ J'QpQR(EB(u)((p*) +@*B(u)(¢1))u*dx

+J plu*|2|¢1|2dx=0.
Q

(4.13)

Since ¢; and ¢p are in £*(2) and according to hypothesis (1.3) and Lemma 1.6, we have
(by taking the real part of the first part of previous system)

dllg* |7
2dt

< C(L2 | diV(Pu*)||g0*|dx+JQ | diV(PUﬁH |¢B| |§0*|dx

1o +%||V<p*||§z

+ | Qw1+ 10l 1651 1B ") dn
+L2 | U1|2|(p*|2dx+L2|U1||¢*||V<p*\dx
+ [ 1UB (U + B (99 1) g7 1

+JQ |Bu) () | \u*||go*|dx+L2 |¢/3|2|(p*|dx+JQ|¢>*|2dx>,

dllu* Iz
2dt

SC(JQW*I | diV(u*)|dx+JQ|u*|2dx+JQ | 6g | | B(w)(p) | 1 1dx

po +po|eurl(ue) I + || divu)[ 1)

+L2 | Us| | ¢l lu*ldx+JQ(|B(u)(go*)| +19* || B(u)(¢1) |)u*|dx(), |
4.14
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and then

dllg* 17
2dt

1po +gllv¢*lliz

< C(11Uslli 18 19% e + 1 e g 12 + g™ 12 + [ U sl e Vg 12
+Ui [ llp* 112
+ (1110 ) (e + 1015 + 1115 ) + 11Ul 0l ) 1% s
+ (1l + 11Ul gl ) g™l

+ (N0l + 11 g ) ™ e las* s + 11l 1)

dllu* It
2dt

< (M o divC s+ o 13+ 118glLe (16881 + 101 gl

Po + po (| curl(u*)| |7, +| div(u*)1% )

+ 11Ul gl e s + Tl e (™ o + ULl @™ D)

e s (9 + 1Ol ) g™ Hae)-
(4.15)

By using Nirenberg-Gagliardo inequality and Lemma 1.7, we have then

e I 2219 1, < 2 (feurta vt ) + 25 19 1
o (1+ U+ el + U7 (12 + D™ 113:)
6 (1 11Ul + gl ) (11 12 + 9™ 113:)
o 5[ | Ul 10l 12 + cal |0l [ 11Ul 112 + € (1117 + 1 Ul 1),

o e o leuri . + v ) < B2 (heurit I + v )

+ D1V 13+ e (1+ 10 + 1l 1+ U115 ) (11 + 19 1)

71l N gl +cs (Nggllze + 11Ul )-
(4.16)
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By adding the first part and the second part of (4.16) and integrating in time, we obtain

t
g I3+ 112113 +L (9™ 2.+ [ eurl(w)| |7 + || div(u*)| 1. ) ds
t
<o || (141U + 1l +108 L+ Ul o+ il ) (1 2 + ¥ ) s

o [, (11081 +11gsl) (19l + sl )+ [ (gl gl s
(4.17)

By using again Nirenberg-Gagliardo inequality, we have (since all functions in previous
result are in L (0, T,L*(Q)))

t
(™13 + Il 113:) + jo (V™ 112 + [ curl(w) |7, + || div(u*)[[}. ) ds

< [[ (1410 + 119l +1081 5 + 195l ) (1 1 + g 1) s (419

2 (1188 Up) e, + 11 (85 Up) s, )-

Using now Gronwall’s formula and the stability result (4.11), we can deduce that (since
all functions in previous inequality are bounded in L?(0,T,H'(Q))) [I(¢*,u*)ll¢xE, <
| B1132%. Therefore, we have the first part of (i).

Prove now the second part of (i).

Let (@oi, uoi, hi) be in L% (Q) X L2(Q) X L*(2), i = 1,2, (given) and (y;,w;) =
uoj,hi) - S be solution of (Prp) (we denote by (¢, u;) = F(¢oi, tioi, hi) and by (¢, u)
@2, U1 — Uz)).

Set (y,w) = (y1 — w2, w1 — w2), (@0, o, h) = (o1 — Po2, o1 — oz, hy — h2), Uy = u;j + U
and ¢; = ¢; + ¢, (i = 1,2). According to the equations satisfied by (y1,w1) and (y2, w,) we
have (V(q,v) € #'(Q) x V, and a.e. t € (0,T)):

F (§00i,

f
((Pl

0 . .
nJﬂpa—l/;qu - ii’]KJQ (div (pUn) w + div(pw)¢r) gdx
- iﬂKJQ (div(pu)y, +div (pw,) @) qdx
- iyJFqudF+ Jﬂp(B(uz)(w) +uyy + owi + ¢w) B(uz) (q)dx
+ |_p(BGn) (v) +wig)ugdx+ | pBlur) ($1)wadx
Q o
+ | p(B(w) (@) +ugr)wqdx
Q
+[ p(Clgi )" = Dy gip)gds

+ | p(2(lgP 2992y + 961+ $2)Tr)adx = O,
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L) p‘;—”:vdx i JQ peurl(w) curl(v)dx + JQ div(pw) div(v)dx
+ | p@RTBn) (9)) + w41 vdx
[ PR (Bl )+ ) + 9B () () vl

+ Jﬂp%(%(B(uz)(¢) +udy))vdx+ Jopwz(|¢|2 +2R (p¢2) ) vdx =0,

(4.19)

Putting (¢,v) = (¥, w) in (4.19), we have then

oy _ . . _
1 Jﬂpa—fy/dx - imcjﬂ (div(pU,) ly > + div(pw)d, ) dx
- imcjﬂ (div(pu)y +div (pw2) @) wdx
e[ plyPar [ p(Blus) (y) +ups + gwi + 92w) Bl (W)
# | p(Bn) () +wignupdrs | pBlun) (41)wdx
0 0
+ | p(B(w) (9)+ ug)wapdx
0
v pCIai? - Dy gt

(4.20)
v [ pUIgl + 296y + (1 + 62) V) Fdx =,

J of a|zgt|2 dxt J P leurl(w)[*dx+ JQ div(pw) div(w)dx
*JQP(WWBM)(@)) +wl¢i]*)wdx
+ JQP%(@(B(Mz)(w) +uyn) + 9B () (1)) wdx
¥ Jﬂp%(%(B(uz)(so) ) wdx+ L)"Wz(“”'z 29 (o) welx = 0,
(y(0),w(0)) = (0,0).

By taking the real part of the first part of previous system, we obtain (since (¢;)i=1,2, ¢ are
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in £%(2) and according to Lemma 1.6)

dllyliz
2dt

+ IV v,
< C(lIwlan iyl + il [yl Il + ol Il e
+ (gl U2l llze) (lellze g el wal L @l Iwllze + Ul le)
lullzelylles ([wil o+ L+ 1T lyall)
iyl llwll s (||¢1||Hl + ||U1||Lz)
+|[wa | llw s (gl + | U2 s ll@lla + el 2) + w12

+[yallsllgles Iyllzs ),

dllwllp
2dt

po + po (|| curl(w)| |7, + || div(w)|[7. )

< B (Il curlw)| I3+ div(w) 13:)
+ Clwllzs Iy lles (161110 + (1012
+Iwllze (14 g e+ U2l s + el [yl )
+wllzelgllze (vl + 10l gl e+ el )

+ Iwll el [yl [ (1021 llplls + il + lullz2 ).
(4.21)

By using Lemma 1.7 and Young’s formula, we can deduce that

dlylif
2dt

+ B Ivyi

= P9yl + B (Il curlw) [+ divow)][7:)
+eollyllz (1+ ||Vl + | Ual[1)
eyl (1180 UD i + 1@l + 1y wn) [z + 1l (s w2) )
(1411900l ) 1wl + el (e (1l yawi) [z + 1w wa) 1)
+ ca([1(@o)l i (1w wi) [ + 1| (waowa) 130 )

+||(<P,u)||§11 (||(1//1>W1)||L2 + ||(1//2)W2)||L2))’
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dllwlif.
2dt

Po + po( || curl(w)] [, +[ | div(w)| 1)
< B (llcartowl[F: + lldivOmZ:) + £ 1913 + esliwlo: (1+ 1021 + U211
+collwllez (11(@n UD I + 1l + 1l waswn) [ + (1w wa) )
67 (1111, UD i + 1Tal[1) 11,
+ csll(@ a7 (11 wa w5 + 1l (s wa) 1)
+ 6o (116l (11w w770+ (wa w2) [711)

1@z (1w w) [l + 1 (w2 w2) 1) )-
(4.22)

Integrating over (0,t) for t € (0, T) and using Theorems 3.2 and 4.2, we obtain then (since
(¢i: Ui)) (Wi)wi)y i=12, and ((P)u) are in L* (O) T)LZ(Q)))

2 t
apolly s+ 5 [ 19y 1R.ds
t
< 2 Iyl 2 j (Il curl(w)l 2, + || div(w)| 2, ) ds
t
veio | Iyl (1+ ][Vl ) s
t
+cuj0 Il (1160 D + 1@l + 1wl +1 (g2 wa) [ ) ds
! 2
ten jo (1 10 U 0 ) Iwli3ads + s (1132 1B + 1B 1],
t
polwli +2po | (IlcurlOn [} + [ div(w)l . ) s
t
S%L(||curl(w)||iz+||dlv ) ds+ 2 J IVyl3.ds
t
v | Iwlie (141121, ) ds
t
s [ Il (1160, 01 e+ 10+ 11y B 1 wn) s s

+ci6 jo (141160, UD [ +1Ul[32) Ny l2ads + ey (XT3 1812 + 1812 X2 ),
(4.23)

where Xj, = (@o, o, h).
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The previous statements lead to
‘ 2 2
lyllE +lwlif + L (1712 +[] curl(w)| |7, + || div(w)[|7. ) ds
t
<crs [ (I IwIE) (141191, U 5+ 1021 ) s

t
+qgj0 (2 + IwiiZ:) (1o )l + 11 iown) [+ 1 (wasw2) 15 ) ds

+ oo (IXIE NI + 1BI 1] 2)-
(4.24)

According to Gronwall’s formula, we can deduce the second part of (i) (since (¢;, U;)i=1,2,
(¥i,wi)i=1,2 and (¢, u) are in L2(0, T,H'(Q)))).

By using the same technique to prove the results of (i), we have the result of (ii) and
(iii). So, we omit the tedious details. O

5. Robust control problem

The objective of the robust control problem is to find the best admissible control in the
presence of the worst disturbance which maximally spoils the control objective. We for-
mulated the problem in two situations: firstly the case where the control is in the external
magnetic field and secondly the case where the control is in the initial condition u, (data
assimilation).

5.1. The control in the external magnetic field. In this section, we consider two situa-
tions: firstly the case where the worst disturbance is in the external magnetic field 4 and
secondly the case where the disturbance is in the initial condition ¢q.

5.1.1. Distributed disturbance in the external magnetic field. We suppose now that the
value h is decomposed into the disturbance f € L?(2) and the control g € L*(2), that is,
h = f +g. So the function (¢,u) is assumed to be related to the disturbance f and control
g through the problem (3.3) (V(g,v) € #'(Q) X V,and a.e. t € (0,T))

n L}p%—fq dx — ichQ div(p(u+U))pgdx — imcL) div(pu)pqdx — iu Lpgoq dr
+ | pBa(o+$)B@)dx+ | pFig)dx= | pBO)(@)BO) ),

Q Q Q
sz%vdx + L}pcurl(u) curl(v)dx + J;) div(pu) div(v)dx 5.1)

-I—J pR((p+@)B(u)(p+¢))vdx
Q

= [ pR@BO@)vx+ | p(f+g)curvia,
Q Q

(¢(0),u(0)) = (¢o, o)
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To obtain the regularity of Theorem 4.2, we suppose the following hypotheses: (¢g,uy) €
F2(Q) x L2 (Q). Let P : (f,g) — (p,u) = P(f,g) be the map: (L*(2))> — € X E, defined
by (5.1) and introduce the cost function defined by

a 2 b 2 o Yy
](f,g) = Z|||§0|2 _A”Lz(gz) + E”u - Uobs“Lz@) + E”f”%Z(Q) - Ellglliz@), (5.2)

where a, b, «, y are fixed such that «,y >0, a,b = 0, and a + b > 0. The functions ueps €
L?(2) and A € L*(2) are given and represent the observation.

Let J{ = J{; x I, such that I, and K, are (given) nonempty, closed, convex, bounded
subsets of L2(2). We want to minimize the functional J with respect to f and maximize |
with respect to g, that is, to study the following problem (M ):

find an admissible control f* € ¥, and a disturbance g* € J{, such that
(f*,g*) is a saddle point of the functional ] on J{, subject to system
(5.1).

Such a pair (f*,g*) is called an optimal solution to (%P ).

PrOPOSITION 5.1. The function P is continuously Fréchet differentiable from (L*(2))?* to
€ x E, with the derivative P'(f,g) : Y = (B1,52) — (y,w) given by the linear problem
(Pr1) (V(g,v) € #1(Q) x Vyand a.e. t € (0,T))

qL) p%—vt/qu - quL) div (pUy) yqdx — inx L} divipw)rqdx — i L pyqdr
+ [ p(BEW)+ g B @+ | B (1) wadx
+ | p@Iai1P - Dy+gip)ade=o,
J p—vdx+f pcurl(w)curl(v)dx+Ldiv(pw)div(v)dﬁLp%(w(u)(@))vdx

+ Lp(%(EB(u)(u/)) +w|¢ |2)vdx = an(ﬁl +32) curl(v)dx,

(V/(O)r W(O)) = (0’ 0)’
(5.3)

where (Uy,¢1) = (u+ U, @+ ¢).
Moreover the following estimates exist: (V ( f;,gi) € (L*(Q))% i=1,2)
) 1P (fi,g0)ler2))28xE,) < Ces
(i) 1P (f1,80)Y =P (f2,8) Y||%XEW < Ce(IIX1z2 ||Y||Lz +||X||Lz(92 1Y 1l129))s
where f = fi— fhg=g—pand X = (f,g).
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Proof. The proof of this proposition is the consequence of the result of Theorem 4.3. Here
we omit the tedious details. O

ProPoOSITION 5.2. The map P defined by (5.1) is continuous from the weak topology of
(L*(2))? to the strong topology of £*(92) X L*(2.).

Proof. Letf = (f,g) be given in (L*(2))? and let be a sequence fi = (f,gk) such that fi is
weakly convergent in (L?(2))? to f.

Set (¢,u) = P(f,g) and (¢r, uk) = P(fxgk)- Since fi — f weakly in (L?(2))? then fi is
uniformly bounded in (L?(9))2. In view of Theorem 3.2, we can deduce that the sequence
(x> ux) is uniformly bounded in € X E,,. Therefore we can extract from (i, ¢, tx) a sub-
sequence also denoted by (fk, i, ux) and such that

(figk) —— (f,g) weaKly in (L3(2))’,

(pr>uk) —— (@, 1) weakly in € X E,,,
(5.4)

(@, ux) — (¢, 1) strongly in £2(2) x L2(2),
Px —— @ weakly in £*(X).

We prove easily that (¢,%) = P(f,g) and according to the uniqueness of the solution of
(5.1), we have then ¢ = g and &1 = u. O

THEOREM 5.3. For o and y sufficiently large (i.e., there exists («;,y1) such that o« = oy and
y = y1), there exists (f*,g*) € I and (¢*,u*) € € X E, such that (f*,g*) is defined by
(MPy) and (¢*,u*) = P(f*,g*) is solution of (5.1).

Proof. Let Py be the map f — J(f,g) and let Qs be the map: g — J(f,g). To obtain the
existence of the robust control problem, we prove that Py is convex and lower semicon-
tinuous for all g € 3, and Qy is concave and upper semicontinuous for all f € J{; and
we use the classical minimax theorem in infinite dimensions (see, e.g., [3, 23]).

Firstly we prove, for a and y sufficiently large, the convexity of the map P, and the
concavity of the map Qy. In order to prove the convexity, it is sufficient to show that
for all (fi, f2) € H; we have (Pé(fl) —Pé(fz)) - f =0, where f = f; — f, (because P, is
Gateaux differentiable). According to the definition of J, we have that

(P, ()~ Py(o)) - f
= all floy+a [| (o1 | = 92 ) yogy)dve
+“JL%(( |1 |2 —A) (g1 - §02)V1)dxdt+bﬂgf (1 — uz) wy dxdt

+0JJQ%(( |91 |2 - A)(y1 - 1//2)¢2)dxdt+bﬂg (141 — tgbs) (w1 — Wz)dXd(f; .

where (¢;,u;) = P(fi,9), (vi,wi) = P'(fi,g) - (f,0) (solution of problem (%)), for i =
1,2.
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According to Theorem 3.2 and Proposition 5.1, we have

aJL)( |§Dl| _|(P2| 1//2(P2 ) +R(( |(p1| —A)( (Pl <P2)¢1))dxdt

+bJ:[ (u1 — up)wr dxdt
9

= C(Ilo1 = 92120, (11911l 20y + 1¥2liz0)) + 120 )
= CO”f”%Z(Q): (5.6)

aJL‘QR(( | o1 |2 —A)(y1 — 1//2)¢2)dxdt+bﬂgl (11 — tobs) (W1 — wy ) dx dt

2
= C(H l1] _A||L2(91)H1//1 - 1/’2||L2(51) +Juy - uObSHLZ(El)”Wl - W2||L2(9,))
< C1||f||3/2

From (5.5)-(5.6) we deduce that for & > a; such that a; > Cy and (e — Cp) min ey, ||f||1/2
= Cy, we have (Pé,(fl) - Pé(fz)) - f = 0 and then the convexity of P,. In the same way, we
can find y; such that for y > y; we have the concavity of Qy.

We prove now that P, is lower semicontinuous for all g € K, and Qy is upper semi-
continuous for all f € ¥;. Let fi be a minimizing sequence of ], that is, liminfy J( fi,g) =
mingcy, J(f,g) (Vg € H3). Then f; is uniformly bounded in ¥, and we can extract
from f; a subsequence also denoted by fi such that fy — f, weakly in J{;. By using
Proposition 5.2, we have then

P (frg) — (@g,ug) strongly in £2(2) x L*(2). (5.7)

Therefore, since the norm is lower semicontinuous, we have that the map P, : f — J(f,g)
is lower semicontinuous for all g € J{,. By using the same technique we obtain then Qy
is upper semicontinuous for all f € ¥;. O

In order to obtain the necessary optimality conditions which have been satisfied by
the solution of the robust control problem, we introduce the following adjoint problem
corresponding to the primal problem (5.1) (we denote by (¢,u) = P(f,g) and (¢1,U;) =
(p+¢,u+U)): find (P,Q) € € X E, such that (V(g,v) € #'(Q) x V,and a.e. t € (0, T)):

-7 Jﬂpaa—ft)qu - imcjﬂ div (pUy) Pqdx — iu Lqu dr+ Jﬂpﬁ(u)(P)B(u)(q)dx
+ JQpB(u) (¢1) Qqdx + L < - idiv (p$1Q) +pU1%Q>qu

+| p(@lgi =P 3 PIgdx=a| (91~ Npgdx,
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aQ . . 2
—| p=vdx+| pecurl(Q)curl(v)dx+ | div(Q)div(pq)dx+ | pQ|¢:| vdx
a ot Q Q Q

+ | PRGNV (91P) + PBw) (1) + 9B (P))vdx = b | (= o) vel,
Q Q

(5.8)

Remark 5.4. (i) The adjoint problem (5.8) is a linear system. By reversing sense of time,
that is, # := T — ¢, and by applying the same way to obtain the result of Theorem 4.2, we
obtain the existence and the uniqueness of (P, Q).

(ii) The adjoint system (5.8) is the weak formulation of the following problem:

— npaa—f —inxdiv (pUy) P+ B(u) - (pB(u)(P)) + pB(u)(¢1)Q — idiv (PEQ) +PUlaQ
+p((2]¢:11° = 1)P+¢:"P) = a(lgl* - M),
—Paa—? +curl (peurl(Q) - pV (div(Q)) +pQ| ¢1 |

+pR(inxV (¢1P) + PB(u) (¢1) + ¢1B(u)(P)) = b(u — tops),

(5.9a)
subjected to the boundary conditions
1 oP .
- =ub Q:-n=0, curl(Q) =0, in2, (5.9b)
K% on
and the final condition
(P(T),Q(T)) = (0,0). (5.9¢)

We can now give the first-order optimality conditions for the robust control problem

(MUPy).

THEOREM 5.5. Under the assumptions of Theorem 5.3, the optimal solution (f*,g*,u*,¢*)
€ K X E, x€, such that (f*,g*) is defined by (MP) and (¢*,u*) = P(f*,g*) solution
of (5.1), satisfies

ﬂ@ (peurl(Q*) + af*) (f* - f)dxdt = 0,
(5.10)

JL (peurl(Q*) — yg*) (¢* — g)dxdt <0, V(f.g) €%,

where (P*,Q*) is solution of the adjoint problem (5.8) (corresponding to (¢*,u™)).
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Proof. The cost function J is a composition of (Fréchet) differentiable maps then J is
differentiable and we have (VY = (1,5,) € X)

I'(fg)- Y —aﬂ ((lgl? - <p1//)dxdt+bﬂ = i) wx dt
(5.11)

N (xJL Fudxdi—y ﬂ ghodx,

where (y,w) = P'(f,g) - Y is solution of problem (P, ).
By taking (q,v) = (P,Q) in (Pr1), using Green’s formula and integrating by time, we
obtain (according to the initial condition)

- qﬂgp%—ljwdxdt+ JQpP(T)t//(T)dx - ich | div (pUy) Py dxds
" imcj pw (9rP)dxdt - i ﬂz prdth+Ja PB(u)(P)B(w) (y)dxdt
" HQ pé1wB(u)(P)dxdi + ﬂg pB(1) (¢ ) wPdxdt
+ [ p(@191 1" = 1)Py-+ gipp)dxdr o,
- Hﬂpaa—?wdxdt+ L) pQ(T)W(T)dx + J peurl(@curl(wdsdr
; J div(Qdiv(pw)ddr + J PRFB) (¢1)) Qv

+ ﬂgp(%(as(u)(w))m Wl |Q)dxdt = Hglp(ﬂl 1 By) curl(Q)dx dt.
) (5.12)

Since (P, Q) is solution of (5.8), we have that
ink ﬂg pwV (¢ P)dxdt+ JL pé1wB(u)(P)dxdt + H@ pB(w)(¢1) wP dxdt
+ ||, PPy - g Pydxde - || pBu) () Qudar
- [J, (- Lav i +pU@Q)wdxdt+aﬂ (19l - A)pydxdt =0,
ﬂ P (FB(u) (1) + G1B(w) (v)) Qdxdt + bﬂ (1t — ttgpe) walxdt
- ﬂﬂp%(inw (¢1P) + PB(u) (1) + $1B(u) (P)) welx

_ JQ (B +B2) curl(Q)dx dt.
2 (5.13)
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By adding the real part of the first part of (5.13) and the second part of (5.13), we obtain

(since %((/)%PW—EZFV/):O and [, (= (i/x)div(pd1 Q+pU1¢1Q)y dx= [, pd1 B(w) () Qdx,
because Q- n=0)

J]E’R (lpl* - (pl//)dxdt+bﬂ (u— uobs)wdxdt—ﬂ (B1 + 2) curl(Q)dx dt.
(5.14)

According to the expression of J'(f,g) - Y, we can deduce that

J'(f.g)-Y= H@ (peurl(Q) +af)Brdxdt+ J:L (peurl(Q) — yg)Badxdt. (5.15)

Since (f*,g*) is an optimal solution, we have

JJ * * -
aff g) (f _f)—0>

El (5.16)
af f >g ) (g*_g)soa V(f>g)€f7{,
and then
J:[ (peurl(Q*) +af*)(f* — fldxdt =0,
(5.17)
JL (peurl(Q*) —yg™)(g* —g)dxdt <0, V(f,g) e X.
This completes the proof. O

5.1.2. Distributed disturbance in the initial condition of the order parameter. In this sec-
tion, the disturbance is in ¢y and the control is in A, that is, ¢y = g(g € £%4(Q)), h =
f(f € L*(2)). So the function (¢, u) is assumed to be related to the disturbance f and
control g through the problem (3.3) (a.e. t € (0, T))

nIQp%—fq dx — ichQ div(p(u+U))pgdx — imcjﬂ div(pu)pqdx — iu Jr/qu dr
+ | pBa(g+$)Bw@)dx+ | pFig)adx= | pBO)(@BO)N@)dx

J p—vdx + I pcurl(u) curl(v)dx + JQ div(pu) div(v)dx

J pR((@+¢)B(u)(p+¢) vdx—J PR ($B(0)(¢) vdx+J pf curl(v)dx,

(9(0),u(0)) = (g>uo).
(5.18)

To obtain the regularity of Theorem 4.2, we suppose that uy € L>(Q). Let P : (f,g) —
(p,u) = P(f,g) be the map: L*(2) x $2,(Q) — € X E, defined by (5.18) and introduce
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the cost function defined by

a b o
](f,g) = Z||‘(P|2 - AHiz(g) + EHU - uobs”iZ(g) + E”f”;}(g)) - %”g”%z, (5.19)

where a, 3 >0, a,b > 0 and a+ b > 0. The functions (tebs, A) € L*(2) X L¥(2) represent
the observation.
In this section, we study the following minimax control problem (MP,):

find an admissible control f* € ¥, and a disturbance g* € J{, such that
(f*,g*) is a saddle point of the functional J on J{, subject to system
(5.18),

where, 3 = ¥, x K, such that J{, and J, are nonempty, closed, convex, bounded subsets
of L2(92) and £Z (Q), respectively.

The proof of the following propositions and theorem of existence is very similar to
that of Propositions 5.1, 5.2 and of Theorem 5.3. So we omit the details.

ProposITION 5.6. The function % is continuously Fréchet differentiable from L*(9) X
$£2,(Q) to € X E, with the derivative P'(f,g): Y = (B1,2) — (y,w) given by the linear
problem (Pg;) (a.e. t €(0,T))

ﬂjﬂp%’thdxfimcj div(pUl)l//qufquI div(pw)gblqufiuJ(rpl//qu
+J0p(B( v)+¢iw)B(u)(q dx+j pB(u)(¢1) wqdx
+ [ p(@lg* - Dy+gipadx o

J p—udx+ J pcurl(w)curl(v)dx+J div(pw)div(v)dx+IQin(WB(u)(@))vdx

J p(R(FBw)(y)) +w|dr | vdx—f ppPi curl(v)dx,

(y(0),w(0)) = (B2,0),
(5.20)

where (Uy,¢1) = (u+U,p+¢).
Moreover the following estimates (¥ ( f;,gi) € L*(2) X £%(Q), i = 1,2) exist:
(1) 19" (fr,g) | 2@2@)xi2,exE,) < Ce
(ii) ”g),(fl:gl)Y_Q)'(f_zagz)Y||%><En5Ce(”X”LZ(Ez)xLZ”Y||]%2(Q)XL2+||X||%2(Q)><L2HY||L2(Sl)><L2):
where f = fi— frg=g — g and X = (f,g).
ProrosITION 5.7. The map P defined by (5.18) is continuous from the weak topology of
L2(9) x $2,(Q) to the strong topology of £*(2) X L*(2).

THEOREM 5.8. For o and y sufficiently large, there exist (f*,g ) € K and (u*,¢*) € E, x €
such that (f*,g*) is defined by (M%P,) and (¢o*,u*) = P(f*,g*) is solution of (5.18).
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Now we establish necessary optimality conditions for the robust control problem

(MP>).

THEOREM 5.9. Under the assumptions of Theorem 5.8, the optimal solution (f*,g*,u*,¢*)
€ X X E, X €, such that (f*,g*) is defined by (MP,) and (¢*,u*) = P(f*,g*) is solution
of (5.18), satisfies

Ju (peurl(Q*) + af*)(f* — f)dxdt =0,
> (5.21)

L)?R((WP*(O) —yg*)(g* —g))dx <0, V(f,g) e,

where (P*,Q™*) is solution of the adjoint problem (5.8) (corresponding to (¢*,u™)).

Proof. The cost function ] is a composition of (Fréchet) differentiable maps, then ] is
differentiable and we have (VY = (1,5,) € X)

J(f.g)- Y= aﬂg@k((lgpl2 _A)¢W)dxdt+bﬂa (4 — tops) wdx dt+

aﬂflfﬁldxdt_ VJQ%(gﬁz)dx, (5.22)

where (y,w) = P'(f,g) - Y is solution of problem (P,).
By taklng (q, ) = (P,Q) in (Pf,) and integrating by time, we obtain (according to the
initial condition)

—n ] oS waxden | pPDY(DIDx—n | pP(Ofsdx—inx [[ div (pUr) Py dxds
vine | pw (9iP)dxde~ i [|_pypdrar+ || pB)BG (y)dxdr
+ ﬂg p¢1wB(u)(P)dxdt + J ) pB(u)(¢1)wPdxdt
+Jgp((2l<pl2 —1)Py +¢*Py)dxdt =0,
- HQ p%—?wdxdﬂ JQPQ(T)W(T)dx+ J , peurl(Q)curl(w)dxdt
+ ||, divQdivipwidxde+ ||| p (@B (1)) Qaxdr

N ﬂ@ p(R(EB@) () Q+w| 1 | Q)dxdt = ﬂ) pBy curl(Q)dx .
N N (5.23)
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Since (P, Q) is solution of (5.8), we have that
quJprV (¢1P)dxdt+ ﬂ@ pdrwB(u)(P)dxdt + HQpB(u) (¢1)wPdxdt
n ﬂg p(62PY — §1Py)dxdt — L} pP(0)Badx - HQ pB(w)(¢1) Qu dxdt
- Hsz ( - idiv (p$1Q) +pU1aQ>wdxdt+aH2 (lpl*> = A)pydxdt =0,
(| pRwB 1) Qdxde+ || pR(GiBGI ) Qdxdr
9 )
— [[, PG (912) + PG 61) + 1B (P w

+ bJL (4 — tops)wdx dt = ﬂﬂpﬁl curl(Q)dx dt.
‘ (5.24)

By adding the real part of the first part of (5.24) and the second part of (5.24), we obtain
(by using Green’s formula)

- 11J’Qp@i(P(O)[ﬁ’z)dx+aJngi((l(pl2 —A)@l,l/)dxdt+bﬂ’92 (4 — uobs) wdx dt

(5.25)
- ﬂl By curl(Q)dxdt.

According to the expression of J'(f,g) - Y, we can deduce that

J'(frg)-Y = JL (peurl(Q) + af)rdxdt + JQ%((qu(O) Cyg)B)dx. (5.26)

Since (f*,g*) is an optimal solution, we have then

JL (peurl(Q*)+af*)(f* — f)dxdt = 0,

(5.27)
L@z((qpp*m) ) (gt —@)dx <0, V(f.g) €K,

This completes the proof. O

Remark 5.10. In the case where the distributed disturbance is in the initial condition of
the potential, we obtain the same results. In this case, the cost functional is given by

a 2 b 2 o
](f,g) = ZH|§0|2 _AHLZ(Q) + EHU — uobSHLZ(Q) + E”f”%z(g) - %”g”%z, (5.28)

where a,y >0, a,b > 0 and a+ b > 0. The functions (ugps, A) € L*(2) X L*(2) represent
the observation.

We can prove also an existence theorem of the robust control problem and obtain
necessary optimality conditions for its solution using the same method.

Let X = J{; x ¥, such that X, and ¥, are nonempty, closed, convex, bounded subsets
of L*(2) and L?(Q)), respectively.
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For a and y sufficiently large, there exists (f*,g*,u,¢) € H X E, X € satisfying (a.e
te(0,T))

0 . ) . )
n L)pa—(fqu - ichQ div(p(u+U))pqdx — inx L) div(pu)pqdx — iu Lp(pq dr
+ | pBa(g+ @B @dx+ | pFig)adx= | pBO)@BO) @)
J p—vdx+J pcurl(u)curl(v)dx+Jﬂdiv(pu) div(v)dx

+J pgz((¢+$)3(u)(¢+¢))vdxzj p%(aB(O)(qs))vdHJ pf* curl(v)dx,
Q Q Q

(9(0),u(0)) = (p0,g™)>

HQ (peurl(Q) + af*)(f* - f)dxdt = 0,

JQ (pQU0) — yg*)(g* — )dx <0, V(fog) €%,
(5.29)

where (P, Q) is solution of (5.8).
5.2. The control in the initial condition of the vector potential. In this section, we for-
mulate the problem in two situations: firstly, the case where the worst disturbance is in

the initial condition ¢y, and secondly the case where the disturbance is in the external
magnetic field h.

5.2.1. Distributed disturbance in the initial condition of the order parameter. We suppose
that the control is in uo, that is, up = f (f € L?(Q)) and the disturbance is in ¢y, that is,
@0 =g (g € F2(Q)). So the function (¢,u) is assumed to be related to the disturbance f
and control g through the problem (3.3):

qjop%qu—imcj div (p(u+ U)) gqdx — inx J diV(pu)gqux—iprqudl"
J pB()(9+$)B(u)(q) dx+J pF(@)qdx
JpB $BO)(@)dx, ae te(0,T),
J p—vdx+J peurl(u) curl(v)dx+L) div(pu) div(v)dx (5.30)
+[ PR+ +4)vdx
- L} PP (FB0)(¢))vdx + L} pheurl(v)dx, ae.te (0,T),

(9(0),u(0)) = (g, f).
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To obtain the regularity of Theorem 4.2, we suppose that h € L*(2). Let P : (f,g) —
(p,u) = P(f,g) be the map: L2(Q) x L% (Q) — € X E, defined by (5.30) and the cost
function is defined by

a 2 b 2 o
J(f,8) = Z|||€0|2 = Al + EH“_ Uobs|29) + EHf”%Z o

gl (5.31)
where a,y >0, a,b > 0, and a+ b > 0. The functions (uobs, A) € L*(2) X L*(2) are given.
In this section, we study the following minimax control problem (MP5):

find an admissible control f* € J{; and a disturbance g* € J{, such that
(f*,g*) is a saddle point of the functional J on J{, subject to system
(5.30),

where I = H; x K, such that ¥, and H, are nonempty, closed, convex, bounded subsets
of L2(Q) and $% (Q), respectively.

The arguments of Section 5.1 extend directly to the present case without further esti-
mates, so we omit the details. We have then the following results

PrROPOSITION 5.11. The function P is continuously Fréchet differentiable from L*(Q)) X
£2,(Q) to € X E, with the derivative P'(f,g): Y = (B1,p2) — (v, w) given by the linear
problem (Pg3) (a.e. t € (0,T)):

qu paa—‘fqu - quI div (pU) yqdx — inx I div(pw)¢rqdx — i L pyqdr
+ | pBEW) + g B @dr+ | pBo (1) wads
+L)p((2l</>l2 Dy +¢’y)qdx =0,
J p—vdx N j peurl(w)curl(v)dx + JQ div(pw) div(v)dx + JQ o (FBu) (1)) vdx

+I p(R(F1B(w)(y)) +w| 1| )vdx =0,

((0),w(0)) = (B2,1),
(5.32)

where (Uy,¢1) = (u+ U, @+ ¢).
Moreover the following estimates (¥ ( f;,gi) € L*(Q) X £%(Q), i = 1,2) exist:
(1) 12" (fr,g) | 2az)x22(Q),exE,) < Ce
(i) 12" (f1,80)Y = P (f5.8)Y lgug, < CeUIXN2 Y N2 + IXIE Y [I22),
where f = fi— fhg=g — g and X = (f,g).
ProPOSITION 5.12. The map P defined by (5.30) is continuous from the weak topology of
L2(Q) x $2,(Q) to the strong topology of £*(2) x L*().

THEOREM 5.13. For o and y sufficiently large (i.e., there exists (oy,y;) such that & = a; and
y = y1), there exist ( f*,g € I and (p*,u*) € € X E, such that (f*,g*) is defined by
(MP3) and (¢*,u*) = P(f*,g*) is solutzon of (5.30).
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Next, we establish necessary optimality conditions for the robust control problem

(MPs).

THEOREM 5.14. Under the assumptions of Theorem 3.1, the optimal solution (f*,g ,u*,
¢*) € H X E, X &, such that (f*,g*) is defined by (MP3) and (¢*,u*) = P(f*,g*) is
solution of (5.30), satisfies

JQ (PQ*(0)+af*)(f* - fldx =0,

(5.33)
JQ@%((HPP*(O) —-yg*)(g* —¢))dx <0, V(f,g) e,

where (P*,Q*) is solution of the adjoint problem (5.8) (corresponding to (¢*,u™)).

Proof. The cost function ] is a composition of (Fréchet) differentiable maps, then ] is
differentiable and we have (VY = (1,5,) € X)

J(f.g)- Y —aﬂ% (lpl* - (pl//)d:(dt+bﬂ U — Ughs) Wdx dt

(5.34)
+0¢J fﬁldx—yj T (gB2) dx,
Q Q

where (y,w) = %'(f,g) - Y is solution of problem (%Pgs3).
By taking (q,v) = (P,Q) in (%r3) and integrating by time, we obtain (according to the
homogeneous boundary conditions and to the initial condition)

_ WJJQP%—ijdxdt+ JQ npP(T)y(T)dx - L} npP(0)Badx — imcjg div (pUy) Py dxdt
+ imcﬂ;zpwv (¢1P)dxdt —iu Hzpuxpdrdt + ﬂQpE(u)(P)B(u)(w)dxdt
+ || powBPxdr+ || pBi(@)wpaxat
+ ﬂap((Z $11” = 1) Py + $iPy)dxdt =0,
- [, pSwaxars | pacrinmidx - [ pa)prds+ [| peurl(@)curlmdxa
+ J div(Q) div(pw)dxdt + J | PRTB() (¢1)) Qddt

H ¥))Q+w| ¢ | Q)dxdt = 0.
(5.35)
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Since (P, Q) is solution of (5.8), we have that

- L} npP(0)B2dx+ iﬂKJLZPWV (¢1P)dxdt + Jjgp¢1w§(u)(P)dxdt
n J PB) (1) wPdsdr + ﬂgp(qﬁpw— $°Py) dxd - Jng(u)((pl)dexdt
- JL ( ~Laiv(ppi0) +,)U@Q)wdxdt+aHSl (o2 = A)gy dxdt = 0,
- [ PO+ [[| p (B (91) + 1Bl ) Qaxds
Q 9
— [[, G (912) + PBG6) + 1B () w

+bﬂ9(u—uobs)wdxdt=0. -

By adding the real part of the first part of (5.36) and the second part of (5.36), we obtain

H \‘/’|2 (pw)dxdt+bﬂ U — Uobs) Wdx dt

(5.37)
= JQpQ(O)ﬁldx+ J;) npR(P(0)p,)dx

According to the expression of J'(f,g) - Y, we can deduce that

J'(f.g) Y= JQ (pQ(0) +af)Brdx + JQQR((’?PP(O) —yg)p2)dx. (5.38)
Since (f*,g*) is an optimal solution we have then

J (pQ* (0) + af*) (f* — f)dx > 0,

o (5.39)
JQ%((WPP*(O) —yg*)(g* —g)dx <0, V(f.g) L.

This completes the proof. O

5.2.2. Distributed disturbance in the external magnetic field. In this section, the distur-
bance is in h and the control is in uo, that is, ug = f(f € L*(Q)), h =g (g € L*(2)). So
the function (¢,u) is assumed to be related to the disturbance g and control f through
the problem (3.3) (a.e. t € (0,T)):

;1[ pa—(pqu—iqxj div (p(u+ U))goqu—imcj diV(pu)(/)qu—iyJ pepqdl
o ot Q Q r

+ [ pBo+ 9B@@dx+ | pE@)adx = [ pBO@BON)
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J pfvdx + I pcurl(u) curl(v)dx + J div(pu) div(v)dx
Q

+J p%((¢+$)B(u)(q)+¢))vdx=J p%(@B(O)(¢))vdx+I pg curl(v)dx,
Q Q Q

(9(0),u(0)) = (¢o, f)-
(5.40)

To obtain the regularity of Theorem 4.2, we suppose that ¢ € $2(Q). Let P : (f,g) —
(o, u) = P(f,g) be the map: L>(Q) x L2(2) — € x E, defined by (5.40) and the cost func-
tion is defined by

](f’g) 7|||¢|2 A||L2(92)+ ||u ”obsHLz(g)"‘ ||f||L2*§”g”%2(gz), (5.41)

where a,y >0, a,b > 0 and a+ b > 0. The functions (uops, A) € L2(2) x L®(2) are given.
In this section, we study the following minimax control problem (MP,):

find an admissible control f* € ¥, and a disturbance g* € J{, such that

(f*,g*) is a saddle point of the functional J on J{, subject to system
(5.40),

where, J{ = ¥, x H; such that J{, and J, are nonempty, closed, convex, bounded subsets
of L2(Q) and L?(9.), respectively.

The proof of the following propositions and theorem of existence is obtained by using
similar arguments of Section 5.1, so we omit the details.

ProposiTiON 5.15. The function P is continuously Fréchet differentiable from L*(Q) X
L*(2) to € x E, with the derivative P'(f,g) : Y = (B1,2) — (y,w) given by the linear
problem (Pgs) (a.e. t € (0,T)):

0 . . . .
n sza—vthdx —ink JQ div(pUy)yqdx — 111ka div(pw)p1qdx —iu va/q dr
+J0p(B v) + ¢1w)B(u)( )dx+JQpB(u)(¢1)wqu
+ | p(@lol - Dy+grp)gds =0,
J p—udx + I pcurl(w) curl(v)dx + JQ div(pw) div(v)dx + JQPQR (yB(u)(¢1))vdx

+J p(R(G1Bw)(y)) +w| ¢y | )vdx = J pP curl(v)dx,
o o

(y(0),w(0)) = (0,41),
(5.42)

where (Uy,¢1) = (u+ U, @+ ¢).
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Moreover the following estimates (¥ ( fi,gi) € L*(Q) X L*(2), i = 1,2) exist:
D) 129" (fi,g)l2azx122),6xE,) < Ces
(i) 19" (f1,80Y =P (f2, €)Y 1z 5, < Coll XN L2 xr2 @) 1Y 12120+ IX 12 e 120y 1Y 22 0))s
where f = fi— fr,g=g1 —g and X = (f,g).

PrOPOSITION 5.16. The map P defined by (5.40) is continuous from the weak topology of
L2(Q) x L*(2) to the strong topology of £*(2) x L*(2).

THEOREM 5.17. For « and y sufficiently large, there exist ( f*,g e X and (u*,¢*) €
E, X € such that (f*,g*) is defined by (M%P4) and (¢*,u*) = P(f*,g*) is solution of
(5.40).

Next we give necessary optimality conditions for the robust control problem (M%P,).

THuEOREM 5.18. Under the assumptions of Theorem 5.8, the optimal solution (f*,g*,u*,
0*) € X X E, X €, such that (f*,g*) is defined by (MP4) and (¢*,u*) = P(f*,g*) is
solution of (5.40), satisfies

JQ (PQ*(0)+af*)(f* — fldx =0,

(5.43)
H@ (peurl(Q*) —yg™) (g* —g)dxdt <0, V(f,g) €,

where (P*,Q*) is solution of the adjoint problem (5.8) (corresponding to (¢*,u*)).

Proof. The cost function J is a composition of (Fréchet) differentiable maps, then J is
differentiable and we have (VY = (f1,2) € ¥)

J(f.g) Y —aHE’R (lpl* - ¢w)dxdt+bﬂ (u — ughs) wdx dt

" “JQ fBrdx— )’H@g/ﬁdxdt, (5.44)

where (y,w) = P'(f,g) - Y is solution of problem (Pry).
By taking (q,v) = (P,Q) in (Pr4), using Green’s formula, and integrating by time, we
obtain (according to the homogeneous boundary conditions and to the initial condition)

op
-7 ﬂapgl//dxdtnL qJQpP(T)w(T)dx
—inK JL div(pUy) Py dxdt + imcj QpwV (¢1P)dxdt
iy L pdel“-i—ng pF(u)(P)B(u)(w)dxdt+Jg pé1wB(u) (P)dx dt

+JQpB(u)(gbl)dexdt-i-Jgp((Z |¢1|° = 1)Py + ¢2PF) dxdt = 0,
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- JIQp%—?wdx dt+ JQpQ(T)w(T)dx - L)pQ(O)ﬁl dx+ ﬂgp curl(Q) curl(w)dxdt
; HQ div(Q) div(pw)dxdi + HQ o (TB(w) (¢1)) Qdxdt

N H; p(R(FTBw)(¥)Q+w| 1 | Q)dxdt = JL phrcurl(Q)dxdt.  (5.45)

Since (P, Q) is solution of (5.8), we have that

imcﬂgpwv (¢1P)dxdt+ ﬂgpqﬁlwﬁ(u)(P)dxdt+ HﬂpB(u) (¢1)wPdxdt

+ || p(aipy -8 Py)dxdi — || pBlu)(gr)Qu dvar

- Hgl ( - idiv(paQ) +pU1%Q>1//dxdt+aJL (lpl*> = A)pydxdt =0,
- JQpQ(O)[Sldx+ Jjgp%(WB(u)(gbl))dedtJr ng%(aza(u)(w))c;)dxdt

- Hﬂ T iV (¢ P)dxcdt + PB(w) (¢1) + 1 B(u)(P))wdx dt

+ bJL (1 — uobs)wdxdt = ﬂ@ pPB2 curl(Q)dxdt.
" N (5.46)

By adding the real part of the first part of (5.46) and the second part of (5.46), we obtain

- JQpQ(O)ﬂldx+aJJQQi((I¢|2 —A)@w)dxdt+bﬂ9 (t = thobs) Wl dt

(5.47)
- H@ pBs curl (Q)dxdt.

According to the expression of J'(f,g) - Y, we can deduce that

I'(fg)- Y = J (pQ(0) +af)Brddx + ﬂ (peurl(Q) - yg) B dx . (5.48)
Q )
Since (f*,g*) is an optimal solution, we obtain

[ Q@ @ +af*)(f* - frax=o,

Q (5.49)

JL (peurl(Q*) —yg*)(g* —g)dxdt <0, V(f,g) €.

This completes the proof. O
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Remark 5.19. In the case where the distributed disturbance is in the initial condition of
the potential, we obtain the same results. In this case the cost functional is given by

a 2 b 2 o y
](f’g) = Z”"P'z - A||L2(92) + 5”” - uobs”LZ(Q) + E ||f||]%2 - 5 ||g||]%z, (5.50)
where o,y >0,a,b>0and a+b > 0.
We can prove also an existence theorem of the robust control problem and obtain
necessary optimality conditions for its solution using the same method. Let 3 = J; x J{,

such that #; and ¥, are nonempty, closed, convex, bounded subsets of L?(Q).
For a and y sufficiently large, there exists ( f*,g*, ¢, u) satisfying

nJﬂp%—(fqu—inKJ div (p(u + U))goqu—imcj div(pu)(pqu—iyjrpgdeF
J pB()(9+ $)B(u)( q)dx+J pF(9)qdx
- [ PBO@BO@dx ac.te )
J p—vdx+J pcurl(u)curl(v)dx+Jﬂdiv(pu)div(v)dx
+[ o2+ DB+ ) vdx
:J pQJz@B(O)(gb))vddeL)phcurl(v)dx, ae.te(0,T)

(9(0),u(0)) = (g0, f* +g%),
(pPQO) +af*)(f* = fHdx =0,

D b

*)g*—-g)dx <0, V(f.g) e,
(5.51)

where (P, Q) is solution of (5.8).

6. Conclusion

We have developed a robust control method for the time-dependent complex Ginzburg-
Landau vortices in superconductivity. This model contains two unknowns, the vector
potential u and an order parameter ¢ (or a complex phase-field variable) coming from
thermodynamics, where ¢ describes the phase of the underlying superconductivity. The
case |¢| close to 1 corresponds to the superconducting phase, |¢| close to 0 to the nor-
mal phase. The existence of weak solution as well as regularity and stability results are
established. A robust control problem has been studied for two sets of distributed con-
trols: firstly the control is in the external magnetic field (the disturbance is in the external
magnetic field or in the initial condition of the parameter), secondly the control is in the
initial condition of the vector potential (the disturbance is in the external magnetic field
or in the initial condition of the parameter). Under suitable hypotheses, it is shown that
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one has existence of solution to a corresponding robust control problem, and the appro-
priate necessary conditions for saddle point optimality are obtained. These conditions
are corresponding to identify the gradient of the cost functional that is very useful in the
numerical resolution of the robust control problem. For example we can combining the
optimal necessary conditions obtained in this paper and the gradient-iterative algorithm
to solve the robust control problem numerically (at each iteration i, we obtain the numer-
ical approximation (f;,g;) of the optimal solution (f,g) by fi = fi-1 — 0];(fi-1,gi-1) and
gi=g+ a)]g’(f,-_l,gi_l), where 0 < m < 0, w < M are the sequences of step lengths and
m, M depending on the second Fréchet derivative of J to ensure the convergence result
(see, e.g., Ciarlet [16])).
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