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This paper deals with a class of singular nonlinear polyharmonic equations on the unit
ball B in Rn (n ≥ 2) where the combined effects of a singular and a sublinear term al-
low us by using the Schauder fixed point theorem to establish an existence result for the
following problem: (−Δ)mu = ϕ(·,u) +ψ(·,u) in B (in the sense of distributions), u > 0,
lim|x|→1u(x)/(1−|x|)m−1 = 0. Our approach is based on estimates for the polyharmonic
Green function on B with zero Dirichlet boundary conditions.
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1. Introduction

In this paper, we study the existence and the asymptotic behaviour of a positive solution
for the following higher-order singular problem involving sublinear term

(−Δ)mu= ϕ(·,u) +ψ(·,u) in B (in the sense of distributions),

u > 0,

lim
|x|→1

u(x)
(
1−|x|)m−1 = 0,

(P)

where B is the unit ball in Rn (n≥ 2) and m is a positive integer.
Our motivation to study the problem (P) comes from [11], where Shi and Yao inves-

tigated the existence of nonnegative solutions for the following elliptic problem:

Δu+ k(x)u−γ + λuα = 0 in Ω,

u(x) > 0, x ∈Ω,
(1.1)

where Ω is a bounded C1,1 domain in Rn (n ≥ 2), γ, α are two constants in (0,1), λ is

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2006, Article ID 27969, Pages 1–14
DOI 10.1155/AAA/2006/27969

http://dx.doi.org/10.1155/S1085337506279697


2 Existence result for a nonlinear polyharmonic problem

a real parameter, and k is a Hölder continuous function in Ω. The pure singular elliptic
equation

Δu+ p(x)u−γ = 0, γ > 0, x ∈D ⊆Rn, (1.2)

has been extensively studied for both bounded and unbounded domain D in Rn (n≥ 2).
We refer to ([3–5, 7–9], and references therein) for various existence and uniqueness
results related to solutions for above equation. On the other hand, the problem (P) with
a sublinear term ψ(·,u) and a singular term ϕ(·,u) = 0, has been studied in the unit
ball by Mâagli et al. in [10]. Thus a natural question to ask is, for more general singular
and sublinear terms combined in the nonlinearity, whether or not the problem (P) has a
solution, which we aim to study in this paper.

Our tools are based essentially on some inequalities satisfied by the Green function
Gm,n of (−Δ)m in B with Dirichlet boundary conditions (∂/∂ν) ju= 0; 0≤ j ≤m− 1. This
allows us to state some properties of functions in the Kato class Km,n(B)= Km,n which was
introduced in [1] (see Definition 1.1 below).

In [2], Boggio showed that Gm,n is positive and it is given by

Gm,n(x, y)= km,n|x− y|2m−n
∫ [x,y]/|x−y|

1

(
v2− 1

)m−1

vn−1
dv, (1.3)

where km,n is a positive constant and [x, y]2 = |x− y|2 + (1−|x|2)(1−|y|2) for x, y ∈ B.
Note that the positivity does not hold for the Green function of the m-polyharmonic
operator in arbitrary bounded domain (see, e.g., [6]).

Only for m= 1, we do not have this restriction.

Definition 1.1. A Borel measurable function q in B belongs to the class Km,n if q satisfies
the following condition:

lim
α→0

(

sup
x∈B

∫

B∩B(x,α)

(
δ(y)
δ(x)

)m
Gm,n(x, y)

∣
∣q(y)

∣
∣dy

)

= 0, (1.4)

where δ(x)= 1−|x| is the Euclidian distance between x and ∂B.

We refer in this paper to the potential of a measurable nonnegative function f , defined
on B by

V f (x)=
∫

B
Gm,n(x, y) f (y)dy. (1.5)

Our plan in this paper is as follows. Section 2 is devoted to collect some preliminary
results about the Green function Gm,n(x, y) and the class Km,n. In Section 3, we suppose
that ϕ and ψ satisfy the following hypotheses.

(H1) ϕ is a nonnegative Borel measurable function on B × (0,∞), continuous and
nonincreasing with respect to the second variable.

(H2) For all c > 0, x 	→ ϕ(x,c(δ(x))m)/(δ(x))m−1 ∈ Km,n.
(H3) ψ is a nonnegative Borel measurable function on B × (0,∞), continuous with

respect to the second variable such that there exist a nontrivial nonnegative function p
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and a nonnegative function q on B satisfying for x ∈ B and t > 0,

x 	−→ q(x)
(
δ(x)

)m−1 ∈ Km,n, (1.6)

p(x) f (t)≤ ψ(x, t)≤ q(x)g(t) for (x, t)∈ B× (0,∞), (1.7)

where f is a measurable nondecreasing function on [0,∞) satisfying

lim
t→0+

f (t)
t
= +∞, (1.8)

and g is a nonnegative measurable function locally bounded on [0,∞) satisfying

limsup
t→∞

g(t)
t

<
∥
∥Vq

∥
∥∞. (1.9)

Using a fixed point argument, we will state the following existence result.

Theorem 1.2. Under hypotheses (H1)–(H3), problem (P) has a positive continuous solution
u satisfying for each x ∈ B,

a
(
δ(x)

)m ≤ u(x)≤V(ϕ(·,aδ(·)m))(x) + bVq(x), (1.10)

where a, b are positive constants.

Typical examples of nonlinearities satisfying (H1)–(H3) are

ϕ(x, t)= p(x)
(
δ(x)

)mγ+m−1
t−γ (1.11)

for γ ≥ 0, and

ψ(x, t)= q(x)
(
δ(x)

)m−1
tαLog

(
1 + tβ

)
(1.12)

for α,β ≥ 0 such that α+β < 1, where p and q are nonnegative functions in Km,n.

Notations. In order to simplify our statements, we define some convenient notation.
(i) B := {x ∈Rn; |x| < 1} with n≥ 2.

(ii) We denote s∧ t =min(s, t) and s∨ t =max(s, t) for s, t ∈R.
(iii) For (x, y)∈ B2, [x, y]2 = |x− y|2 + (1−|x|2)(1−|y|2).
(iv) �(B) denotes the set of Borel measurable functions in B and �+(B) is the set of

nonnegative ones.
(v) C0(B) :={ω continuous on B and lim|x|→1ω(x) = 0}. We recall that C0(B) is a

Banach space with the uniform norm ‖ ω‖∞ = supx∈B |ω(x)|.
(vi) Let f and g be two positive functions on a set S. We call, f ∼ g, if there is c > 0

such that

1
c
g(x)≤ f (x)≤ cg(x) ∀x ∈ S, (1.13)
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f � g, if there is c > 0 such that

f (x)≤ cg(x) ∀x ∈ S. (1.14)

(vii) For any f ∈�(B), we put

‖ϕ‖B := sup
x∈B

∫

B

(
δ(y)
δ(x)

)m

Gm,n(x, y)
∣
∣ f (y)

∣
∣dy. (1.15)

2. Properties of the Green function and the Kato class Km,n

The existence result that we are going to prove suggests to collect in this section some
estimates on the Green function and some properties of functions belonging to the Kato
class Km,n.

Proposition 2.1. For each m≥ 1, the following estimates are satisfied on B2:

Gm,n(x, y)� (δ(x)δ(y)
)m−1

G1,n(x, y), (2.1)
(
δ(x)δ(y)

)m �Gm,n(x, y). (2.2)

For n > 2m,

Gm,n(x, y)� 1
|x− y|n−2m

. (2.3)

For n < 2m,

Gm,n(x, y)�
(
δ(x)δ(y)

)m

[x, y]n
. (2.4)

For n= 2m,

Gm,n(x, y)�
(
δ(x)

)m−1(
δ(y)

)m−1

[x, y]2(m−1)
Log

(

1 +
δ(x)δ(y)
|x− y|2

)

. (2.5)

Proof. The proof of assertions (2.1)–(2.4) can be found in [1]. If n= 2m, it follows from
(1.3) that for (x, y) in B2, we have

Gm,n(x, y)�
∫ [x,y]/|x−y|

1

1
v

(

1− 1
v2

)m−1

dv

�
(

1− |x− y|2
[x, y]2

)m−1

Log

(
[x, y]
|x− y|

)

�
(
δ(x)

)m−1(
δ(y)

)m−1

[x, y]2(m−1)
Log

(

1 +
δ(x)δ(y)
|x− y|2

)

,

(2.6)

which gives (2.5). �
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Proposition 2.2 (see [10]). Let q be a nonnegative function in Km,n. Then the following
assertions hold:

(i) ‖q‖B <∞,
(ii) the function x 	→ (δ(x))2m−1q ∈ L1(B). In the sequel, we will give some estimates on

the radial potential

x 	−→
∫

Sn−1
Gm,n

(
x,rω

)
dσ(ω), (2.7)

where σ is the normalized measure on the unit sphere Sn−1 of Rn.

Proposition 2.3. For x ∈ B, and r ∈ (0,1),
∫

Sn−1
Gm,n(x,rω)dσ(ω)� (δ(x)

)m−1
(1− r)m−1ρ

(|x|∨ r), (2.8)

where for t ∈ (0,1),

ρ(t)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1− t
t(n−2m)+ if n �= 2m,

Log
1
t

if n= 2m,

(2.9)

and (n− 2m)+ =max(0,n− 2m).

Proof. To show the claim, we use inequalities in Proposition 2.1.
For x ∈ B and r ∈ (0,1), we distinguish three cases.
(i) If n > 2m, we obtain by (2.1) and elementary calculus that

∫

Sn−1
Gm,n(x,rω)dσ(ω)� (δ(x)

)m−1
(1− r)m−1

∫

Sn−1
G1,n(x,rω)dσ(ω)

� (δ(x)
)m−1

(1− r)m−1 1−|x|∨ r
(|x|∨ r)n−2 .

(2.10)

On the other hand, by (2.3) we have

∫

Sn−1
Gm,n(x,rω)dσ(ω)�

∫

Sn−1

dσ(ω)
|x− rω|n−2m

�
∫ π

0

(sinθ)n−2

(|x|2 + r2− 2r|x|cosθ
)(n−2m)/2 dθ

�
∫ π

0

(sinθ)n−2

[((|x|∧ r)− (|x|∨ r)cosθ
)2

+
(|x|∨ r)2

(sinθ)2
](n−2m)/2 dθ

� 1
(|x|∨ r)n−2m .

(2.11)
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Using the fact that for each a,b > 0, we have min(a,b)∼ ab/(a+ b), we obtain

∫

Sn−1
Gm,n(x,rω)dσ(ω)

�min

(
1

(|x|∨ r)n−2m ,
(
δ(x)

)m−1
(1− r)m−1 1−|x|∨ r

(|x|∨ r)(n−2)

)

�
(
1−|x|∨ r)m(1−|x|∧ r)m−1

(|x|∨ r)n−2m

(
1

(|x|∨ r)2m−1
+
(
1−|x|∨ r)2m−1

)

�
(
1−|x|∨ r)m(1−|x|∧ r)m−1

(|x|∨ r)n−2m .

(2.12)

(ii) If n= 2m, then we have from (2.5)

∫

Sn−1
Gm,n(x,rω)dσ(ω)

� (δ(x)
)m−1

(1− r)m−1
∫ π

0

(sinθ)2m−2

(|x|2r2 + 1− 2r|x|cosθ
)m−1

×Log

(

1 +

(
1−|x|2)(1− r2

)

(|x|2 + r2− 2r|x|cosθ
)

)

dθ

� (δ(x)
)m−1

(1− r)m−1
∫ π

0

(sinθ)2(m−1)

((|x|r− cosθ
)2

+ (sinθ)2
)m−1

×Log

(

1 +

(
1−|x|2)(1− r2

)

(|x|2 + r2− 2r|x|cosθ
)

)

dθ

� (δ(x)
)m−1

(1− r)m−1
∫ π

0
Log

(

1 +

(
1−|x|2)(1− r2

)

(|x|2 + r2− 2r|x|cosθ
)

)

dθ

� (δ(x)
)m−1

(1− r)m−1 Log
(

1
|x|∨ r

)
.

(2.13)

(iii) If n < 2m, then applying (2.4) we have by elementary calculus

∫

Sn−1
Gm,n(x,rω)dσ(ω)

� (δ(x)
)m

(1− r)m
∫ π

0

(sinθ)n−2

(|x|2r2 + 1− 2r|x|cosθ
)n/2

� (δ(x)
)m

(1− r)m
∫ π

0

(sinθ)n−2

((|x|r− cosθ
)2

+ (sinθ)2
)(n−2)/2

1
(|x|2r2 + 1− 2r|x|cosθ

)dθ
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� (δ(x)
)m

(1− r)m
∫ π

0

1
(|x|2r2 + 1− 2r|x|cosθ

)dθ

� (δ(x)
)m

(1− r)m 1
1− r|x| �

(
1−|x|∨ r)m(1−|x|∧ r)m−1

.

(2.14)

This completes the proof. �

We characterize in the following the radial functions in the class Km,n.

Proposition 2.4. Let a be a radial function in B, then the following assertions are equiva-
lent:

(1) a∈ Km,n,
(2)

∫ 1
0 r

n−1(1− r)2(m−1)ρ(r)|a(r)|dr <∞,
where ρ is the function defined by (2.9).

Proof. See [1, Proposition 3.8]. �

Example 2.5. Let q be the function defined in B by

q(x)= 1
(
δ(x)

)λ(
Log2/δ(x)

)μ . (2.15)

By Proposition 2.4, q ∈ Km,n if and only if λ < 2m and μ∈R or λ= 2m and μ > 1.

Example 2.6. Let p >max(n/2m,1), let q ≥ 1 such that 1/p+ 1/q = 1, and let a be a radial
function in Lp(B). Then for λ < 2m− 1/p and μ ∈ R or λ = 2m− 1/p and μ > 1/q, the
function

x 	−→ a(x)

δ(x)λ
(

Log2/δ(x)
)μ (2.16)

is in Km,n.

Indeed, using the Hölder inequality we obtain
∫ 1

0
rn−1 (1− r)2(m−1)−λ

(
Log

(
2/(1− r)))μ ρ(r)

∣
∣a(r)

∣
∣dr

≤ ‖a‖p
(∫ 1

0
rn−1(ρ(r)

)q (1− r)[2(m−1)−λ]q

(
Log

(
2/(1− r)))μq dr

)1/q

= ‖a‖p
[(∫ 1/2

0
rn−1(ρ(r)

)q (1− r)[2(m−1)−λ]q

(
Log

(
2/(1− r)))μq dr

)1/q

+
(∫ 1

1/2
rn−1(ρ(r)

)q (1− r)[2(m−1)−λ]q

(
Log

(
2/(1− r)))μq dr

)1/q
]

= ‖a‖p
(
I1 + I2

)
.

(2.17)

Since for r ∈ (0,1/2], we have 1− r ∼ 1, then we deduce from (2.9) that I1 <∞.
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On the other hand, using that Log(1/r) ∼ 1− r, for r ∈ [1/2,1), then we obtain by
(2.9),

I2 �
(∫∞

4

dr

t(2m−λ−1)q+2(Log t)μq

)1/q

. (2.18)

Hence, we have obviously I2 <∞, for λ < 2m− 1/p and μ ∈ R or λ = 2m− 1/p and μ >
1/q. So, the result follows from Proposition 2.4.

Remark 2.7. For x ∈ B, put ϕλ,μ(x) = 1/δ(x)λ(Log(2/δ(x)))μ. Then it follows from (2.2)
that there exists a constant c > 0 such that for each a∈�+(B),

cδ(x)m
∫

B

(
δ(y)

)m
a(y)ϕλ,μ(x)dy ≤V(aϕλ,μ

)
(x). (2.19)

In the next proposition, we will give upper estimates on V(aϕλ,μ).

Proposition 2.8. Let p > max(n/2m,1) and let q ≥ 1 such that 1/p + 1/q = 1. Then for
λ < m+ 1− 1/p and μ∈R or for λ=m+ 1− 1/p and μ > 1/q, there exists a constant c > 0,
such that for each nonnegative radial function a∈ Lp(B) and x ∈ B, the following estimates
hold:

V
(
aϕλ,μ

)
(x)≤ c‖a‖p×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
δ(x)

)2m−λ−(1/p)
(

Log
2

δ(x)

)−μ
if m− 1

p
< λ<m+1− 1

p
, μ∈R,

(
δ(x)

)m
if λ < m− 1

p
, μ∈R,

(
δ(x)

)m
(

LogLog
4

δ(x)

)1/q

if λ=m− 1
p

, μ= 1
q

,

(
δ(x)

)m
(

Log
2

δ(x)

)1/q−μ
if λ=m− 1

p
, μ <

1
q

,

(
δ(x)

)m
if λ=m− 1

p
, μ >

1
q

,

(
δ(x)

)m−1
(

Log
2

δ(x)

)1/q−μ
if λ=m+ 1− 1

p
, μ >

1
q
.

(2.20)

Proof. Let p > max(n/2m,1), let q ≥ 1 such that 1/p + 1/q = 1 and let a(x) = a(|x|) be
a nonnegative function in Lp(B). Using Proposition 2.3 and the Hölder inequality, we
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obtain that for each x ∈ B,

V
(
aϕλ,μ

)
(x)≤ c

∫ 1

0
rn−1 a(r)

(1− r)λ(Log
(
2/(1− r)))μ

(∫

Sn−1
Gm,n(x,rω)dσ(ω)

)
dr

≤ c(δ(x)
)m−1

∫ 1

0
rn−1 (1− r)m−λ−1

(
Log

(
2/(1− r)))μ ρ

(|x|∨ r)a(r)dr

≤ c(δ(x)
)m−1‖a‖p

(∫ 1

0
rn−1 (1− r)(m−λ−1)q

(
Log

(
2/(1− r)))μq

(
ρ
(|x|∨ r))qdr

)1/q

.

(2.21)

First, if |x| ∈ (0,1/2], then we deduce by (2.9) that

(∫ 1

0
rn−1 (1− r)(m−λ−1)q

(
Log

(
2/(1− r)))μq

(
ρ
(|x|∨ r))qdr

)1/q

�
(∫ 1

0
rn−1 (1− r)(m−λ−1)q

(
Log

(
2/(1− r)))μq

(
ρ(r)

)q
dr
)1/q

� 1.

(2.22)

Now, if |x| ∈ [1/2,1), we have ρ(x)� (1−|x|) and

(∫ 1

0
rn−1 (1− r)(m−λ−1)q

(
Log

(
2/(1− r)))μq

(
ρ
(|x|∨ r))qdr

)1/q

� δ(x)
(∫ |x|

0
rn−1 (1− r)(m−λ−1)q

(
Log

(
2/(1− r)))μq dr

)1/q

+
(∫ 1

|x|
rn−1 (1− r)(m−λ)q

(
Log

(
2/(1− r)))μq dr

)1/q

= I(x) + J(x).
(2.23)

By elementary calculus, we obtain that for |x| ∈ [1/2,1),

I(x)∼ δ(x)
(∫ 1/2

0
rn−1dr +

∫ |x|

1/2
(1− r)(m−λ−1)q

(
Log

(
2

1− r
))−μq

dr
)1/q

∼ δ(x)

[

1 +
(∫ 2/(1−|x|)

4
t(λ+1−m)q−2(Log t)−μqdr

)1/q
]

.

(2.24)

Hence, we distinguish the following cases.
(i) If λ >m− 1/p, then we have

I(x)∼ (δ(x)
)m−λ+1/q

(
Log

2
δ(x)

)−μ
. (2.25)

(ii) If λ <m− 1/p, then we have

I(x)∼ δ(x). (2.26)
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(iii) If λ=m− 1/p, then we have

I(x)∼

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ(x)
(

LogLog
2

1−|x|
)1/q

if μ= 1
q

,

δ(x)
(

Log
2

1−|x|
)1/q−μ

if μ <
1
q

,

δ(x) if μ >
1
q
.

(2.27)

On the other hand, we have

J(x)∼
(∫∞

2/(1−|x|)
t(λ−m)q−2(Log t)−μq

)1/q

. (2.28)

So, by elementary calculus, we obtain

J(x)∼

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
δ(x)

)m−λ+1/q
(

Log
2

δ(x)

)−μ
if λ < m+ 1− 1

p
, μ∈R,

(

Log
2

δ(x)

)1/q−μ
if λ=m+ 1− 1

p
, μ >

1
q
.

(2.29)

Hence, for |x| ∈ [1/2,1), we have

(∫ 1

0
rn−1 (1− r)(m−λ−1)q

(
Log

(
2/(1− r)))μq

(
ρ
(|x|∨ r))qdr

)1/q

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
δ(x)

)m−λ+1/q
(

Log
2

δ(x)

)−μ
if m− 1

p
< λ <m+ 1− 1

p
, μ∈R,

δ(x)

(

Log
2

δ(x)

)1/q−μ
if λ=m− 1

p
, μ <

1
q

,

δ(x)

(

LogLog
2

δ(x)

)1/q

if λ=m− 1
p

, μ= 1
q

,

δ(x) if λ=m− 1
p

, μ >
1
q

,

δ(x) if λ < m− 1
p

, μ∈R,

(

Log
2

δ(x)

)1/q−μ
λ=m+ 1− 1

p
, μ >

1
q
.

(2.30)

Thus, by combination of the two cases, we obtain the result. �
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3. Proof of the main existence result

In this section, we aim at proving Theorem 1.2, so we need the following result (see [10,
Proposition 4]).

Proposition 3.1. For a fixed nonnegative function q in Km,n,

�q := { f ∈�+(B); f ≤ q}, (3.1)

then the family of functions

{
1

(δ(x))m−1

∫

B

(
δ(y)

)m−1
Gm,n(x, y) f (y)dy; f ∈�q

}

(3.2)

is relatively compact in C0(B).

Proof of Theorem 1.2. Assuming H1–H3, we will use a fixed point argument to construct
a solution of the problem (P).

By (1.6), the function θ(x) = q(x)/(δ(x))m−1 ∈ Km,n, then using Proposition 3.1, we
obtain

∥
∥V
(
(δ(·))m−1θ

)∥∥∞ =
∥
∥Vq

∥
∥∞ <∞. (3.3)

Consequently, we deduce by (1.7) and (1.8), that p is a nontrivial nonnegative function
in L1

loc(B), then there exists a compact K in B such that we have

0 < α :=
∫

K

(
δ(y)

)m
p(y)dy <∞. (3.4)

Put β :=min{(δ(x))m; x ∈ K}, then from (1.8), we deduce that there exists a constant
a > 0 such that

cα f (aβ)≥ a. (3.5)

Take 0 < η < 1/‖Vq‖∞, then we deduce by (1.9) that there exists ρ > 0 such that for t ≥ ρ,
we have g(t)≤ ηt. Hence, put γ = sup0≤t≤ρ g(t), then we obtain

0≤ g(t)≤ ηt+ γ ∀t ≥ 0. (3.6)

Finally, it follows from (2.2) and (1.6) that there exists a constant c1 > 0 such that for each
x ∈ B,

c1
(
δ(x)

)m ≤Vq(x), (3.7)

and using further the hypothesis (H2) and the Proposition 3.1, we deduce that ‖V(ϕ(·,
a(δ(·))m))‖∞ <∞. Hence, let b=max{a/c1, (η‖V(ϕ(·,a(δ(·))m))‖∞+γ)/(1−η‖Vq‖∞)}
and consider the closed convex set

Λ := {u∈ C0(B) : a
(
δ(·))m ≤ u≤V(ϕ(·,a(δ(·))m))+ bVq

}
. (3.8)
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Obviously, by (3.7) we have that the set Λ is nonempty. Define the integral operator T on
Λ by

Tu(x) :=
∫

B
Gm,n(x, y)

[
ϕ
(
y,u(y)

)
+ψ

(
y,u(y)

)]
dy ∀x ∈ B. (3.9)

Let us prove that TΛ⊂Λ. Let u∈Λ and x ∈ B, then by (1.7) and (3.6) we have

Tu(x)≤V(ϕ(·,a(δ(·))m))(x) +
∫

B
Gm,n(x, y)q(y)g

(
u(y)

)
dy

≤V(ϕ(·,a(δ(·))m))(x) +
∫

B
Gm,n(x, y)q(y)

[
ηu(y) + γ

]
dy

≤V(ϕ(·,a(δ(·))m))(x)

+
∫

B
Gm,n(x, y)q(y)

[
η
(∥∥V

(
ϕ
(·,a(δ(·))m))∥∥∞ + b‖Vq‖∞

)
+ γ
]
dy.

(3.10)

Since η(‖V(ϕ(·,a(δ(·))m))‖∞) + γ ≤ b(1−η‖Vq‖∞), then

∫

B
Gm,n(x, y)q(y)

[
η
(∥∥V

(
ϕ(·,a(δ(·))m))∥∥∞ + b‖Vq‖∞) + γ]dy

≤ b
∫

B
Gm,n(x, y)q(y)dy = bVq(x),

Tu(x)≤V(ϕ(·,a(δ(·))m))(x) + bVq(x).

(3.11)

Moreover, from the monotonicity of f and using the relations (1.7), (2.2), and (3.5),
there exists a constant c > 0 such that for each x ∈ B, we have

Tu(x)≥
∫

B
Gm,n(x, y)ψ

(
y,u(y)

)
dy ≥ c(δ(x)

)m
∫

B

(
δ(y)

)m
p(y) f

(
u(y)

)
dy

≥ c f (aβ)
(∫

K

(
δ(y)

)m
p(y)dy

)
(
δ(x)

)m ≥ a(δ(x)
)m
.

(3.12)

On the other hand, we have that for each u ∈ Λ,ϕ(·,u) ≤ ϕ(·,a(δ(·))m) and ψ(·,u) ≤
g(u)q ≤ bq, which implies that

ϕ(·,u) +ψ(·,u)∈�(ϕ(·,a(δ(·))m)+bq). (3.13)

So we deduce by (H2), (1.6), and Proposition 3.1 that TΛ is relatively compact in C0(B).
In particular, for all u∈Λ, Tu∈ C0(B) and we deduce that TΛ⊂Λ.

Next, we prove the continuity of T in Λ. Let (uk)k be a sequence in Λ which converges
uniformly to a function u in Λ. Then since ϕ and ψ are continuous with respect to the
second variable, we deduce by the dominated convergence theorem that

Tuk(x)−→ Tu(x) as x −→∞. (3.14)

Now, since TΛ is relatively compact in C0(B), then we obtain the uniform convergence.
Hence T is a compact operator mapping from Λ to itself. So by the Schäuder fixed point
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theorem, there exists a function u∈Λ such that

u(x)=
∫

B
Gm,n(x, y)

[
ϕ
(
y,u(y)

)
+ψ

(
y,u(y)

)]
dy ∀x ∈ B. (3.15)

Finally, we need to verify that u is a positive continuous solution for the problem (P).
Indeed, since the functions θ(x)= q/(δ(·))m−1 and x 	→ ϕ(·,a(δ(·x))m)/(δ(x·))m−1 are in
Km,n, we deduce by (3.13) and Proposition 2.2 that the function

ϕ(·,u) +ψ(·,u)∈ L1
loc(B) (3.16)

holds. Moreover, since u ∈ C0(B), we deduce from (3.15) that V(ϕ(·,u) +ψ(·,u)) is in
L1

loc(B). Hence u satisfies ( in the sense of distributions) the equation

(−Δ)mu= ϕ(·,u) +ψ(·,u) in B. (3.17)

Moreover, since u satisfies

aδ(x)≤ u(x)
(
δ(x)

)m−1 ≤
1

(
δ(x)

)m−1

(
V
(
ϕ
(·,aδm))(x) + bVq(x)

)
, (3.18)

then it follows from hypotheses (H2), (1.6), and Proposition 3.1 that lim|x|→1(u(x)/
(δ(x))m−1)= 0. This completes the proof. �

Example 3.2. Let α,β ≥ 0 such that 0 ≤ α + β < 1, max(σ ,λ) < m, and γ > 0. Then the
problem

(−Δ)mu= (δ(x)
)mγ−σ(

u(x)
)−γ

+
(
δ(x)

)−λ(
u(x)

)α
Log

(
1 + (u(x)

)β)
in B,

u > 0,

lim
|x|→1

u(x)
(
δ(x)

)m−1 = 0

(3.19)

has a positive solution u∈ C0(B) satisfying

a
(
δ(x)

)m ≤ u(x)≤ b(δ(x)
)m

, (3.20)

where a,b are positive constants.
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