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formulated in terms of complete Riemannian metrics on extended phase spaces (condi-
tions with two-sided estimates) or in terms of derivatives of proper functions on extended
phase spaces (conditions with one-sided estimates).
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1. Introduction

This is a survey paper with complete proofs of results obtained in [6, 7, 9–11]. We derive
necessary and sufficient conditions for global-in-time existence of solutions of ordinary,
stochastic, and parabolic differential equations. They are obtained as modifications of
some well-known sufficient conditions (both with one-sided and two-sided estimates).
In particular those modifications involve transition to extended phase spaces. We con-
sider the general case of equations on smooth manifolds (mainly finite-dimensional).
For ordinary differential equations we get necessary and sufficient conditions of both
two-sided and one-sided sorts (in the latter case we also get a generalization to a certain
infinite-dimensional case). For stochastic differential and parabolic equations we obtain
necessary and sufficient conditions of one-sided sort for some classes of equations on
finite-dimensional manifolds.

Recall that if all solutions of Cauchy problems of an ordinary differential equation
with a smooth vector field in the right-hand side on a finite-dimensional manifold M
exist on the entire line (−∞,∞), the vector field and its flow are called complete. Below
the solutions to Cauchy problems will be called the orbits of the flow or the integral curves
of the vector field.

If the manifold M is compact, all continuous (in particular, all smooth) vector fields
are complete. Indeed, in this case any Riemannian metric on M is complete, any contin-
uous vector field is bounded, hence any integral curve has bounded length on any finite
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2 Global existence of solutions

interval, that is, it is relatively compact. Thus, the flow of a smooth vector field is a dif-
feomorphism of M onto M at any time instant belonging to (−∞,+∞), that is, the flow
is a flow of diffeomorphisms.

In the case of noncompact manifolds (in particular, in linear spaces) the integral curves
can get to infinity within some finite time interval and the problem of the flow complete-
ness becomes nontrivial. Analogous situation takes place also for stochastic differential
and parabolic equations.

Plenty of sufficient conditions for completeness of the flows of ordinary differential
equations in linear spaces are well known. There exist two sorts of such conditions: with
two-sided estimates and with one-sided estimates. The former is formulated in terms of
estimates on the norm of the right-hand side and guarantees the existence of all integral
curves for t ∈ (−∞,+∞). Let us present some examples.

Let X(t,x) be a smooth vector field on Rn. Consider the differential equation

ẋ(t)= X(t,x(t)
)
. (1.1)

The simplest examples of conditions with two-sided estimates are
(i) ‖X(t,x)‖ < ψ(t) at all x ∈ Rn and t ∈ (−∞,∞) for some function ψ > 0 that is

integrable on any finite interval (boundedness);
(ii) ‖X(t,x)‖ < ψ(t)(1 +‖x‖) with analogous ψ (linear growth).

The Wintner’s theorem proves the completeness under the following conditions:
‖X(t,x)‖ < ψ(t)L(‖x‖) where ψ > 0 is as above and L : [0,∞)→ (0,∞) is a continuous
function such that

∫∞

0

1
L(u)

du=∞. (1.2)

On nonlinear smooth manifolds analogous conditions are formulated in terms of
norms generated by complete Riemannian metrics. Notice that under the conditions of
Wintner’s theorem we can take a certain smooth approximation of L (denote it also by
L), such that (1.2) is valid for it, and introduce the new Riemannian metric on Rn by the
formula 〈·,·〉x = (1/L(‖x‖)2)(·,·) where 〈·,·〉x is the Riemanninan scalar product in the
tangent space TxRn and (·,·) is the Euclidean scalar product in Rn. From condition (1.2)
one can easily derive that the new Riemannian metric is complete. Thus, the condition
of Wintner’s theorem means boundedness with respect to the new complete Riemann-
ian metric in Rn. Notice also that the condition of linear growth is a particular case the
Wintner’s one and so for it there also exists a complete Riemannian metric with respect
to which the right-hand side is uniformly bounded.

An example of conditions with one-sided estimates in Rn is as follows. Let ϕ : Rn → R
be a smooth positive function such that ϕ(x)→∞ as x→∞. Then all integral curves exist
for t ∈ (t0,∞) (where t0 is the initial time value of the curve) if (X(t,x),gradϕ) < C at
all t ∈ (t0,∞), x ∈ Rn for some real constant C. Notice that such conditions guarantee
existence from any specified finite time instant to +∞ but for t→−∞ the solutions may
get to infinity within a finite time interval. Below we consider a modification of these
conditions like |(X(t,x),gradϕ)| < C for a certain C > 0 that guarantees existence of all
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integral curves on (−∞,+∞). Such conditions we will also call the ones with one-sided
estimates.

To describe the conditions with one-sided estimates on manifolds, notice that the
property ϕ(x) →∞ as x →∞ means that ϕ is a so-called proper function on Rn, that
is, its preimage of any relatively compact set in R is relatively compact in Rn (see gen-
eral definition for proper functions on manifolds below). On the other hand, the prod-
uct (X(t,x),gradϕ) is equal to the derivative Xϕ of ϕ in the direction of vector field X
at x ∈ Rn. Thus, a condition with one-sided estimate on a smooth manifold M can be
formulated as follows: let there exist a smooth proper positive function ϕ on M such that
|Xϕ| < C for some positive constant C at all t ∈ (−∞,∞),m∈M. Then all integral curves
of X exist on (−∞,∞). Obviously for the condition Xϕ < C we will get completeness in
going only forward.

Analogous conditions with one-sided and two-sided estimates are known for com-
pleteness of flows of stochastic differential equations. An example of conditions with
two-sided estimates is the well-known Itô condition of linear growth (see, e.g., [5]). In
conditions of one-sided type for stochastic differential equations the operator of deriva-
tive in the direction of vector field in the right-hand side is replaced by the generator of
stochastic flow, a special second-order differential operator. Among sufficient conditions
of this sort we mention Elworthy’s condition from [3, Theorem IX. 6A] and its particular
case from Theorem 5.3 below. We discuss the stochastic case in more detail in Section 5.

For parabolic equations analogous sufficient conditions are also known. In particular,
they can be obtained in the framework of stochastic approach to parabolic equations.

As it is mentioned above, in this paper we find modifications of sufficient conditions
of completeness that make them necessary and sufficient. The structure of the paper is
as follows. In Section 2 we deal with necessary and sufficient conditions of two-sided
sort for completeness of smooth vector fields on finite-dimensional manifolds. Section 3
is devoted to the same problem but for conditions of one-sided sort. In Section 4 we
obtain a generalization of conditions from Section 3 to a certain infinite-dimensional
case. In Section 5 we get a necessary and sufficient condition of one-sided sort for com-
pleteness of a stochastic flow, continuous at infinity, on a finite-dimensional manifold.
In Section 6, from the results of Section 5 we derive necessary and sufficient conditions
for existence of global Feller semigroup for parabolic equations of some special type on
finite-dimensional manifolds.

Preliminary information can be seen, for example, in [8].

2. Necessary and sufficient conditions of two-sided type for
completeness of ODE flows

As we have mentioned in Section 1, under the conditions of Wintner’s theorem it is possi-
ble to construct a new complete Riemannian metric onRn with respect to which the right-
hand side of the ODE becomes uniformly bounded. The same situation takes place also
for many other sufficient conditions of two-sided sort. Below in Theorem 2.2 we proof
that if on a complete Riemannian manifold the right-hand side is uniformly bounded,
the flow of ODE is complete.
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It turns out that the condition of boundedness of the right-hand side of ODE with
respect to a complete Riemannian metric can be modified so that it becomes necessary
and sufficient for completeness. This modification involves in particular transition to
extended phase space.

Recall that in contemporary topology a map f : X → Y from a topological space X to
a topological space Y is called proper, if the preimage of any relatively compact set from
Y is relatively compact in X . According to this terminology we give the following.

Definition 2.1. A function f : X → R on the topological space X is called proper if the
preimage of any relatively compact set from R is relatively compact in X .

Recall that in a complete Riemannian manifold and so in an Euclidean space (in par-
ticular, in R) a set is relatively compact if and only if it is bounded.

We should mention that in Rn a positive function f is proper if and only if f (x)→ +∞
as ‖x‖→ +∞. On a smooth manifold the Riemannian distance of any complete Riemann-
ian metric is a proper function. Below we sometimes will not specify a Riemannian metric
onM and in this case the exact mathematical meaning of x→∞ for x ∈M is that x leaves
every compact set, that is, f (x)→∞ for any proper function f on M.

Let M be a finite-dimensional smooth manifold and X(t,m) be a smooth (jointly in
t ∈ R and m∈M) vector field on M.

Denote by m(s) :M→M, s∈ R the flow of X . For any point x ∈M and time instant t
the orbit m(s)(t,m)=mt,m(s) of the flow is the solution of

ṁt,m(s)= (s,mt,m(s)
)
, (2.1)

with the initial condition

mt,m(t)=m. (2.2)

The orbits are also called the integral curves of X .
Consider the extended phase space M+ = R×M and the vector field X+

(t,m) = (1,X(t,
m)) on it.

Theorem 2.2 (see [6]). The flow of X on M is complete if and only if there exists a complete
Riemannian metric on M+ with respect to which the vector field X+ is uniformly bounded.

Proof. It is evident that the completeness of flow for X is equivalent to the completeness
of flow for X+.

Sufficiency. Let on M+ there exist a complete Riemannian metric with respect to which
the field X+ is uniformly bounded. Then any integral curve of X+ on any finite time
interval has finite length and by completeness of the metric it is relatively compact, that
is, the domain of solution is both closed and open in R. Hence it coincides with R.

Necessity. Let the vector field X be complete. Then X+ is also complete. Since X(t,m) is
smooth by the hypothesis, X+ is also smooth. Following [12], let us construct a certain
proper function ψ on in the following way. Take on M a countable locally finite covering
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� = {Vi}i∈N where all Vi are open and relatively compact. This can be done by virtue
of the paracompactness and the local compactness of M. Determine ψi : M → R by the
formula

ψi(m)=
⎧
⎨

⎩
i if m∈Vi,

0 if m /∈Vi.
(2.3)

By {φi}∞i=1 denote the smooth partition of unity corresponding to this covering. Define
the functionψ on the entireM as ψ(m)=∑∞

i=1ψi(m)φi(m). It is clear that ψ(m) is smooth
and proper by the construction.

In every tangent space T(t,m)({t}×M) to the submanifold {t}×M of M+ introduce a
scalar product that smoothly depends on (t,m). For example, one can take an arbitrary
Riemannian metric on M and extend it by natural way. Now construct the Riemannian
metric on M+ by regarding the vectors of the field X+ as being of unit length and orthog-
onal to the subspaces T(m,t)(M×{t}).

Consider the function Φ(t,m) = ψ(m+
(t,m)(0)) on M+, where m+

(t,m)(s) is the integral
curve of X+ with initial condition m+

(t,m)(t) =m (the orbit of flow m+(s) corresponding
to the vector field X+ on M+). Since by the hypothesis the integral curves of X+ exist
on (−∞,∞), the function ϕ :M+ → R, given by the formula ϕ(t,m)=Φ(t,m) + t, is obvi-
ously well-posed smooth and proper. It is also obvious thatX+ϕ= 1 (X+ϕ is the derivative
of ϕ in the direction of X+).

Now pick an arbitrary smooth function g : M+ → R such that g(t,m) > max‖Y‖1=1 exp
(Yϕ)2, Y ∈ T(t,m)({t}×M). Such a function can by constructed, for example, as follows.
For a relatively compact neighborhood of any point (t′,m′)∈M+ there exists a constant
that is greater than supmax‖Y‖1=1 exp(Yϕ)2, Y ∈ T(t,m)({t}×M) for all points (t,m) from
this neighborhood. Taking into account paracompactness of M+ and so, the existence of
a smooth partition of unity (as above) from those constants we can glue the function φ
defined on the whole of M+.

At every point (m, t)∈M+, define the inner product on T(m,t)M+ by the formula

〈Y ,Z〉2 = g2(t,m)
〈
pmY , pmZ

〉
1 + pxY pxZ, (2.4)

where Y ,Z ∈ T(m,t)M+ and pm, pX are orthogonal (in the metric 〈·,·〉1) projections of
T(m,t)M+ onto T(t,m)({t}×M) and X+, respectively.

It is obvious that in the metric 〈·,·〉2 the vector X is still orthogonal to the subspace
T(t,m)({t}×M) and ‖X‖2 = 1. �

Lemma 2.3. 〈·,·〉2 is a complete Riemannian metric on M+.

Proof of Lemma 2.3. By Hopf-Rinow theorem (see, e.g., [2]) it is sufficient to show that
any geodesic of the metric 〈·,·〉2 exists on (−∞,∞). It is enough to deal with the geodesics
whose norm of velocity vector is equal to 1 (all others can be obtained from them by linear
change of argument). Let c(s) be such a geodesic, that is, ‖ċ(s)‖2 = 1 for all s. It is easy
to see that (d/ds)ϕ(c(s)) = ċ(s)ϕ = (pmċ(s))ϕ+ (pxċ(s))ϕ (recall that here ċ(s)ϕ denotes
the derivative of ϕ in the direction of ċ(s); for (pmċ(s))ϕ and (pxċ(s))ϕ the meaning is
analogous). Since ‖ċ(s)‖2 = 1 and the vectors pmċ(s) and pxċ(s) are orthogonal to each
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other in the metric 〈·,·〉2, we have ‖pmċ(s)‖2 ≤ 1, ‖pxċ(s)‖2 ≤ 1. Hence

∣
∣
∣
∣
d

ds
ϕ
(
c(s)

)
∣
∣
∣
∣≤

∣
∣
∣
∣
∣

pmċ(s)∥
∥pmċ(s)

∥
∥

2

ϕ

∣
∣
∣
∣
∣+

∣
∣
∣
∣
∣

pxċ(s)∥
∥pxċ(s)

∥
∥

2

ϕ

∣
∣
∣
∣
∣=

∣
∣
∣
∣
∣

1
g
(
c(s)

)
pmċ(s)∥

∥pmċ(s)
∥
∥

1

ϕ

∣
∣
∣
∣
∣+

∣
∣X+ϕ

∣
∣ < 2

(2.5)

by the constructions of functions g and ϕ.
Thus, the values of ϕ(c(s)) are bounded on any finite interval s∈ (a,b) and the set of

points c(s) for s∈ (a,b) is relatively compact since ϕ is proper. This proves the existence
of geodesics on (−∞,∞). �

As it is mentioned above, ‖X+‖2 = 1. The theorem follows.

Remark 2.4. Let us emphasize that for the case of an autonomous smooth vector field X a
complete metric on the manifold M, with respect to which X is uniformly bounded, may
not exist.

Indeed, consider inRn two differential equations ẋ = ‖x‖2 · x and ẋ =−‖x‖2 · x, where
‖x‖ is the Euclidean norm of x ∈ Rn. It is well known that the field −‖x‖2 · x is complete
while the field ‖x‖2 · x is not complete: all its integral curves go to infinity within finite
time interval. Nevertheless, those fields differ from each other only by the sign, that is,
with respect to any Riemannian metric on M their norms are equal to each other.

3. Necessary and sufficient conditions of one-sided type for
completeness of ODE flows

As well as in Section 2 consider a smooth manifold M with dimension n < ∞ and a
smooth jointly in t ∈ R, m ∈M vector field X = X(t,m) on M. The coordinate rep-
resentation in a chart with respect to local coordinates (q1, . . . ,qn) takes the form X =
X1(∂/∂q1) + ···+Xn(∂/∂qn). The vector field X can be also considered as the first-order
differential operator on C1-functions on M. For a function f the value of the above oper-
ator is given as X f = X1(∂ f /∂q1) + ···+Xn(∂ f /∂qn), the derivative of f in the direction
of vector field X . Let γ(t) be an integral curve of X such that γ(0)=m. It is well known
that X f is represented in terms of γ(t) as follows: X f (m)= (d/dt) f (γ(t))|t=0. The latter
presentation is valid also in infinite-dimensional case where the use of coordinates is not
applicable.

Consider the extended phase spaceM+ = R×M with the natural projection π+ :M+ →
M, π+(t,m) =m. As well as in Section 2 introduce the vector field X+

(t,m) = (1,X(t,m))
on M+. It is clear that its coordinate representation is given in the form X+ = ∂/∂t +
X1(∂/∂q1) + ···+Xn(∂/∂qn). Hence the corresponding differential operator on the space
of C1-smooth functions on M+ takes the form ∂/∂t+X .

Theorem 3.1 (see [10]). A smooth vector field X on a finite-dimensional manifold M is
complete if and only if there exists a smooth proper function ϕ : M+ → R such that the
absolute value of derivative |X+ϕ| of ϕ along X+ is uniformly bounded, that is, |X+ϕ| =
|(∂/∂t +X)ϕ| ≤ C at any (t,m)∈M+ for a certain constant C > 0 that does not depend on
(t,m).
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Proof

Sufficiency. Consider the flowm+(s) :M+ →M+, s∈ Rwith orbitsm+(s)(t,m)=m+
(t,m)(s)

being the solutions of

ṁ+
(t,m)(s)= X+(m+

(t,m)(s)
)

(3.1)

with initial conditions

m+
(t,m)(t)= (t,m). (3.2)

Consider the derivative X+ϕ of ϕ along X+ where ϕ is from the hypothesis. At (t,m)∈
M+ we get the equality

X+ϕ(t,m)= d

ds
ϕ
(
m+

(t,m)(s)
)|s=t, (3.3)

(see above) and under the hypothesis of our theorem

∣
∣
∣
∣
d

ds
ϕ
(
m+

(t,m)(s)
)|s=t

∣
∣
∣
∣≤ C. (3.4)

Represent the values of ϕ along the orbit m+
(t,m)(s) as follows:

ϕ
(
m+

(t,x)(s)
)−ϕ(t,m)=

∫ s

0

d

dτ
ϕ
(
m+

(t,m)(τ)
)
dτ. (3.5)

From the last equality and from inequality (3.4) we evidently obtain that if s belongs to a
finite interval, the values ϕ(m+

(t,x)(s)) are bounded in R. Then since ϕ is proper, this means
that the set m+

(t,m)(s) is relatively compact in M+.
Recall that by the classical solution existence theorem the domain of any solution of

ODE is an open interval inR. In particular, for s > 0 the solution of above Cauchy problem
is well-posed for s∈ [t,ε). If ε > 0 is finite, then the corresponding values of the solution
belong to a relatively compact set inM and so the solution is well-posed for s∈ [t,ε]. The
same arguments are valid also for s < 0. Thus, the domain is both open and closed and so
it coincides with the entire real line (−∞,∞).

Taking into account the construction of vector field X+, we can represent the integral
curves m+

(t,m)(s) in the form m+
(t,m)(s)= (s,mt,m(s)). Hence from global existence of inte-

gral curves of X+ we obviously obtain the global existence of integral curves of X . So, the
vector field X is complete.

Necessity. Let the vector field X be complete. Thus, all orbits mt,m(s) of the flow m(s) are
well-posed on the entire real line.

Consider the function ϕ : M+ → R as in the proof of Theorem 2.2. As well as in the
proof of Theorem 2.2 from completeness of X+ it follows that ϕ is well-posed smooth
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and proper. Consider X+ϕ. By the construction of the vector field X+ and of the function
ϕ, we get

X+ϕ= X+(Φ(t,m)
)

+X+t = 0 + 1= 1. (3.6)

Thus, we have proven the necessity part of our theorem for C = 1. This completes the
proof. �

4. A generalization to infinite-dimensional case

Both Theorems 2.2 and 3.1 cannot be generalized to the infinite-dimensional case di-
rectly. For Theorem 2.2 the fatal difficulty is the absence of good enough infinite-di-
mensional analogy of Hopf-Rinow theorem. For Theorem 3.1 the main difficulty is the
absence of continuous proper real-valued functions on infinite-dimensional manifolds.
However it is possible to replace the set of functions, proper with respect to strong topol-
ogy, by the one, proper with respect to a weaker topology so that an analogue of Theorem
3.1 takes place.

Let M be a Banach manifold that admits partition of unity of class Cp for a certain
p ≥ 2 (see [13]).

For the sake of convenience we consider charts onM as triples (U ,V ,ϕ), where V is an
open ball in the model space,U is an open set inM, and ϕ :V →U is a homeomorphism.

Definition 4.1. A set Θ on M is called relatively weakly compact if there exists a finite
collection of charts (Ui,Vi,ϕi) such thatΘ⊂⋃i Ui and for every i the set ϕ−1

i (Θ
⋂
Ui)⊂Vi

is bounded with respect to the norm of model space that contains Vi.

Remark 4.2. If the model space of M is a reflexive Banach space, then under some nat-
ural condition the relatively weakly compact set as in Definition 4.1 is relatively weakly
compact with respect to the topology of weal convergence on M (see [15]). If M itself
is a reflexive Banach space, then any relatively weakly compact set as in Definition 4.8 is
weakly compact by standard definition of weak topology. These circumstances allow us
to use the term “relatively weakly compact set” in the general case of Banach manifolds
where (generally speaking) the weak topology is ill-posed.

Definition 4.3. A function f : N → R on a Banach space N is called weakly proper if
for any relatively compact set in R its preimage is relatively weakly compact in N as in
Definition 4.1

Let X = X(t,m) be a smooth jointly in t ∈ R, m ∈M vector field on M. Consider
the extended phase space M+ = R×M and the vector field X+

(t,m) = (1,X(t,m)) on it (cf.
Sections 2 and 3).

Now we are in the position to prove the following generalization of Theorem 3.1.

Theorem 4.4 (see [11]). LetM be a Banach manifold that admits partition of unity of class
Cp for a certain p ≥ 2. A smooth vector field X on M is complete if and only if there exists
a C2-smooth weakly proper function f : M+ → R on M+ such that the absolute value of the
derivative of f in the direction of X+ is uniformly bounded, that is, |X+ f | ≤ C for a certain
constant C > 0 that does not depend on (t,m).
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Proof

Sufficiency. Let there exist f as in the hypothesis. Consider the flow m+(s) : M+ →M+,
s∈ R of X+. Its orbits m+(s)(t,m)=m+

t,m(s) satisfy

m′+
(t,m)(s)= X+(m+

(t,m)(s)
)

(4.1)

with initial conditions

m+
(t,m)(t)= (t,m). (4.2)

Show the existence of all orbits on s∈ (−∞,∞). Consider the derivativeX+ f . At the point
(t,m) the equality

X+ f (t,m)= d

ds
f
(
m+

(t,m)(s)
)
|s=t (4.3)

holds and by the hypothesis

∣
∣
∣
∣
d

ds
f
(
m+

(t,m)(s)
)
|s=t

∣
∣
∣
∣≤ C. (4.4)

Thus, on any finite interval [t,ε) the values f (m+
(t,m)(s)) are bounded by the constant

C(ε− t). Then from Definitions 4.1 and 4.3 it follows that for s∈ (0,ε) there exists a finite
number of charts (Ui,Vi,ϕi) such that the set m+

(t,m)(s) belongs to the union of Ui and
the part of corresponding set in any Vi is bounded. In particular, the part in the last Vi

is bounded and so there exists lims→ε(m+
(t,m)(s)), that is, m+

(t,m)(s) does exist on the closed
interval [t,ε]. As well as in finite-dimensional situation this means that the domain of
m+

(t,m)(s) is the entire R. Obviously,m+
(t,m)(s)= (s,m(t,m)(s)). Hence from the completeness

of X+ it follows that X is also complete.

Necessity. Let X be complete, that is, all orbits m(t,m)(s) exist on the entire line. Then all
orbits of the flow m+(s) also exist on the entire line.

Construct an open covering of M in the following way. For any m ∈M pick a chart
(Um,Vm,ϕm) such that m ∈ Um. Pick also an open neighborhood Wm ⊂ Um of m such
that ϕ−1(Wm) ⊂ Vm is bounded with respect to the norm of model space where Vm is
contained. Notice that by the construction Wm is relatively weakly compact. Since M is
paracompact and satisfies the second axiom of countability, we can choose from {Wm} a
countable locally finite subcovering {Wi} (see [13]).

Define the functions ψi :M→ R by the formula

ψi(m)=
⎧
⎨

⎩
i m∈Wi,

0 m /∈Wi.
(4.5)

By θi(m), i= 1, . . . ,∞, denote the Cp-smooth partition of unity, corresponding to {Wi},
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that exists by the hypothesis. Define the function ψ(m) on M by the formula

ψ(m)=
∞∑

i=1

θi(m)ψi(m). (4.6)

By the construction ψ(m) is Cp-smooth and weakly proper.
Now construct the Cp-smooth function Φ :M+ → R by assigning to the point (t,m)∈

M+ the value Φ(t,m)= ψ(mt,m(0)). Since X+ is complete, Φ(t,m) is well-posed.
By its construction the function Φ takes constant values along the orbits of X+. In-

deed, for m+
(t,m)(s) = (s,m(t,m)(s)) the equality m(s,m(t,m)(s))(0) = mt,m(0) holds. Consider

the function f : M+ → R, f (t,m) =Φ(t,m) + t that is Cp-smooth and weakly proper by
the construction. Taking into account the construction of X+ and f , we get

X+ f = X+Φ(t,m) +X+t = 0 + 1= 1. (4.7)

Thus, any C ≥ 1 can be chosen as the constant from the assertion of theorem that we are
looking for. �

5. Stochastic case

The results of this section were announced in [9, 7].
Let M be a finite-dimensional noncompact manifold. Consider a smooth stochastic

dynamical system (SDS) on M (see [3]) with the infinitesimal generator �(x). In local
coordinates it is described in terms of a stochastic differential equation with C∞-smooth
coefficients in Itô or in Stratonovich form. Since the coefficients are smooth, we can pass
from Stratonovich to Itô equation and vice versa.

Consider the one-point compactification M
⋃{∞} of M where the system of open

neighbourhoods of {∞} consists of complements to all compact sets of M. Denote by
ξ(s) :M→M

⋃{∞} the stochastic flow of SDS. For any point x ∈M and time t the orbit
ξt,x(s) of this flow is the unique solution of the above-mentioned equation with initial
conditions ξt,x(t) = x. As the coefficients of equation are smooth, this is a strong solu-
tion and a Markov diffusion process given on a certain random time interval. The point
{∞} is the “cemetery” where the solution (defined on a random time interval) gets after
explosion.

We refer the reader to [14] for more information on behavior of a diffusion process at
infinity.

Recall that the generator � is a second-order differential operator without constant
term (i.e., �1= 0 where 1 denotes the constant function identically equal to 1). In local
coordinates one can find the matrix of its pure second-order term that is symmetric and
so semipositive definite.

For a stochastic flow the generator plays the same role as the derivative in the direc-
tion of vector field in the right-hand side of an ordinary differential equation. The main
result on completeness for stochastic flows here is analogous to Theorem 3.1 where the
derivative in the direction of vector field X+ is replaced with the corresponding generator.
However, in the stochastic case there is an additional difficulty that for a flow with inverse
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time direction the generator does not coincide with the one for the flow itself. That is
why we obtain a necessary and sufficient condition for completeness only for flows with
additional assumption: the flow must be continuous at infinity (see the exact definition
below).

Everywhere in this section we suppose �(x) to be autonomous and strictly elliptic (i.e.,
in a local coordinate system its pure second-order term is described by a nondegenerate,
i.e., positive definite matrix). This assumption allows us to apply the machinery from [1].
Notice that using this machinery we can reduce the condition that the SDS is C∞-smooth
to the assumption that it is Hölder continuous.

Below we denote the probability space, where the flow is defined, by (Ω,�,P) and
suppose that it is complete. We also deal with separable realizations of all processes.

Let T > 0 be a real number.

Definition 5.1. The flow ξ(s) is complete on [0,T] if ξt,x(s) is a.s. inM for any couple (t,x)
(with 0≤ t ≤ T) and for all s∈ [t,T].

Definition 5.2. The flow ξ(s) is complete if it is complete on any interval [0,T]⊂ R.

We start with a certain sufficient condition for completeness of a stochastic flow analo-
gous to conditions for completeness of ODE flows with one-sided estimates. It is a simple
version of rather general sufficient condition from [3, Theorem IX. 6A].

Theorem 5.3. Let there exist a smooth proper function ϕ on M such that �(t,m)ϕ < C for
some C > 0 at all t ∈ [0,+∞) and m∈M. Then the flow ξ(t,s) is complete.

Proof. Consider the collection of sets Wn = ϕ−1([0,n)) with the positive integers 1,2, . . . ,
n, . . . . Since ϕ is proper, those sets are relatively compact and

⋃
nWn =M. Besides, by the

construction Wi ⊂Wi+1 i= 1,2, . . . ,n, . . . .
Specify arbitrary t ∈ [0,+∞) and m ∈M and consider the orbit ξt,m(s). Denote by

τn the first entrance time of ξt,m(s) in the boundary of Wn. Express ϕ(ξt,m(s∧ τn)) by
Itô formula. Since Wn is relatively compact, Itô integral on the interval [t,s∧ τn) is a
martingale and so its expectation is equal to 0. Then

Eϕ
(
ξt,m
(
s∧ τn

))= ϕ(m) +
∫ s∧τn

t
(�ϕ)

(
θ,ξt,m(θ)

)
dθ < ϕ(m) +Cs, (5.1)

since �(t,m)ϕ < C and s≥ s∧ τn.
Consider the set Ωn

s = {ω ∈Ω|s < τn}. Obviously,

n
(
1−P

(
Ωn
s

))
< Eϕ

(
ξt,m
(
s∧ τn

))
, (5.2)

since for ω /∈Ωn
s we get ξt,m(s∧ τn,ω)= ξt,m(τn,ω), that is, ϕ(ξt,m(s∧ τn,ω))= n. Thus,

1−P
(
Ωn
s

)
<
ϕ(m) +Cs

n
. (5.3)

Hence limn→∞(1− P(Ωn
s )) = 0. However by the construction limn→∞Ωn

s =
⋃n
i=1Ω

i
s =Ω,

that is, for any specified s≥ t the value ξt,m(s) exists with probability 1. �
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Let γ(s) be a (not necessarily complete) stochastic flow.

Definition 5.4. We say that the flow γ(s) is continuous at infinity if for any 0≤ t ≤ T and
any compact K ⊂M the equality

lim
x→+∞P

(
γt,x(T)∈ K)= 0 (5.4)

holds.
One can easily see that continuity at infinity according to Definition 5.4 means that

for any specified t ∈ [0,+∞) and for all s ∈ [t,+∞) the correspondence (x,s) 
→ γt,x(s)
is continuous in probability at the point (s,{∞}) ∈ [t,∞]× (M

⋃{∞}), see [16, 17] for
details.

Our next task is to construct a special proper function associated to a complete sto-
chastic flow ξ(s).

Consider an expanding sequence of compact sets Mi such that Mi ⊂Mi+1 for all i and
⋃
iMi =M. By Ti we denote an increasing sequence of real numbers tending to +∞.
For (t,x)∈ [0,Ti]×Mi, the distribution function μt,x,s of random elements ξt,x(s), s∈

[t,Ti], on M forms a weakly compact set of measures. Indeed, take an arbitrary sequence
random element ξtk ,xk (sk) and the corresponding measures μtk ,xk ,sk . Since [0,Ti]×Mi ×
[0,Ti] is compact, it is possible to select a subsequence tkq , xkq , skq of the sequence tk, xk,
sk, converging to a certain t0, x0, s0. It is a well-known fact that the function E f (ξt,x(s))
is continuous jointly in t, x, s for any bounded continuous function f :M→ R. Then we
obtain that

E
(
f
(
ξtkq ,xkq

(
skq
)))−→ E

(
f
(
ξt0,x0

(
s0
)))

, (5.5)

that is, from any sequence of measures mentioned above it is possible to select a weakly
converging subsequence.

Take a monotonically decreasing sequence of positive numbers εi → 0 such that the
series

∑∞
i=1
√
εi converges. From Prokhorov’s theorem it follows that for the measures

corresponding to ξt,x(s), s ∈ [t,Ti], (t,x) ∈ [0,Ti]×Mi mentioned above, there exists a
compact Ξi ⊂M such that for all μt,x,s the inequality μt,x,s(M\Ξi) < εi holds. Construct an
expanding system of compacts Θi ⊃

⋃i
k=0Ξk for any i, being closures of open domains

in M with smooth boundary and such that Θi ⊂ Θi+1 for any i and
⋃
iΘi =M. By the

construction for s ∈ [0,Ti], (t,x) ∈ [0,Ti]×Mi the relation μt,x,s(M\Θi) < εi holds. In
particular, μt,x,s(Θi+1\Θi) < εi.

Choose neighborhoods Ui ⊂ Ũi of the set Θi, that completely belong to Θi+1, and con-
sider a smooth function ψi that equals 0 on Ui, equals 1 on Θi+1\Ũi, and takes values
between 0 and 1 on Ũi\Ui. Construct the function θ on M setting its value on Θi+1\Θi

equal to ψi(1/
√
εi) + (1− ψi)(1/

√
εi−1). Notice that on Θi+1\Θi the values of θ are not

greater than 1/
√
εi.

Immediately from the construction we obtain the following.

Lemma 5.5. For a complete flow ξ(s) the function θ, constructed above, is smooth positive
and proper.
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Theorem 5.6. If the flow ξ(t) is complete, for any (t,x) and any T > t, the inequality
Eθ(ξt,x(s)) <∞ holds for each s∈ [t,T].

Proof. Take i such that [0,T] ⊂ [0,Ti], t ∈ [0,Ti], and x ∈Mi. Then μt,x,s(M\Θi) < εi or
μt,x,s(Θi) > (1− εi). By the construction the values of continuous function θ on compact
Θi are bounded by constant 1/

√
εi−1. Then also by the construction

Eθ
(
ξt,x(s)

)≤ 1√
εi−1

+
∞∑

k=i
εk

1√
εk
= 1√

εi−1
+
∞∑

k=i

√
εk < C < +∞ (5.6)

for some positive constant C since by definition the series
∑∞

k=i+1
√
εk converges. �

Corollary 5.7. The function Eθ(ξt,x(s)) is integrable in s∈ [t,T].

Proof. From the construction in Theorem 5.6 it follows that for given t, x estimate (5.6)
is valid with the same C for all s∈ [t,T]. �

Specify any T > 0 and consider the direct product MT = [0,T]×M. Denote by πT :
MT →M the natural projection: πT(t,x)= x.

Theorem 5.8. The function u(t,x) = Eθ(ξt,x(T)) on MT is C1-smooth in t ∈ [0,T], C2-
smooth in x ∈M and satisfies

(
∂

∂t
+ �

)
u= 0, (5.7)

where � is the infinitesimal generator of the flow.

Proof. Since M is locally compact and paracompact, we can choose a countable locally
finite open covering {Vi}∞i=1 of M such that all Vi have compact closures. Consider a
partition of unity {ϕi}∞i=1 adapted to this covering. Then at any point x ∈M the equality
θ(x)=∑∞

i=1ϕi(x)θ(x) holds.
Introduce the function vi(x)= ϕi(x)θ(x) as well as the functions ui(t,x)= Evi(ξt,x(T))

and θk(t,x)=∑k
i=0ui(t,x). Notice that all vi(x) are smooth and bounded. Then any vi(t,x)

satisfies the conditions of [5, Theorem 4, Chapter VIII] and so any ui(t,x) is C1-smooth
in t, C2-smooth in x and satisfies the relation

∂

∂t
ui + �ui = 0. (5.8)

Hence all functions θk(t,x), being finite sums of functions ui(t,x), are also C1-smooth in
t, C2-smooth in x and satisfy

∂

∂t
θk + �θk = 0. (5.9)

In addition it is evident that θ(t,x) is the limit of θk(t,x) at k→∞ and the functions
θk(t,x) form an increasing locally bounded sequence. Then, since � is autonomous and
strictly elliptic, the assertion of theorem follows from [1, Lemma 1.8]. �
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Theorem 5.9. If a complete flow ξ(s) is continuous at infinity, the function u(t,x) =
Eθ(ξt,x(T)) on MT is proper.

Proof. Let ξ(s) be continuous at infinity. To prove the properness of u(t,x) it is sufficient
to show that u(t,x)→∞ as θ(x)→∞, that is, that for any C > 0 there exists Ξ > 0 such
that θ(x) > Ξ yields u(t,x) > C for any t ∈ [0,T]. Since θ is proper, K = θ−1([0,2C]) is
compact. From formula (5.4) of the definition of continuity at infinity it follows that for
any t ∈ [0,T] there exists Ξ such that P(ξt,x(T) /∈ K) > 1/2 for θ(x) > Ξ. Then u(t,x) =
Eθ(ξt,x(T)) > 2C · 1/2= C. Since t is from compact set [0,T] and u(t,x) is continuous in
t, this completes the proof. �

On the manifold MT consider the flow η(s)= (s,ξ(s)). Obviously, for (t,x)∈MT the
trajectory of η(t,x)(s) satisfies the relation πT(η(t,x)(s)) = ξt,x(s). It is clear that η(s) is the
flow generated by SDS with infinitesimal generator �T determined by the formula

�T
(t,x) =�(t,x) +

∂

∂t
. (5.10)

Notice that �T is a direct analogue of differentiation in the direction of X+ in Theorem
3.1.

Theorem 5.10. A flow ξ(s) on M, continuous at infinity, is complete on [0,T] if and only
if there exists a positive proper function uT :MT → R on MT that is C1-smooth in t ∈ [0,T],
C2-smooth in x ∈M and such that �TuT < C for a certain constant C > 0 at all points
(t,x)∈MT .

Proof. Let there exist a smooth proper positive function uT(t,x) on MT such that �TuT

< C at all points of MT . Then from Theorem 5.3 it follows that η(s) is complete. Thus,
ξ(s) is also complete.

Let ξ(s) be complete. Consider the function θ(x) on M introduced above and the
function uT(t,x) = Eθ(ξt,x(T)) on MT . Since ξ(s) is continuous at infinity, uT(t,x) is
proper by Theorem 5.9. By Theorem 5.8 it is also C1 in t, C2 in x and satisfies the re-
lation ((∂/∂t) + �)uT =�TuT = 0. �

Corollary 5.11. A flow ξ(s) on M, continuous at infinity, is complete if and only if for
any T > 0 there exists a positive proper function uT : MT → R on MT that is C1-smooth in
t ∈ [0,T], C2-smooth in x ∈M and such that |�Tu(t,x)| < C for a certain constant C > 0
at all points (t,x)∈MT .

6. Parabolic equations

Here by using stochastic approach to parabolic equations and the results of Section 5 we
get a necessary and sufficient condition for existence of global Feller semigroup for some
class of such equation (in particular, this class includes equations with the so-called C0

property). We suppose that the second-order operator in the right-hand side of parabolic
equation is autonomous and strictly elliptic. Under this assumption, on the one hand,
the stochastic approach is applicable and on the other hand, the conditions of Section 5
are fulfilled for the corresponding stochastic flow.
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Let M be a finite-dimensional (generally speaking) noncompact manifold. Consider
on M a parabolic equation

∂

∂t
u=�u (6.1)

with initial conditions

u(0,x)= u0(x), (6.2)

where � is an autonomous strictly elliptic operator with C∞ coefficients without con-
stant term (i.e., satisfying the property �1= 0), u0 and u are smooth enough real-valued
bounded functions.

In local coordinates on M, the operator � is represented in the form

n∑

i=1

ai
∂

∂qi
+

n∑

i=1

bi
(
σkl
) ∂

∂qi
+

1
2

n∑

i, j=1

σi j
∂2

∂qi∂q j
. (6.3)

Here bx(σ) =∑n
i=1 b

i(σkl)∂/∂qi is the so-called compensating term, depending on (σkl),
that guarantees covariant transformation of the formula under changes of coordinates.

It is a well-known fact that under the above conditions on � the stochastic approach to
investigation of parabolic equations is applicable in the following way. One can easily see
that the matrix (σi j(x)) is a coordinate expression of a smooth symmetric (2,0)-tensor
field on M. Since � is strictly elliptic, this matrix is not degenerate and taking at any
x ∈M the inverse matrix (σi j(x)) one gets a smooth (0,2)-tensor field. Denote the latter
field by σx. Thus, σx for any x ∈M is a symmetric bilinear form on the tangent space
TxM. Since � is strictly elliptic, this form at any x ∈M is positive definite and so the field
σx can be considered as a Riemannian metric tensor on M. By Nash’s theorem we can
embed M with this metric isometrically into a certain Euclidean space Rk where k is large
enough. Then the field of orthogonal projections Ax : Rk → TxM is smooth and gives us
the presentation of σx in the form

σx = A∗x Ax, (6.4)

where A∗x is the conjugate operator.
The above construction yields the existence of a smooth stochastic dynamical system

(SDS) on M (see [3]) whose infinitesimal generator is � and it is of the same type as in
Section 5. In local coordinates it is described in terms of a stochastic differential equation
with C∞-smooth coefficients in Itô or in Stratonovich form with diffusion term A∗x . In
Itô form its drift is a+ b. Since the coefficients are smooth, we can pass from Itô form to
Stratonovich one and vice versa.

Denote by ξ(s) the flow of above-mentioned SDS and by ξt,x(s) its orbits (see Section
5). If ξ(s) is complete, on the space of bounded measurable functions on M, there exists
an operator semigroup S(t,s) given for a function f (x) by the formula

[
S(t,s) f

]
(x)= E f (ξt,x(s)

)
, (6.5)
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where E is the mathematical expectation. This is a Feller semigroup, that is, for any t ≥ 0,
s≥ t the operators S(t,s) are contracting and transform any continuous positive bounded
function into one with the same properties. It is also well known that for continuous and
bounded function u0(x) the continuous and bounded function

u(s,x)= [S(0,s)u0
]
(x)= Eu0

(
ξ0,x(s)

)
(6.6)

is a generalized solution of (6.1)–(6.2). If u(s,x) is smooth enough, it is a classical solu-
tion. By analytical methods it is shown that this solution is unique in the class of bounded
measurable functions. See details, for example, in [4].

Thus, completeness of the stochastic flow ξ(s) (i.e., global-in-time existence of solu-
tions of the above-mentioned stochastic differential equation) is equivalent to global-in-
time existence of solutions of (6.1)–(6.2).

As a corollary to Theorem 5.10 and Corollary 5.11 we obtain the following theorem.

Theorem 6.1. If the flow ξ(s) is continuous at infinity, the solutions of (6.1)–(6.2) exist
globally in time if and only if for anyT > 0 there exists a positive proper function vT :MT → R
that is C1-smooth in t ∈ [0,T], C2-smooth in x ∈M and such that �TvT(t,x) < C for a
certain constant C > 0 at all points (t,x)∈MT .

Of course it is important to have conditions for global-in-time existence of solutions
of (6.1)–(6.2) without referring to the properties of corresponding flow ξ(s). For this
purpose we select a smaller class of equations according to the following.

Definition 6.2 (see [1]). The flow ξ(s) and the corresponding semigroup S are called to
have C0 property if for any compact K ⊂M the relation

lim
x−→+∞P

(
TK
(
ξt,x
)
< T

)= 0 (6.7)

holds where TK (ξt,x) is the first entrance time of ξt,x in K .
It is well known that C0 property is equivalent to the fact that the operators from

semigroup S leave invariant the space C0(M) of continuous functions, tending to zero at
infinity (see, e.g., [14, 16, 17] for details). Some conditions, under which C0 property is
satisfied, are found in [1].

Proposition 6.3. Any flow with C0 property is continuous at infinity.

Proposition 6.3 follows from the obvious fact that P(TK (γt,x) < T) ≥ P(γt,x(T) ∈ K).
We refer the reader to [14, 16, 17] for some details on behavior of a stochastic flow at
infinity and on relations between C0 property and continuity at infinity.

From Proposition 6.3, Theorem 5.10, and Corollary 5.11 we get the following.

Theorem 6.4. If operators (6.5) are C0, the solutions of (6.1)–(6.2) exist globally in time
if and only if for any T > 0 there exists a positive proper function vT : MT → R that is C1-
smooth in t ∈ [0,T], C2-smooth in x ∈M and such that �TvT(t,x) < C for a certain con-
stant C > 0 at all points (t,x)∈MT .
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