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We investigate the existence of solutions for a class of second-order q-difference inclusions with
nonseparated boundary conditions. By using suitable fixed-point theorems, we study the cases
when the right-hand side of the inclusions has convex as well as nonconvex values.

1. Introduction

The discretization of the ordinary differential equations is an important and necessary step
towards finding their numerical solutions. Instead of the standard discretization based on the
arithmetic progression, one can use an equally efficient q-discretization related to geometric
progression. This alternative method leads to q-difference equations, which in the limit q →
1 correspond to the classical differential equations. q-difference equations are found to be
quite useful in the theory of quantum groups [1]. For historical notes and development of
the subject, we refer the reader to [2, 3] while some recent results on q-difference equations
can be found in [4–6]. However, the theory of boundary value problems for nonlinear q-
difference equations is still in the initial stages, and many aspects of this theory need to be
explored.

Differential inclusions arise in the mathematical modelling of certain problems in
economics, optimal control, stochastic analysis, and so forth and are widely studied by
many authors; see [7–13] and the references therein. For some works concerning difference
inclusions and dynamic inclusions on time scales, we refer the reader to the papers [14–
17].
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In this paper, we study the existence of solutions for second-order q-difference inclu-
sions with nonseparated boundary conditions given by

D2
qu(t) ∈ F(t, u(t)), 0 ≤ t ≤ T, (1.1)

u(0) = ηu(T), Dqu(0) = ηDqu(T), (1.2)

where F : [0, T] × � → P(�) is a compact valued multivalued map, P(�) is the family of all
subsets of �, T is a fixed constant, and η/= 1 is a fixed real number.

The aim of our paper is to establish some existence results for the Problems (1.1)-(1.2),
when the right-hand side is convex as well as nonconvex valued. First of all, an integral
operator is found by applying the tools of q-difference calculus, which plays a pivotal role
to convert the given boundary value problem to a fixed-point problem. Our approach is
simpler as it does not involve the typical series solution form of q-difference equations. The
first result relies on the nonlinear alternative of Leray-Schauder type. In the second result,
we will combine the nonlinear alternative of Leray-Schauder type for single-valued maps
with a selection theorem due to Bressan and Colombo for lower semicontinuous multivalued
maps with nonempty closed and decomposable values, while in the third result, we will use
the fixed-point theorem for generalized contraction multivalued maps due to Wegrzyk. The
methods used are standard; however, their exposition in the framework of Problems (1.1)-
(1.2) is new.

The paper is organized as follows: in Section 2, we recall some preliminary facts that
we need in the sequel, and we prove our main results in Section 3.

2. Preliminaries

In this section, we introduce notation, definitions, and preliminary facts which we need for
the forthcoming analysis.

2.1. q-Calculus

Let us recall some basic concepts of q-calculus [1–3].
For 0 < q < 1, we define the q-derivative of a real-valued function f as

Dqf(t) =
f(t) − f(qt)
(
1 − q)t , Dqf(0) = lim

t→ 0
Dqf(t). (2.1)

The higher-order q-derivatives are given by

D0
qf(t) = f(t), Dn

qf(t) = DqD
n−1
q f(t), n ∈ �. (2.2)

The q-integral of a function f defined in the interval [a, b] is given by

∫x

a

f(t)dqt :=
∞∑

n=0
x
(
1 − q)qnf(xqn) − af(qna), x ∈ [a, b], (2.3)
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and for a = 0, we denote

Iqf(x) =
∫x

0
f(t)dqt =

∞∑

n=0
x
(
1 − q)qnf(xqn), (2.4)

provided the series converges. If a ∈ [0, b] and f is defined in the interval [0, b], then

∫b

a

f(t)dqt =
∫b

0
f(t)dqt −

∫a

0
f(t)dqt. (2.5)

Similarly, we have

I0qf(t) = f(t), Inq f(t) = IqI
n−1
q f(t), n ∈ �. (2.6)

Observe that

DqIqf(x) = f(x), (2.7)

and if f is continuous at x = 0, then

IqDqf(x) = f(x) − f(0). (2.8)

In q-calculus, the integration by parts formula is

∫x

0
f(t)Dqg(t)dqt =

[
f(t)g(t)

]x
0 −
∫x

0
Dqf(t)g

(
qt
)
dqt. (2.9)

2.2. Multivalued Analysis

Let us recall some basic definitions on multivalued maps [18, 19].
Let X denote a normed space with the norm | · |. A multivalued map G : X → P(X)

is convex (closed) valued if G(x) is convex (closed) for all x ∈ X. G is bounded on bounded
sets if G(B) = ∪x∈BG(x) is bounded in X for all bounded sets B in X (i.e., supx∈B{sup{|y| :
y ∈ G(x)}} < ∞). G is called upper semicontinuous (u.s.c.) on X if for each x0 ∈ X, the set
G(x0) is a nonempty closed subset of X, and if for each open set N of X containing G(x0),
there exists an open neighborhood N0 of x0 such that G(N0) ⊆ N. G is said to be completely
continuous ifG(B) is relatively compact for every bounded set B inX. If the multivaluedmap
G is completely continuous with nonempty compact values, then G is u.s.c. if and only if G
has a closed graph (i.e., xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗)). G has a fixed-
point if there is x ∈ X such that x ∈ G(x). The fixed-point set of the multivalued operator G
will be denoted by FixG.

For more details on multivalued maps, see the books of Aubin and Cellina [20], Aubin
and Frankowska [21], Deimling [18], and Hu and Papageorgiou [19].
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Let C([0, T],�) denote the Banach space of all continuous functions from [0, T] into �
with the norm

‖u‖∞ = sup{|u(t)| : t ∈ [0, T]}. (2.10)

Let L1([0, T],�) be the Banach space of measurable functions u : [0, T] → � which are
Lebesgue integrable and normed by

‖u‖L1 =
∫T

0
|u(t)|dt, ∀u ∈ L1([0, T],�). (2.11)

Definition 2.1. Amultivalued map G : [0, T] → P(�) with nonempty compact convex values
is said to be measurable if for any x ∈ �, the function

t �−→ d(x, F(t)) = inf{|x − z| : z ∈ F(t)} (2.12)

is measurable.

Definition 2.2. Amultivalued map F : [0, T] × � → P(�) is said to be Carathéodory if

(i) t �→ F(t, x) is measurable for each x ∈ �,
(ii) x �→ F(t, x) is upper semicontinuous for almost all t ∈ [0, T].

Further a Carathéodory function F is called L1-Carathéodory if

(iii) for each α > 0, there exists ϕα ∈ L1([0, T],�+ ) such that

‖F(t, x)‖ = sup{|v| : v ∈ F(t, x)} ≤ ϕα(t) (2.13)

for all ‖x‖∞ ≤ α and for a.e. t ∈ [0, T].

Let E be a Banach space, letX be a nonempty closed subset of E, and letG : X → P(E)
be a multivalued operator with nonempty closed values. G is lower semicontinuous (l.s.c.) if
the set {x ∈ X : G(x)∩B /= ∅} is open for any open set B in E. LetA be a subset of [0, T]×�. A is
L⊗Bmeasurable ifA belongs to the σ-algebra generated by all sets of the form J×D, where
J is Lebesgue measurable in [0, T] andD is Borel measurable in �. A subsetA of L1([0, T],�)
is decomposable if for all u, v ∈ A and J ⊂ [0, T] measurable, the function uχJ + vχJ−J ∈ A,
where χJ stands for the characteristic function of J.

Definition 2.3. If F : [0, T] × � → P(�) is a multivalued map with compact values and
u(·) ∈ C([0,T],�), then F(·, ·) is of lower semicontinuous type if

SF(u) =
{
w ∈ L1([0, T],�) : w(t) ∈ F(t, u(t)) for a.e. t ∈ [0, T]

}
(2.14)

is lower semicontinuous with closed and decomposable values.
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Let (X, d) be a metric space associated with the norm | · |. The Pompeiu-Hausdorff
distance of the closed subsets A,B ⊂ X is defined by

dH(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a, B) : a ∈ A}, (2.15)

where d(x, B) = infy∈Bd(x, y).

Definition 2.4. A function l : �+ → �+ is said to be a strict comparison function (see [25]) if it
is continuous strictly increasing and

∑∞
n=1 l

n(t) <∞, for each t > 0.

Definition 2.5. Amultivalued operatorN on X with nonempty values in X is called

(a) γ -Lipschitz if and only if there exists γ > 0 such that

dH
(
N(x),N

(
y
)) ≤ γd(x, y), for each x, y ∈ X, (2.16)

(b) a contraction if and only if it is γ -Lipschitz with γ < 1,

(c) a generalized contraction if and only if there is a strict comparison function l : �+ →
�+ such that

dH
(
N(x),N

(
y
)) ≤ l(d(x, y)), for each x, y ∈ X. (2.17)

The following lemmas will be used in the sequel.

Lemma 2.6 (see [22]). Let X be a Banach space. Let F : [0, T]×X → P(X) be an L1-Carathéodory
multivalued map with SF /= ∅, and let Γ be a linear continuous mapping from L1([0, T], X) to
C([0, T], X), then the operator

Γ ◦ SF : C([0, T], X) −→ P(C([0, T], X)) (2.18)

defined by (Γ ◦ SF)(x) = Γ(SF(x)) has compact convex values and has a closed graph operator in
C([0, T], X) × C([0, T], X).

In passing, we remark that if dimX < ∞, then SF(x)/= ∅ for any x(·) ∈ C([0, T], X) with F(·, ·)
as in Lemma 2.6.

Lemma 2.7 (nonlinear alternative for Kakutani maps [23]). Let E be a Banach space, C, a closed
convex subset of E, U an open subset of C and 0 ∈ U. Suppose that F : U → Pc,cv(C) is an upper
semicontinuous compact map; here, Pc,cv(C) denotes the family of nonempty, compact convex subsets
of C, then either

(i) F has a fixed-point inU,

(ii) or there is a u ∈ ∂U and λ ∈ (0, 1) with u ∈ λF(u).

Lemma 2.8 (see [24]). Let Y be a separable metric space, and let N : Y → P(L1([0, T],�)) be a
lower semicontinuous multivalued map with closed decomposable values, thenN(·) has a continuous
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selection; that is, there exists a continuous mapping (single-valued) g : Y → L1([0, T],�) such that
g(y) ∈ N(y) for every y ∈ Y.

Lemma 2.9 (Wegrzyk’s fixed-point theorem [25, 26]). Let (X, d) be a complete metric space. If
N : X → P(X) is a generalized contraction with nonempty closed values, then FixN/= ∅.

Lemma 2.10 (Covitz and Nadler’s fixed-point theorem [27]). Let (X, d) be a complete metric
space. If N : X → P(X) is a multivalued contraction with nonempty closed values, then N has a
fixed-point z ∈ X such that z ∈ N(z), that is, FixN/= ∅.

3. Main Results

In this section, we are concerned with the existence of solutions for the Problems (1.1)-(1.2)
when the right-hand side has convex as well as nonconvex values. Initially, we assume that
F is a compact and convex valued multivalued map.

To define the solution for the Problems (1.1)-(1.2), we need the following result.

Lemma 3.1. Suppose that σ : [0, T] → � is continuous, then the following problem

D2
qu(t) = σ(t), a.e. t ∈ [0, T],

u(0) = ηu(T), Dqu(0) = ηDqu(T)
(3.1)

has a unique solution

u(t) =
∫T

0
G
(
t, qs
)
σ(s)dqs, (3.2)

where G(t, qs) is the Green’s function given by

G
(
t, qs
)
=

1
(
η − 1

)2

⎧
⎪⎨

⎪⎩

η
(
η − 1

)(
qs − t) + ηT, if 0 ≤ t < s ≤ T,

(
η − 1

)(
qs − t) + ηT, if 0 ≤ s ≤ t ≤ T.

(3.3)

Proof. In view of (2.7) and (2.9), the solution of D2
qu = σ(t) can be written as

u(t) =
∫ t

0

(
t − qs)σ(s)dqs + a1t + a2, (3.4)
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where a1, a2 are arbitrary constants. Using the boundary conditions (1.2) and (3.4), we find
that

a1 =
−η

(
η − 1

)
∫T

0
σ(s)dqs,

a2 =
η2T

(
η − 1

)2

∫T

0
σ(s)dqs −

η
(
η − 1

)
∫T

0

(
T − qs)σ(s)dqs.

(3.5)

Substituting the values of a1 and a2 in (3.4), we obtain (3.2).

Let us denote

G1 = max
t,s∈[0,T]

∣
∣G
(
t, qs
)∣∣. (3.6)

Definition 3.2. A function u ∈ C([0, T],�) is said to be a solution of (1.1)-(1.2) if there exists a
function v ∈ L1([0, T],�) with v(t) ∈ F(t, x(t)) a.e. t ∈ [0, T] and

u(t) =
∫T

0
G
(
t, qs
)
v(s)dqs, (3.7)

where G(t, qs) is given by (3.3).

Theorem 3.3. Suppose that

(H1) the map F : [0, T]×� → P(�) has nonempty compact convex values and is Carathéodory,

(H2) there exist a continuous nondecreasing function ψ : [0,∞) → (0,∞) and a function
p ∈ L1([0, T],�+) such that

‖F(t, u)‖P := sup{|v| : v ∈ F(t, u)} ≤ p(t)ψ(‖u‖∞) (3.8)

for each (t, u) ∈ [0, T] × �,
(H3) there exists a numberM > 0 such that

M

G1ψ(M)
∥∥p
∥∥
L1

> 1, (3.9)

then the BVP (1.1)-(1.2) has at least one solution.

Proof. In view of Definition 3.2, the existence of solutions to (1.1)-(1.2) is equivalent to the
existence of solutions to the integral inclusion

u(t) ∈
∫T

0
G
(
t, qs
)
F(s, u(s))dqs, t ∈ [0, T]. (3.10)
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Let us introduce the operator

N(u) :=

{

h ∈ C([0, T],�) : h(t) =
∫T

0
G
(
t, qs
)
v(s)dqs, v ∈ SF,u

}

. (3.11)

We will show that N satisfies the assumptions of the nonlinear alternative of Leray-
Schauder type. The proof will be given in several steps.

Step 1 (N(u) is convex for each u ∈ C([0, T],�)). Indeed, if h1, h2 belong toN(u), then there
exist v1, v2 ∈ SF,u such that for each t ∈ [0, T], we have

hi(t) =
∫T

0
G
(
t, qs
)
vi(s)dqs, (i = 1, 2). (3.12)

Let 0 ≤ d ≤ 1, then, for each t ∈ [0, T], we have

(dh1 + (1 − d)h2)(t) =
∫T

0
G
(
t, qs
)
[dv1(s) + (1 − d)v2(s)]dqs. (3.13)

Since SF,u is convex (because F has convex values); therefore,

dh1 + (1 − d)h2 ∈N(u). (3.14)

Step 2 (N maps bounded sets into bounded sets in C([0, T],�)). Let Bm = {u ∈ C([0, T],�) :
‖u‖∞ ≤ m,m > 0} be a bounded set in C([0, T],�) and u ∈ Bm, then for each h ∈ N(u), there
exists v ∈ SF,u such that

h(t) =
∫T

0
G
(
t, qs
)
v(s)dqs. (3.15)

Then, in view of (H2), we have

|h(t)| ≤
∫T

0

∣∣G
(
t, qs
)∣∣|v(s)|dqs

≤ G1

∫T

0
p(s)ψ(‖u‖∞)dqs

≤ G1ψ(m)
∫T

0
p(s)dqs.

(3.16)

Thus,

‖h‖∞ ≤ G1ψ(m)
∥
∥p
∥
∥
L1 . (3.17)
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Step 3 (N maps bounded sets into equicontinuous sets of C([0, T],�)). Let r1, r2 ∈ [0,
T], r1 < r2 and Bm be a bounded set of C([0, T],�) as in Step 2 and x ∈ Bm. For each
h ∈N(u)

|h(r2) − h(r1)| ≤
∫T

0
|G(r2, s) −G(r1, s)||v(s)|dqs

≤ ψ(‖u‖∞)
∫T

0
|G(r2, s) −G(r1, s)|p(s)dqs

≤ ψ(m)
∫T

0
|G(r2, s) −G(r1, s)|p(s)dqs.

(3.18)

The right-hand side tends to zero as r2 − r1 → 0. As a consequence of Steps 1 to 3 together
with the Arzelá-Ascoli Theorem, we can conclude thatN : C([0, T],�) → P(C([0, T],�)) is
completely continuous.

Step 4 (N has a closed graph). Let un → u∗, hn ∈ N(un), and hn → h∗. We need to show
that h∗ ∈N(u∗). hn ∈ N(un) means that there exists vn ∈ SF,un such that, for each t ∈ [0, T],

hn(t) =
∫T

0
G
(
t, qs
)
vn(s)dqs. (3.19)

We must show that there exists h∗ ∈ SF,u∗ such that, for each t ∈ [0, T],

h∗(t) =
∫T

0
G
(
t, qs
)
v∗(s)dqs. (3.20)

Clearly, we have

‖hn − h∗‖∞ −→ 0 as n −→ ∞. (3.21)

Consider the continuous linear operator

Γ : L1([0, T],�) −→ C([0, T],�), (3.22)

defined by

v �−→ (Γv)(t) =
∫T

0
G
(
t, qs
)
v(s)dqs. (3.23)

From Lemma 2.6, it follows that Γ ◦ SF is a closed graph operator. Moreover, we have

hn(t) ∈ Γ(SF,un). (3.24)
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Since un → u∗, it follows from Lemma 2.6 that

h∗(t) =
∫T

0
G
(
t, qs
)
v∗(s)dqs (3.25)

for some v∗ ∈ SF,u∗ .

Step 5 (a priori bounds on solutions). Let u be a possible solution of the Problems (1.1)-(1.2),
then there exists v ∈ L1([0, T],�) with v ∈ SF,u such that, for each t ∈ [0, T],

u(t) =
∫T

0
G
(
t, qs
)
v(s)dqs. (3.26)

For each t ∈ [0, T], it follows by (H2) and (H3) that

|u(t)| ≤ G1

∫T

0
p(s)ψ(‖u‖∞)dqs

≤ G1ψ(‖u‖∞)
∫T

0
p(s)dqs.

(3.27)

Consequently,

‖u‖∞
G1ψ(‖u‖∞)

∥∥p
∥∥
L1

≤ 1. (3.28)

Then by (H3), there existsM such that ‖u‖∞ /=M.

Let

U = {u ∈ C([0, T],�) : ‖u‖∞ < M + 1}. (3.29)

The operatorN : U → P(C([0, T],�)) is upper semicontinuous and completely continuous.
From the choice of U, there is no u ∈ ∂U such that u ∈ λN(u) for some λ ∈ (0, 1).
Consequently, by Lemma 2.7, it follows thatN has a fixed-point u inU which is a solution of
the Problems (1.1)-(1.2). This completes the proof.

Next, we study the case where F is not necessarily convex valued. Our approach here
is based on the nonlinear alternative of Leray-Schauder type combined with the selection
theorem of Bressan and Colombo for lower semicontinuous maps with decomposable values.

Theorem 3.4. Suppose that the conditions (H2) and (H3) hold. Furthermore, it is assumed that

(H4) F : [0, T] × � → P(�) has nonempty compact values and

(a) (t, u) �→ F(t, u) is L ⊗ B measurable,
(b) u �→ F(t, u) is lower semicontinuous for a.e. t ∈ [0, T],
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(H5) for each ρ > 0, there exists ϕρ ∈ L1([0, T],�+ ) such that

‖F(t, u)‖ = sup{|v| : v ∈ F(t, u)} ≤ ϕρ(t) ∀‖u‖∞ ≤ ρ and for a.e. t ∈ [0, T]. (3.30)

then, the BVP (1.1)-(1.2) has at least one solution.

Proof. Note that (H4) and (H5) imply that F is of lower semicontinuous type. Thus, by
Lemma 2.8, there exists a continuous function f : C([0, T],�) → L1([0, T],�) such that
f(u) ∈ F(u) for all u ∈ C([0, T],�). So we consider the problem

D2
qu(t) = f(u(t)), 0 ≤ t ≤ T,

u(0) = ηu(T), Dqu(0) = ηDqu(T).
(3.31)

Clearly, if u ∈ C([0, T],�) is a solution of (3.31), then u is a solution to the Problems (1.1)-
(1.2). Transform the Problem (3.31) into a fixed-point theorem

u(t) =
(
Nu
)
(t), t ∈ [0, T], (3.32)

where

(
Nu
)
(t) =

∫T

0
G
(
t, qs
)
f(u(s))dqs, t ∈ [0, T]. (3.33)

We can easily show that N is continuous and completely continuous. The remainder of the
proof is similar to that of Theorem 3.3.

Now, we prove the existence of solutions for the Problems (1.1)-(1.2) with a
nonconvex valued right-hand side by applying Lemma 2.9 due to Wegrzyk.

Theorem 3.5. Suppose that

(H6) F : [0, T] × � → P(�) has nonempty compact values and F(·, u) is measurable for each
u ∈ �,

(H7) dH(F(t, u), F(t, u)) ≤ k(t)l(|u − u|) for almost all t ∈ [0, 1] and u, u ∈ � with k ∈
L1([0, 1],�+) and d(0, F(t, 0)) ≤ k(t) for almost all t ∈ [0, 1], where l : �+ → �+ is
strictly increasing,

then the BVP (1.1)-(1.2) has at least one solution on [0, T] if γl : �+ → �+ is a strict comparison
function, where γ = G1‖k‖L1 .
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Proof. Suppose that γl : �+ → �+ is a strict comparison function. Observe that by the
assumptions (H6) and (H7), F(·, u(·)) is measurable and has a measurable selection v(·) (see
Theorem 3.6 [28]). Also k ∈ L1([0, 1],�) and

|v(t)| ≤ d(0, F(t, 0)) +Hd(F(t, 0), F(t, u(t)))

≤ k(t) + k(t)l(|u(t)|)
≤ (1 + l(‖u‖∞))k(t).

(3.34)

Thus, the set SF,u is nonempty for each u ∈ C([0, T],�).
As before, we transform the Problems (1.1)-(1.2) into a fixed-point problem by using

the multivaluedmapN given by (3.11) and show that the mapN satisfies the assumptions of
Lemma 2.9. To show that the mapN(u) is closed for each u ∈ C([0, T],�), let (un)n≥0 ∈ N(u)
such that un → ũ in C([0, T],�), then ũ ∈ C([0, T],�) and there exists vn ∈ SF,u such that, for
each t ∈ [0, T],

un(t) =
∫T

0
G
(
t, qs
)
vn(s)dqs. (3.35)

As F has compact values, we pass onto a subsequence to obtain that vn converges to v in
L1([0, T],�). Thus, v ∈ SF,u and for each t ∈ [0, T],

un(t) −→ ũ(t) =
∫T

0
G
(
t, qs
)
v(s)dqs. (3.36)

So, ũ ∈ N(u) and henceN(u) is closed.
Next, we show that

dH(N(u),N(u)) ≤ γl(‖u − u‖∞) for each u, u ∈ C([0, T],�). (3.37)

Let u, u ∈ C([0, T],�) and h1 ∈ N(u). Then, there exists v1(t) ∈ SF,u such that for each
t ∈ [0, T],

h1(t) =
∫T

0
G
(
t, qs
)
v1(s)dqs. (3.38)

From (H7), it follows that

dH(F(t, u(t)), F(t, u(t))) ≤ k(t)l(|u(t) − u(t)|). (3.39)

So, there exists w ∈ F(t, u(t)) such that

|v1(t) −w| ≤ k(t)l(|u(t) − u(t)|), t ∈ [0, T]. (3.40)
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Define U : [0, T] → P(�) as

U(t) = {w ∈ � : |v1(t) −w| ≤ k(t)l(|u(t) − u(t)|)}. (3.41)

Since the multivalued operator U(t) ∩ F(t, u(t)) is measurable (see Proposition 3.4 in [28]),
there exists a function v2(t) which is a measurable selection for U(t) ∩ F(t, u(t)). So, v2(t) ∈
F(t, u(t)), and for each t ∈ [0, T],

|v1(t) − v2(t)| ≤ k(t)l(|u(t) − u(t)|). (3.42)

For each t ∈ [0, T], let us define

h2(t) =
∫T

0
G
(
t, qs
)
v2(s)dqs, (3.43)

then

|h1(t) − h2(t)| ≤
∫T

0

∣∣G
(
t, qs
)∣∣|v1(s) − v2(s)|dqs

≤ G1

∫T

0
k(s)l(‖u − u‖)dqs.

(3.44)

Thus,

‖h1 − h2‖∞ ≤ G1‖k‖L1 l(‖u − u‖∞) = γl(‖u − u‖∞). (3.45)

By an analogous argument, interchanging the roles of u and u, we obtain

dH(N(u),N(u)) ≤ G1‖k‖L1 l(‖u − u‖∞) = γl(‖u − u‖∞) (3.46)

for each u, u ∈ C([0, T],�). So, N is a generalized contraction, and thus, by Lemma 2.9, N
has a fixed-point u which is a solution to (1.1)-(1.2). This completes the proof.

Remark 3.6. We notice that Theorem 3.5 holds for several values of the function l, for example,
l(t) = ln(1+t)/χ, where χ ∈ (0, 1), l(t) = t, and so forth. Here, we emphasize that the condition
(H7) reduces to dH(F(t, u), F(t, u)) ≤ k(t)|u − u| for l(t) = t, where a contraction principle
for multivalued map due to Covitz and Nadler [27] (Lemma 2.10) is applicable under the
condition G1‖k‖L1 < 1. Thus, our result dealing with a nonconvex valued right-hand side of
(1.1) is more general, and the previous results for nonconvex valued right-hand side of the
inclusions based on Covitz and Nadler’s fixed-point result (e.g., see [8]) can be extended to
generalized contraction case.
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Remark 3.7. Our results correspond to the ones for second-order q-difference inclusions with
antiperiodic boundary conditions (u(0) = −u(T), Dqu(0) = −Dqu(T)) for η = −1. The results
for an initial value problem of second-order q-difference inclusions follow for η = 0. These
results are new in the present configuration.

Remark 3.8. In the limit q → 1, the obtained results take the form of their “continuous” (i.e.,
differential) counterparts presented in Sections 4 (ii) for λ1 = λ2 = η, μ1 = 0 = μ2 of [29].

Example 3.9. Consider a boundary value problem of second-order q-difference inclusions
given by

D2
qu(t) ∈ F(t, u(t)), 0 ≤ t ≤ 1

u(0) = −u(1), Dqu(0) = −Dqu(1),
(3.47)

where η = −1 and F : [0, 1] × � → P(�) is a multivalued map given by

(t, u) −→ F(t, u) =

[
u3

u3 + 3
+ t3 + 3,

u

u + 1
+ t + 1

]

. (3.48)

For f ∈ F, we have

∣∣f
∣∣ ≤ max

(
u3

u3 + 3
+ t3 + 3,

u

u + 1
+ t + 1

)

≤ 5, u ∈ �. (3.49)

Thus,

‖F(t, u)‖P := sup
{∣∣y
∣∣ : y ∈ F(t, u)} ≤ 5 = p(t)ψ(‖u‖∞), u ∈ �, (3.50)

with p(t) = 1, ψ(‖u‖∞) = 5. Further, using the condition

M

G1ψ(M)
∥∥p
∥∥
L1

> 1, (3.51)

we find that M > 5G2, where G2 = G1|η=−1,T=1. Clearly, all the conditions of Theorem 3.3 are
satisfied. So, the conclusion of Theorem 3.3 applies to the Problem (3.47).
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