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Some new properties are obtained for generalized second-order contingent (adjacent) epideriva-
tives of set-valued maps. By employing the generalized second-order adjacent epiderivatives,
necessary and sufficient conditions of Benson proper efficient solutions are given for set-valued
optimization problems. The results obtained improve the corresponding results in the literature.

1. Introduction

The investigation of the optimality conditions is one of the most attractive topics of optimiza-
tion theory since many optimization problems encountered in economics, engineering, and
other fields involve vector-valued maps (or set-valued maps) as constraints and objectives
(see [1–3]). With the concept of contingent derivative for a set-valued map (see [3]), Corley
[4] investigated optimality conditions for general set-valued optimization problems. But it
turns out that the optimality conditions do not coincide under standard assumptions. Jahn
and Rauh [5] introduced the contingent epiderivative of a set-valued map and then obtained
unified necessary and sufficient optimality conditions. The essential differences between the
definitions of the contingent derivative and the contingent epiderivative are that the graph is
replaced by the epigraph and the derivative is single-valued. But the existence of the contin-
gent epiderivative of a set-valued map in a general setting is an open question. To overcome
the difficulty, Chen and Jahn [6] introduced a generalized contingent epiderivative of a
set-valued map which is a set-valued map. They proved that the generalized contingent
epiderivative exists under standard assumptions and obtained a unified necessary and
sufficient condition in terms of the generalized contingent epiderivative. As to other concepts
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of epiderivatives for set-valued maps and applications to optimality conditions, one can refer
to [7–11].

Since higher-order tangent sets introduced in [3], in general, are not cones and convex
sets, there are some difficulties in studying higher-order optimality conditions and duality for
general set-valued optimization problems. Until now, there are only a few papers to deal with
higher-order optimality conditions and duality of set-valued optimization problems by virtue
of the higher-order derivatives or epiderivatives introduced by the higher-order tangent sets.
Jahn et al. [12] introduced second-order contingent epiderivative and generalized contingent
epiderivative for a set-valued map and obtained some second-order optimality conditions
based on these concepts. In [13], Li et al. studied some properties of higher-order tangent sets
and higher-order derivatives introduced in [3] and then obtained higher-order Fritz John type
necessary and sufficient optimality conditions for set-valued optimization problems in terms
of the higher-order derivatives. By using these concepts, they also discussed higher-order
Mond-Weir duality for a set-valued optimization problem in [14]. In general, since the epi-
graph of a set-valued map has nicer properties than the graph of a set-valued map, it is
advantageous to employ the epiderivatives in set-valued optimization. Li and Chen [15]
introduced the definitions of higher-order generalized contingent epiderivative and higher-
order generalized adjacent epiderivative and obtained higher-order optimality conditions
for Henig properly efficient solutions of a set-valued optimization problem with constraints
based on the higher-order generalized adjacent epiderivative and contingent epiderivative.
Chen et al. [16] introduced the concepts of higher-order weak contingent epiderivative and
higher-order weak adjacent epiderivative for set-valued maps and obtained higher order
Mond-Weir type duality, higher-order Wolfe type duality, and higher-order Kuhn-Tucker
type optimality conditions to a constrained set-valued optimization problem based on the
higher-order weak adjacent (contingent) epiderivatives and Henig efficiency. Since the exis-
tence of the higher-order contingent (adjacent) derivative and the higher-order generalized
contingent (adjacent) epiderivative of a set-valued map in a general setting may not exist,
Wang and Li [17] introduced the generalized higher-order contingent (adjacent) epideriva-
tive of a set-valued map and obtained the optimality conditions for Henig efficient solutions
to set-valued optimization problems. Wang et al. [18] introduced the generalized higher-
order contingent (adjacent) derivatives of set-valued maps, and necessary and sufficient
optimality conditions are obtained for weakly efficient solutions of set-valued optimization
problems under no convexity assumptions.

To the best of our knowledge, by virtue of the second-order derivatives or epideriv-
atives introduced by the higher-order tangent sets, the second-order optimality conditions
have not been studied for Benson proper efficient solutions of set-valued optimization prob-
lems until now. This paper aims to investigate the second-order optimality conditions for
Benson proper efficient solutions of set-valued optimization problems by virtue of the gener-
alized second-order epiderivatives.

The rest of the paper is organized as follows. In Section 2, we collect some of the con-
cepts and introduce two kinds of set-valued optimization problem models. In Section 3, we
recall the concepts and properties of generalized second-order contingent (adjacent) epi-
derivatives of set-valued maps and discuss some new properties of them. In Section 4, we
establish second-order necessary and sufficient conditions for Benson proper efficient solu-
tions to a set-valued optimization problem, whose constraint set is determined by a fixed
set. In Section 5, we establish second-order Kuhn-Tuck type optimality conditions for Benson
proper efficient solutions to a set-valued optimization problem, whose constraint set is deter-
mined by a set-valued map.
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2. Preliminaries

Throughout this paper, let X,Y , and Z be three real normed spaces, where the spaces Y
and Z are partially ordered by nontrivial closed convex pointed cones C ⊂ Y and D ⊂ Z
with intD/= ∅, respectively. Denote by Y ∗ the topological dual space of Y and by 0Y the zero
element in Y . The dual cone of C is defined as

C+ =
{
f ∈ Y ∗ | f(c) ≥ 0, ∀c ∈ C}. (2.1)

The quasi-interior C+i of C+ is the set

C+i =
{
f ∈ Y ∗ | f(c) > 0, ∀c ∈ C \ {0Y}

}
. (2.2)

Recall that a base of a cone C is a convex subset B of C such that

0Y /∈ clB, C = coneB. (2.3)

Of course,C is pointedwheneverC has a base. Furthermore, ifC is a nonempty closed convex
pointed cone in Y , then C+i /= ∅ if and only if C has a base.

Let F : E → 2Y and G : E → 2Z be set-valued maps. The effective domain, the graph,
and the epigraph of F are defined by dom(F) = {x ∈ E | F(x)/= ∅}, gph(F) = {(x, y) ∈ E × Y |
x ∈ E, y ∈ F(x)} and epi(F) = {(x, y) ∈ E × Y | x ∈ Ey ∈ F(x) + C}, respectively. Denote
F(E) =

⋃
x∈E F(x). Let (x0, y0) ∈ gph(F), z0 ∈ G(x0) ∩ (−D).

Definition 2.1 (see [19]). F is called C-convex on a nonempty convex subset E, if, for any x1,
x2 ∈ E and λ ∈ (0, 1), such that λF(x1) + (1 − λ)F(x2) ⊆ F(λx1 + (1 − λ)x2) + C.

Definition 2.2 (see [20]). Let F : E → 2Y be a set-valued map, x0 ∈ E, (x0, y0) ∈ gph(F). F is
said to be generalized C-convex at (x0, y0) on E, if cone (epiF − {(x0, y0)}) is convex.

Remark 2.3 (see [20]). If F is C-convex on convex set E, then F is generalized C-convex at
(x0, y0) ∈ gph(F) on E. But the converse may not hold.

Definition 2.4 (see [6]). LetM be a subset of Y . y0 ∈M is said to be a Benson proper efficient
point ofM if (−C)∩ clcone(M+C−{y0}) = {0Y}. The set of all Benson proper efficient points
ofM is denoted by P min[M,C].

Definition 2.5 (see [21]). Let Y be a real normed space, B be a base of C, and M ⊂ Y be a
nonempty subset. y ∈M is said to be a Henig efficient point ofM, written as y ∈ HE(M,B),
if for some ε ∈ (0, δ),

(
M − {

y
}) ∩ − int(cone(εU + B)) = ∅, (2.4)

where δ = inf{‖b‖ : b ∈ B} andU is the closed unit ball of Y .

Lemma 2.6 (see [22]). Let P and C be two closed convex cones in a locally convex vector space, and
let C be pointed and have a compact base. If P ∩ (−C) = {0Y}, then there exists h ∈ C+i such that
h ∈ P+.
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Definition 2.7 (see [6]). A set-valued mapH : X → 2Y is said to be

(i) strictly positive homogeneous if

H(αx) = αH(x), ∀α > 0, ∀x ∈ X, (2.5)

(ii) subadditive if

H(x1) +H(x2) ⊆ H(x1 + x2) + C. (2.6)

In this paper, consider the following set-valued optimization problem:

min F(x),

s.t. x ∈ E.
(OP)

that is, to find a pair (x0, y0) with x0 ∈ K and y0 ∈ F(x0) is called a Benson proper efficient
element of problem (OP) if y0 ∈ P min[F(E), C]. We also consider the following constraint
set-valued optimization problem:

min F(x),

s.t. G(x) ∩ (−D)/= ∅, x ∈ E.
(SOP)

Set K := {x ∈ E | G(x) ∩ (−D)/= ∅}. A pair (x0, y0) with x0 ∈ K and y0 ∈ F(x0) is called a
Benson proper efficient element of problem (SOP) if y0 ∈ P min[F(K), C].

3. Properties of Generalized Second-Order
Contingent (Adjacent) Epiderivatives

In this section, we discuss some new properties of generalized second-order contingent and
adjacent epiderivatives. Moreover, we give an example to show these properties. Let F be a
set-valued map from E ⊆ X to Y .

Definition 3.1 (see [17]). Let F be a set-valued map from E ⊆ X to Y , (x0, y0) ∈ gph(H),
u ∈ X, v ∈ Y .

(i) The generalized second-order contingent epiderivative G-D(2)F(x0, y0, u, v) of F at
(x0, y0) for vectors (u, v) is the set-valued map from X to Y defined by

gph
(
G-D(2)F

(
x0, y0, u, v

))
= G-T (2)

epi(F)

(
x0, y0, u, v

)
. (3.1)

(ii) The generalized second-order adjacent epiderivative G-D�(2)F(x0, y0, u, v) of F at
(x0, y0) for vectors (u, v) is the set-valued map from X to Y defined by

gph
(
G-D�(2)F

(
x0, y0, u, v

))
= G-T�(2)epi(F)

(
x0, y0, u, v

)
. (3.2)
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Remark 3.2. If (u, v) = (0X, 0Y ), then

G-D(2)F
(
x0, y0, u, v

)
= G-DF

(
x0, y0

)
,

G-D�(2)F
(
x0, y0, u, v

)
= G-D�F

(
x0, y0

)
.

(3.3)

From [17, Proposition 3.9 and Corollary 3.11], we have the following result.

Proposition 3.3. Let x, x0 ∈ E, y0 ∈ F(x0), (u, v) ∈ {0X} × C. Then,

(i) F(x) + C − {y0} ⊂ G-D(2)F(x0, y0, u, v)(x − x0);
(ii) F(x) + C − {y0} ⊂ G-D�(2)F(x0, y0, u, v)(x − x0).

Proposition 3.4. Let E be a nonempty subset of X, x0 ∈ E, y0 ∈ F(x0). Let F be generalized C-
convex at (x0, y0) on E, u ∈ E, v ∈ F(u) + C. Then,

F(x) + C − {
y0
} ⊂ G-D�(2)F

(
x0, y0, u − x0, v − y0

)
(x − x0), for any x ∈ E. (3.4)

Proof. Take a arbitrary sequence {hn} with hn → 0+, any c ∈ C, x ∈ E, and y ∈ F(x). SinceH
is generalized C-convex at (x0, y0) on E, cone(epi(F) − {(x0, y0)}) is convex, and then

hn
(
u − x0, v − y0

) ∈ cone
(
epiF − {(

x0, y0
)})

. (3.5)

It follows from hn > 0, and cone(epiF − {(x0, y0)}) is a convex cone that

(
xn, yn

)
:= hn

(
u − x0, v − y0

)
+ h2n

(
x − x0, y + c − y0

) ∈ cone
(
epiF − {(

x0, y0
)})

. (3.6)

Then,

(
x − x0, y + c − y0

)
=

(
xn, yn

) − hn
(
u − x0, v − y0

)

h2n
, (3.7)

Thus,

F(x) + C − {
y0
} ⊂ G-D�(2)F

(
x0, y0, u − x0, v − y0

)
(x − x0), (3.8)

and the proof of the proposition is complete.

Corollary 3.5. Let E be a nonempty subset of X, x0 ∈ E, y0 ∈ F(x0). If F is generalized C-convex at
(x0, y0) on E, u ∈ E, v ∈ F(u) + C, then

F(x) + C − {
y0
} ⊂ G-D(2)F

(
x0, y0, u − x0, v − y0

)
(x − x0), for any x ∈ E. (3.9)
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Proposition 3.6. Let (x0, y0) ∈ gph(F), (u, v) ∈ X × Y . Then,

(i) G-D�(2)F(x0, y0, u, v) is strictly positive homogeneous.

Moreover, if F is generalized C-convex at (x0, y0) on E, then

(ii) G-D�(2)F(x0, y0, u, v) is subadditive.

Proof. (i) Since

G-T�(2)epi(F)

(
x0, y0, u, v

)
= T�(2)cone(epi(F)−{(x0,y0)})(0X, 0Y , u, v) = T

�
cone(epi(F)−{(x0,y0)})(u, v), (3.10)

G-D�(2)F(x0, y0, u, v) is strictly positive homogeneous.
(ii) Let x1, x2 ∈ X, y1 ∈ G-D�(2)F(x0, y0, u, v)(x1), y2 ∈ G-D�(2)F(x0, y0, u, v)(x2). Then

one has (x1, y1), (x2, y2) ∈ G-T�(2)epi(F)(x0, y0, u, v). Since F is generalized C-convex at (x0, y0) on
E, cone(epiF − {(x0, y0)}) is convex, and then it follows from the proof of [13, Proposition
3.2], that G-T�(2)epi(F)(x0, y0, u, v) is convex. Thus, we have

1
2
(
x1, y1

)
+
1
2
(
x2, y2

)
=

1
2
(
x1 + x2, y1 + y2

) ∈ G-T�(2)epi(F)

(
x0, y0, u, v

)
, (3.11)

and then it follows from (i) that

y1 + y2 ∈ G-D�(2)F
(
x0, y0, u, v

)
(x1 + x2), (3.12)

which implies

G-D�(2)F
(
x0, y0, u, v

)
(x1) +G-D�(2)F

(
x0, y0, u, v

)
(x2)

⊆ G-D�(2)F
(
x0, y0, u, v

)
(x1 + x2) + C.

(3.13)

The proof of the proposition is complete.

For the sake of comparison, we recall some notions in [13, 15, 16].

Definition 3.7 (see [13]). The second-order adjacent derivative D�(2)F(x0, y0, u, v) of F at
(x0, y0) for vector (u, v) is the set-valued map from X to Y defined by

gph
(
D�(2)F

(
x0, y0, u, v

))
= T�(2)Graph(F)

(
x0, y0, u, v

)
. (3.14)

Definition 3.8 (see [15]). The second-order generalized adjacent epiderivative D
�(2)
g F(x0,

y0, u, v) of F at (x0, y0) for vectors (u, v) is the set-valued map from X to Y defined by

D
�(2)
g F

(
x0, y0, u, v

)
(x) = MinC

{
y ∈ Y :

(
x, y

) ∈ T�(2)epi(F)

(
x0, y0, u, v

)}
. (3.15)
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Definition 3.9 (see [16]). The second-order weak adjacent epiderivative D�(2)
g F(x0, y0,u, v) of

F at (x0, y0) for vector (u, v) is the set-valued map from X to Y defined by

D
�(2)
w F

(
x0, y0, u, v

)
(x) =WMinC

{
y ∈ Y :

(
x, y

) ∈ T�(2)epi(F)

(
x0, y0, u, v

)}
. (3.16)

Remark 3.10. Notice that in Proposition 3.6, we establish a special property ofG-D�(2)F(x0, y0,
u, v), which is similar to the corresponding property of the generalized contingent epide-
rivative in [6, Theorem 1]. But we cannot obtain the similar property for D�(2)F(x0, y0,u, v),
D
�(2)
g F(x0, y0, u, v), and D

�(2)
w F(x0, y0,u, v), even though F is a C-convex map. The following

example explains the case.

Example 3.11. Let X = R, Y = R2, C = R2
+, F(x) = {(y1, y2) ∈ R2 | y1 ≥ x, y2 ≥ x2}, ∀x ∈ X. Take

(x0, y0) = (0, (0, 0)) ∈ gph(F) and (u, v) = (1, (1, 0)). Then,

T
�(2)
gph(F)

(
x0, y0, u, v

)
= T�(2)epi(F)

(
x0, y0, u, v

)
=

⋃

x∈R
({x} × [x,+∞) × [1,+∞)),

G-T�(2)epi(F)

(
x0, y0, u, v

)
=

⋃

x∈R
({x} × [x,+∞) × R+).

(3.17)

Therefore, for any x ∈ X, one has

D�(2)F
(
x0, y0, u, v

)
(x) = [x,+∞) × [1,+∞),

D
�(2)
g F

(
x0, y0, u, v

)
(x) = {(x, 1)},

D
�(2)
w F

(
x0, y0, u, v

)
(x) =

{(
x, y2

)
y2 ≥ 1

} ∪ {(
y1, 1

) | y1 ≥ x
}
,

G-D�(2)F
(
x0, y0, u, v

)
(x) = [x,+∞) × R+.

(3.18)

Naturally, D�(2)F(x0, y0, u, v), D
�(2)
g F(x0, y0, u, v), and D

�(2)
w F(x0, y0, u, v) are not strictly posi-

tive homogeneous, but G-D�(2)F(x0, y0, u, v) is strictly positive homogeneous here.

It follows from [13, Corollary 3.1], and the proof of Proposition 3.6 that the following
result holds.

Corollary 3.12. Let (x0, y0) ∈ gph(F), (u, v) ∈ X × Y . Then
(i) G-D(2)F(x0, y0, u, v) is strictly positive homogeneous.

Moreover, if F is generalized C-convex at (x0, y0) on E, and (u, v) ∈ cone(epi(H) −
{(x0, y0)}), then

(ii) G-D(2)F(x0, y0, u, v) is subadditive.

Remark 3.13. Under the assumption of cone-convex maps, Chen and Jahn [6, Theorem 1]
obtained the subadditivity ofDgF(x0, y0). However, it is under the assumption of generalized
cone-convex maps that we obtain the subadditivity of G-D(2)F(x0, y0, u, v) in Corollary 3.12.

By Propositions 3.3–3.6 and Corollary 3.12, we obtain the following results.
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Corollary 3.14. Let (x0, y0) ∈ gph(F), (u, v) ∈ X × Y . Then,

(0X, 0Y ) ∈ gph
(
G-D(2)F

(
x0, y0, u, v

))
,

(0X, 0Y ) ∈ gph
(
G-D�(2)F

(
x0, y0, u, v

))
.

(3.19)

Corollary 3.15. Let (x0, y0) ∈ gph(F) and (u, v) ∈ X × Y . If F is generalized C-convex at (x0, y0)
on E, then

(i) gph(G-D�(2)F(x0, y0, u, v)) is a closed convex cone.

Moreover, if (u, v) ∈ cone(epi(H) − {(x0, y0)}), then
(ii) gph(G-D(2)F(x0, y0, u, v)) is a closed convex cone.

4. Second-Order Optimality Conditions of (OP)

In this section, by employing the generalized second-order adjacent epiderivative, we will
discuss the second-order optimality conditions for Benson proper efficient solutions of (OP).

Theorem 4.1. Let x0 ∈ E, y0 ∈ F(x0), and (u, v) ∈ X × (−C). If (x0, y0) is a Benson proper efficient
element of (OP), then, for every x ∈ Ω := dom[G-D�(2)F(x0, y0, u, v)], one has

G-D�(2)F
(
x0, y0, u, v

)
(x) ⊂ Y \ (−C \ {0Y}). (4.1)

Proof. Since (x0, y0) is a Benson proper efficient element of (OP),

clcone
(
F(E) + C − {

y0
}) ∩ (−C) = {0Y}. (4.2)

Assume that there exists an x ∈ Ω such that (4.1) does not hold, that is, there exists

y ∈ G-D�(2)F
(
x0, y0, u, v

)
(x) ∩ (−C \ {0Y}), (4.3)

and then, by the definition of generalized second-order adjacent epiderivatives, for arbitrary
sequence {hn}with hn → 0+, there exists a sequence

{(
xn, yn

)} ∈ cone
(
epiF − {(

x0, y0
)})

(4.4)

such that

(
xn, yn

) − hn(u, v)
h2n

−→ (
x, y

)
. (4.5)

Since v ∈ −C, hn > 0 and C is a convex cone, hnv ∈ −C. Then, by (4.4), we get

yn − hnv ∈ cone
(
F(E) + C − {

y0
})
. (4.6)
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Thus, from (4.5) and (4.3), one obtains

y ∈ clcone
(
F(E) + C − {

y0
}) ∩ (−C \ {0Y}), (4.7)

which contradicts (4.2). So (4.1) holds and the proof is complete.

Theorem 4.2. Let (u, v) ∈ X × (−C), x0 ∈ E, y0 ∈ F(x0) and let C be locally compact. Suppose that
the following conditions are satisfied:

(i) F is generalized C-convex at (x0, y0) on E;

(ii) the pair (x0, y0) is a Benson proper efficient element of (OP).

Then, there exists φ ∈ C+i such that

inf

⎧
⎨

⎩
φ
(
y
) | y ∈

⋃

x∈Ω
G-D�(2)F

(
x0, y0, u, v

)
(x)

⎫
⎬

⎭
= 0, (4.8)

where Ω := dom[G −D�(2)F(x0, y0, u, v)].

Proof. Define

M =
⋃

x∈Ω
G-D�(2)F

(
x0, y0, u, v

)
(x). (4.9)

By the similar line of proof for convexity ofM in [15], Theorem 5.1, we obtain thatM
is a convex set. It follows from Theorem 4.1, that

M ∩ (−C) = {0Y}. (4.10)

Thus, by Lemma 2.6, there exists φ ∈ C+i such that φ ∈M+. So, we have

φ
(
y
) ≥ 0, ∀y ∈M. (4.11)

It follows from Corollary 3.15 that 0Y ∈M, so

inf

⎧
⎨

⎩
φ
(
y
) | y ∈

⋃

x∈Ω
G-D�(2)F

(
x0, y0, u, v

)
(x)

⎫
⎬

⎭
= 0, (4.12)

and the proof of the theorem is complete.

Theorem 4.3. Let x0 ∈ E, y0 ∈ F(x0) and (u, v) ∈ {0X} × C. If there exists φ ∈ C+i such that

φ
(
y
) ≥ 0, ∀y ∈ G-D�(2)F

(
x0, y0, u, v

)
(x − x0), x ∈ E, (4.13)

then the pair (x0, y0) is a Benson proper efficient solution of (OP).
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Proof. It follows from Proposition 3.3 that

F(x) + C − {
y0
} ⊂ G-D�(2)F

(
x0, y0, u, v

)
(x − x0), (4.14)

for all x ∈ E, y ∈ F(x). Then, by (4.13), (4.14), and φ ∈ C+i, we get

φ
(
y
) ≥ φ(y0

)
, ∀y ∈ F(E). (4.15)

Thus, by the sufficient condition of [23, Theorem 4.1], we get that (x0, y0) is a Benson
proper efficient solution of (OP), and the proof of the theorem is complete.

Remark 4.4. In Theorem 4.3, no assumption of generalized convexity is imposed.

Remark 4.5. If we use D�(2)F(x0, y0, u, v) instead of G-D�(2)F(x0, y0, u, v) in Theorem 4.3, then
the corresponding result forD�(2)F(x0, y0, u, v)may not hold. The following example explains
the case.

Example 4.6. Suppose that X = Y = E = R, C = R+. Let F : E → 2Y be a set-valued map with

F(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{
y ∈ R : y ≥ |x| + 1, x ≤ 1

2

}
,

{
y ∈ R : y ≥ −x + 1, x >

1
2

}
.

(4.16)

Consider the following constrained set-valued optimization problem (4.1):

min F(x),

s.t. x ∈ E.
(4.17)

Take (x0, y0) = (0, 1) ∈ gph(F), (u, v) = (0, 0) ∈ {0} × C. We have

D�(2)F
(
x0, y0, u, v

)
(x − x0) =

{
y ∈ R : y ≥ |x|}, ∀x ∈ E. (4.18)

Then, for any φ ∈ C+i, we have

φ
(
y
) ≥ 0, ∀y ∈ D�(2)F

(
x0, y0, u, v

)
(x − x0), x ∈ E. (4.19)

Naturally, the pair (x0, y0) is not a Benson proper efficient solution of (4.1).

From Proposition 3.4, we know that the following theorem holds.

Theorem 4.7. Let x0 ∈ E, y0 ∈ F(x0). Suppose that the following conditions are satisfied:
(i) u ∈ E, v ∈ F(u) + C,
(ii) F is generalized C-convex at (x0, y0) on E,
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(iii) there exists φ ∈ C+i such that

φ
(
y
) ≥ 0, ∀y ∈ G-D�(2)F

(
x0, y0, u − x0, v − y0

)
(x − x0), x ∈ E. (4.20)

Then the pair (x0, y0) is a Benson proper efficient solution of (OP).

5. Second-Order Kuhn-Tuck Type Optimality Conditions of (SOP)

In this section, by employing the generalized second-order adjacent epiderivative, we will
discuss the second-order Kuhn-Tuck type optimality conditions for Benson proper efficient
solutions of (SOP). The notation (F,G)(x) is used to denote F(x) × G(x). Let x0 ∈ K,y0 ∈
F(x0). Firstly, we recall a result in [24].

The interior tangent cone of K at x0 is defined as

ITK(x0) =
{
u ∈ X∃λ > 0, ∀t ∈ (0, λ), ∀u′ ∈ BX(u, λ), x0 + tu′ ∈ K

}
, (5.1)

where BX(u, λ) stands for the closed ball centered at u ∈ X and of radius λ.

Lemma 5.1 (see [24]). If K ⊂ X is convex, x0 ∈ K and intK/= ∅, then

ITintK(x0) = int cone(K − {x0}). (5.2)

Theorem 5.2. Let (u, v,w) ∈ X × (−C) × (−D), z0 ∈ G(x0) ∩ (−D). If (x0, y0) is a Benson proper
efficient element of (CP), then

[
G-D�(2)(F,G)

(
x0, y0, z0, u, v,w1 + z0

)
(x)

]
⊂ (Y × Z) \ (−((C \ {0Y}) × (intD + z0))),

(5.3)

for all x ∈ Ω := dom[G-D�(2)(F,G)(x0, y0, z0, u, v,w1 + z0)].

Proof. Since (x0, y0) is a Benson proper efficient element of (CP),

clcone
(
F(K) + C − {

y0
}) ∩ −C = {0Y}. (5.4)

Suppose that there exists some x ∈ Ω such that (5.3) does not hold, that is, there exists
some

(
y, z

) ∈ G-D�(2)(F,G)
(
x0, y0, z0, u, v,w + z0

)
(x), (5.5)

(
y, z

) ∈ −((C \ {0Y}) × (intD + {z0})). (5.6)

It follows from (5.5) and the definition of generalized second-order contingent epiderivatives
that there exist sequences {hn}with hn → 0+ and

{(
xn, yn, zn

)} ∈ cone
(
epi(F,G) − {(

x0, y0, z0
)})

, (5.7)
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such that

(
xn, yn, zn

) − hn(u, v,w + z0)

h2n
−→ (

x, y, z
)
. (5.8)

From (5.6) and (5.8), there exists a sufficiently large natural numberN1 such that

zn : =
zn − hn(w + z0)

h2n

=
1
hn

(
zn − hnw

hn
− z0

)

∈ −(intD + z0) ⊂ − int cone(D + {z0}), ∀n > N1.

(5.9)

According to (5.9) and Lemma 5.1, we obtain −z ∈ ITintD(−z0). Then, it follows from
the definitions of ITintD(−z0) that ∃λ > 0, ∀t ∈ (0, λ), ∀u′ ∈ BZ(−z, λ), −z0 + tu′ ∈ intD. Since
hn → 0+ and (5.9), there exists a sufficiently large natural numberN2 such that hn ∈ (0, λ),for
n > N2 and −z0 + hn(−zn) ∈ intD, for n > N2, that is,

zn − hnw
hn

∈ − intD, for n > N2. (5.10)

It follows from hn > 0, w ∈ −D and D is a convex cone that

zn ∈ − intD, for n > N2. (5.11)

Then from (5.7), zn ∈ cone(G(xn) + D − {z0}), there exist λn > 0, x̃n ∈ E, z̃n ∈ G(x̃n), ỹn ∈
F(x̃n), cn ∈ C and dn ∈ D such that yn = λn(ỹn + cn −y0)) and zn = λn(z̃n +dn − z0)). It follows
from (5.11) that z̃n ∈ G(x̃n) ∩ (−D), for n > N2, and then

x̃n ∈ K, for n > N2. (5.12)

Since v ∈ −C, hn > 0 and C is a convex cone, hnv ∈ −C. Then by (5.7), (5.12), and (5.8),
we get

y ∈ clcone
(
F(K) + C − {

y0
})
, for n > max{N1,N2}. (5.13)

Then it follows from (5.6) that

y ∈ clcone
(
F(K) + C − {

y0
}) ∩ −(C \ {0Y}), for n > max{N1,N2}, (5.14)

which contradicts (5.4). Thus, (5.3) holds and the proof of the theorem is complete.
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Theorem 5.3. Let (u, v,w) ∈ X × (−C) × (−D), x0 ∈ E, (y0, z0) ∈ (F,G)(x0). Suppose that the
following conditions are satisfied:

(i) C has a compact base;

(ii) (F,G) is generalized C ×D-convex at (x0, y0, z0) on E;

(iii) the pair (x0, y0) is a Benson proper efficient element of (SOP).

Then, there exist φ ∈ C+i and ψ ∈ D∗ such that

inf
{
φ
(
y
)
+ ψ(z) | (y, z) ∈ Δ

}
= 0, ψ(z0) = 0, (5.15)

where Δ :=
⋃
x∈ΩG-D

�(2)(F,G)(x0, y0, z0, u, v,w + z0)(x) and Ω := dom[G-D�(2)(F,G)(x0,
y0, z0,u, v,w + z0)].

Proof. Define

M =
⋃

x∈Ω

[
G-D�(2)(F,G)

(
x0, y0, z0, u, v,w + z0

)
(x) + (0Y , z0)

]
. (5.16)

By the similar line of proof for convexity ofM in [15, Theorem 5.1], we obtain thatM
is a convex set. It follows from Theorem 5.2 that

M ∩ (−((C \ {0Y}) × intD)) = ∅. (5.17)

Thus, by employing Corollary 3.15, it follows from a standard separation theorem of convex
sets and the similar proof method of [8, Theorem 1] that there exist φ ∈ C+i and ψ ∈ D∗ such
that

inf
{
φ
(
y
)
+ ψ(z) | (y, z) ∈ Δ

}
= 0, ψ(z0) = 0. (5.18)

The proof is complete.

Remark 5.4. It follows from Remarks 2.3 and 3.2 that the necessary optimality condition in
Theorem 5.3 is obtained under weaker assumptions than those assumed of [8, Theorem 1].

Now we give an example to illustrate the necessary optimality conditions for general-
ized second-order contingent epiderivatives.

Example 5.5. Suppose that X = Y = Z = E = R, C = D = R+. Let F : E → 2Y be a set-valued
map with

F(x) =
{
y ∈ R | y ≥ x2/3

}
, x ∈ E, (5.19)

and G : E → Z be a set-valued map with

G(x) = {z ∈ R | z ≥ −x}, x ∈ E. (5.20)



14 Abstract and Applied Analysis

Consider the following constrained set-valued optimization problem (4.2):

min F(x),

s.t. x ∈ E, G(x) ∩ (−D)/= ∅.
(5.21)

Take (x0, y0, z0) = (0, 0, 0) ∈ gph(F,G) and (u, v,w) = (1, 0,−1) ∈ X × (−C) × (−D). Naturally,
(F,G) is generalized C×D-convex at (x0, y0, z0) on E, and (x0, y0) is a Benson proper efficient
solution of (4.2). By directly calculation, we have

G-D�(2)(F,G)
(
x0, y0, z0, u1, v1, w1 + z0

)
(x) =

{(
y, z

) ∈ R2 : y ≥ 0, z ≥ −x
}
, ∀x ∈ E. (5.22)

Take φ = 1 ∈ C+i and ϕ = 0 ∈ D∗. Naturally, necessary optimality condition of Theorem 5.3
holds here.

Theorem 5.6. Let x0 ∈ E, (y0, z0) ∈ (F,G)(x0). Suppose that the following conditions are satisfied:

(i) (u, v,w) ∈ {0X} × C ×D,

(ii) there exist φ ∈ C+i and ψ ∈ D∗ such that

inf
{
φ
(
y
)
+ ψ(z) | (y, z) ∈ Θ

}
= 0, ψ(z0) = 0, (5.23)

where Θ :=
⋃
x∈K G-D

�(2)(F,G)(x0, y0, z0, u, v,w)(x − x0).

Then, the pair (x0, y0) is a Benson proper efficient solution of (SOP).

Proof. It follows from Proposition 3.3 that

(
y − y0, z − z0

) ∈ G-D�(2)(F,G)
(
x0, y0, z0, u, v,w

)
(x − x0), (5.24)

for all y ∈ F(x), z ∈ G(x), x ∈ K. Then, by assumption (ii), we have

φ
(
y − y0

)
+ ψ(z − z0) ≥ 0, ∀y ∈ F(K), z ∈ G(K). (5.25)

Thus, there exists a z ∈ G(K) with z ∈ −D such that ψ(z) ≤ 0. It follows from ψ(z0) = 0 and
(5.25) that

φ
(
y
) ≥ φ(y0

)
, ∀y ∈ F(K). (5.26)

It follows from the sufficient condition of [23, Theorem 4.1], that (x0, y0) is a Benson proper
efficient solution of (SOP) and the proof of the theorem is complete.

Remark 5.7. Since Theorem 5.6 does not involve the assumption of convexity, it improves and
generalizes [8, Theorem 2].
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From Proposition 3.4 and the proof of Theorem 5.6, we easily obtain that the following
Theorem holds.

Theorem 5.8. Let x0 ∈ E, (y0, z0) ∈ (F,G)(x0). Suppose that the following conditions are satisfied:

(i) u ∈ K,v ∈ F(u) + C,w ∈ G(u) +D,

(ii) (F,G) is generalized C ×D-convex at (x0, y0, z0) on E;

(iii) there exist φ ∈ C+i and ψ ∈ D∗ such that

inf(y,z)∈Θ
{
φ
(
y
)
+ ψ(z)

}
= 0, ψ(z0) = 0, (5.27)

where Θ :=
⋃
x∈K G-D

�(2)(F,G)(x0, y0, z0, u − x0, v − y0, w − z0)(x − x0).
Then, the pair (x0, y0) is a Benson proper efficient solution of (SOP).
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