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We prove a strong convergence theorem by using a hybrid algorithm in order to find a common

fixed point of Lipschitz pseudocontraction and «-strict pseudocontraction in Hilbert spaces. Our
results extend the recent ones announced by Yao et al. (2009) and many others.

1. Introduction

Let H be a real Hilbert space, and let C be a nonempty closed convex subset of H. Let T :
C — C.Recall that T is said to be a pseudocontraction if

ITx = Ty|” < flx = y|I* + |7 =T = (1 - T)y]|" (1.1)
is equivalent to
(x-y,I-T)x-(I-T)y) >0, (1.2)

forall x,y € C,and T is said to be a strict pseudocontraction if there exists a constant0 < x < 1
such that

1T~ Tyll* < flx—yl + ]l - Ty~ (- Ty, (1)

for all x,y € C. For the second case, we say that T is a x-strict pseudocontraction. We use
F(T) to denote the set of fixed points of T
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The class of strict pseudocontractions extend the class of nonexpansive mapping. (A
mapping T is said to be nonexpansive if ||[Tx — Ty|| < |x —y||, for all x,y € C) thatis, T is
nonexpansive if and only if T is a 0-strict pseudocontraction. The pseudocontractive mapping
includes the strict pseudocontractive mapping.

Iterative methods for finding fixed points of nonexpansive mappings are an important
topic in the theory of nonexpansive mappings and have wide applications in a number
of applied areas, such as the convex feasibility problem [1-4], the split feasibility problem
[5-7] and image recovery and signal processing [3, 8, 9], and so forth. However, the
Picard sequence {T"x},- often fails to converge even in the weak topology. Thus, averaged
iterations prevail. The Mann iteration [10] is one of the types and is defined by

Xpi1 = ApXy + (1 —a,)Tx,, n=>0, (1.4)

where xj € C is chosen arbitrarily and {a,} C [0,1]. Reich [11] proved that if E is a uniformly
convex Banach space with a Fréchet differentiable norm and if {a,} is chosen such that
Sooan(l —a,) = oo, then the sequence {x,} defined by (1.4) converges weakly to a fixed
point of T. However, we note that Mann iterations have only weak convergence even in a
Hilbert space (see e.g., [12]). From a practical point of view, strict pseudocontractions have
more powerful applications than nonexpansive mappings do in solving inverse problems
(see [13]). Therefore, it is important to develop theory of iterative methods for strict
pseudocontractions. Indeed, Browder and Petryshyn [14] prove that if the sequence {x,}
is generated by the following;:

Xpp=ax, +(1-a)Tx,, n=>0, (1.5)

for any starting point xy € C, a is a constant such that x < a < 1, {x,} converges weakly to
a fixed point of strict pseudocontraction. Marino and Xu [15] extended the result of Browder
and Petryshyn [14] to Mann iteration (1.4); they proved {x,} converges weakly to a fixed
point of T, provided the control sequence {a,} satisfies the conditions that x < a, < 1 for all
nand > (a, —k)(1 - ay,) = oco.

The well-known strong convergence theorem for pseudocontractive mapping was
proved by Ishikawa [16] in 1974. More precisely, he got the following theorem.

Theorem 1.1 (see [16]). Let C be a convex compact subset of a Hilbert space H and let T : C — C
be a Lipschitzian pseudocontractive mapping. For any x1 € C, suppose the sequence {x,} is defined

by

Xn+l = (1 — acn)xn + vchyn,
(1.6)
Yn = (1 —ﬂn)xn +ﬁnTxn, n>= 1’

where {ay,}, { P} are two real sequences in [0, 1] satisfying
(i) an < Pn,n=>1,
(if) lim, o fn = 0,
(ifi) 352 @ = oo.
Then {x,} converges strongly to a fixed point of T.
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Remark 1.2. (i) Since 0 < a, < B, < 1, n > 1and >,;2; a,f, = oo, the iterative sequence (1.6)
could not be reduced to a Mann iterative sequence (1.4). Therefore, the iterative sequence
(1.6) has some particular cases.

(ii) The iterative sequence (1.6) is usually called the Ishikawa iterative sequence.

(iii) Chidume and Mutangadura [17] gave an example to show that the Mann iterative
sequence failed to be convergent to a fixed point of Lipschitzian pseudocontractive mapping.

In an infinite-dimensional Hilbert spaces, Mann and Ishikawa’s iteration algorithms
have only weak convergence, in general, even for nonexpansive mapping. In order to obtain
a strong convergence theorem for the Mann iteration method (1.4) to nonexpansive mapping,
Nakajo and Takahashi [18] modified (1.4) by employing two closed convex sets that are
created in order to form the sequence via metric projection so that strong convergence is
guaranteed. Later, it is often referred as the hybrid algorithm or the CQ algorithm. After
that the hybrid algorithm have been studied extensively by many authors (see e.g., [19-23]).
Particularly, Martinez-Yanes and Xu [24] and Plubtieng and Ungchittrakool [20] extended
the same results of Nakajo and Takahashi [18] to the Ishikawa iteration process. In 2007,
Marino and Xu [15] further generalized the hybrid algorithm from nonexpansive mappings
to strict pseudocontractive mappings. In 2008, Zhou [25] established the hybrid algorithm
for pseudocontractive mapping in the case of the Ishikawa iteration process.

Recently, Yao et al. [26] introduced the hybrid iterative algorithm which just involved
one closed convex set for pseudocontractive mapping in Hilbert spaces as follows.

Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C — Cbe
a pseudocontraction. Let {a;,} be a sequencein (0,1). Let xo € H. For C; = C and x1 = Pc, (x),
define a sequence {x,} of C as follows.

Yn = (1 - ‘xn)xn +a,Tz,,
Crit = {0 € Co: flan(l = Tyyall® < 2 (s =0, (1= T)y) }, (17)

Xn+l = ple (xO)-

Theorem 1.3 (see [26]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T : C — Cbea L-Lipschitz pseudocontraction such that F(T) # 0. Assume the sequence {a, } C [a,b]
for some a,b € (0,1/(L + 1)). Then the sequence {x,} generated by (1.7) converges strongly to
Pr(r) (x0).-

Very recently, Tang et al. [27] generalized the hybrid algorithm (1.7) in the case of the
Ishikawa iterative precess as follows:

Yn=(1—-an)x, +a,Tz,,
zn = (1= PBn)xn + PuTxy,
Cut = {0 €Cut flan(l = Tyyall® < 2 (v = v, (1 - T)y) (1.8)

+20,BuL|2xn = Txu||||yn = xn + (I = T)ya|| },

Xn+l = Pcn+1 (xO)'
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Under some appropriate conditions of {a,} and {f,}, they proved that (1.8) converges
strongly to Pr(r)(xo).

Motivated and inspired by the above works, in this paper, we generalize (1.7)
to the Ishikawa iterative process in the case of finding the common fixed point of
Lipschitz pseudocontraction and x-strict pseudocontraction. More precisely, we provide
some applications of the main theorem to find the common zero point of the Lipshitz
monotone mapping and y-inverse strongly monotone mapping in Hilbert spaces.

2. Preliminaries

Let H be a real Hilbert space with inner product (-,-) and norm || - ||, and let C be a closed
convex subset of H. For every point x € H, there exists a unique nearest point in C, denoted
by Pc(x), such that

lx - Pex|| < ||x-vy|, VyeC (2.1)

where Pc is called the metric projection of H onto C. We know that Pc is a nonexpansive
mapping. It is also known that H satisfies Opial’s condition, that is, for any sequence {x,}
with x,, — x, the inequality

lim inf 26, = x|| < lim inf ||, ~ ]| (2.2)

holds for every y € H with y #x.

For a given sequence {x,} C C, let wy(x,) = {x : 3x,; — x} denote the weak w-limit
set of {x,}.

Now we collect some Lemmas which will be used in the proof of the main result in the
next section. We note that Lemmas 2.1 and 2.2 are well known.

Lemma 2.1. Let H be a real Hilbert space. There holds the following identities:
@) Ilx = yI* = IIxI* = lyl* - 2(x -y, y), for all x,y € H,
(i) [lAx + (1 = N)y]* = Alx]>+ A=V [y|>*~A(1=V)[|lx = y||?, for all x,y € Hand X € [0,1].

Lemma 2.2. Let C be a closed convex subset of real Hilbert space H. Given x € H and z € C, then
z = Pcx if and only if there holds the relation

(x-z,y-2z)<0, YyeC. (2.3)

Proposition 2.3 (see [15, Proposition 2.1]). Assume C is a closed convex subset of a Hilbert space
H;let T : C — C be aself-mapping of C. If T is a x-strict pseudocontraction, then T satisfies the
Lipschitz condition

1+x
1-x

ITx-Tyl| < 7—lIx-vll, VxyeC (2.4)

Lemma 2.4 (see [28]). Let H be a real Hilbert space, let C be a closed convex subset of H, and let
T : C — C be a continuous pseudocontractive mapping, then
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(i) F(T) is closed convex subset of C,

(ii) I — T is demiclosed at zero, that is, if {x,} is a sequence in C such that x, — z and

(I-T)x, — 0, then (I-T)z = 0.

Lemma 2.5 (see [24]). Let C be a closed convex subset of H. Let {x,} be a sequence in H, and let

u € H. Let q = Pcu. If {x,,} is such that w,,(x,) C C and satisfies the condition

o, —ul| < ||lu-q|, Vn

then x, — q.

3. Main Result

(2.5)

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H, let T : C — C
be Lr-Lipschitz pseudocontraction, and let S : C — C be «-strict pseudocontraction with F :=
F(S)NF(T)#0. Let xo € H. For C; = C and x1 = Pc, (x), define a sequence {x,} of C as follows:

Yn=(1—an)x, +a,Tz,,

zn = (1= PBn)Xn + PuSxn,

Cp = {U €Cy: ”an(I _T)yn”Z + (A== - 5)xn||2

<2a,(xp =0, (I =T)yn) +2{xp — v, I = S)zy + (I - S)x)

+2anﬁnLT“xn — Sxy|| ”yn - Xp +a, (I - T)yn”

+ﬂn((12f"x)2 - 1>||<I—S)xn||2},

X1 = Pc,,, (%0).

(3.1)

Assume the sequence {ay}, {Pn} besuchthat0 <a < a, <b<1/(Lt+1) <land0<p, <1 for

all n € N with limy, _, o, f, = 0. Then {x,} converges strongly to Pg(xo).

Proof. By Lemma 2.4(i), we see that F(S) and F(T) are closed and convex, then F is as well.
Hence, Pz is well defined. Next, we will prove by induction that F ¢ C, for all n € N. Note
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that F c C = C;. Assume that Fc Cr holds fork > 1. Letp € I?, thus p € Ci, and we observe
that

llck = p = e (T = Ty |* = ||k = pl|* = [l (T = Ty |®
= 2a((I = T)yx, xx = p — ar(I = T)yx)
= ||lxe = pI* = o - Ty ||
=20 (I -T)yx = (I -T)p, yx — p)
=201 ((I = Ty, xx — Yk — ax(I = T)y)
2 2
< lxk = plI” = [Jar = Tyl
=2 (I = Ty, xi — yi — ax(I = T)yx)
(3.2)
=l = plI” = | ek = ve) + (v — 2 + (I = ) ||
=2 (I = Ty, xic — yi — ax(I = T)y)
2 2 2
= [Jxi = pI” = [l = yell” = lyi = xx + (I = Ty |
= 2(xk — Y, Yk — xx + ax(I = T)y)
= 2a{((I = Ty, xic — yi — ax(I = T)y)
2 2 2
<l =plI” = llxe =yl =y = x + (= Tyl

+ 2|<xk — Yk — (Xk(I - T)]/k, Xk — Yk — (Xk(I - T)yk> |
Consider the last term of (3.2), we obtain

[ (xk — vk — ax(I = T)yx, yx — xx + (I - T)yi)|
= o | (xx = Tz = (I = T)yk, yx — xx + ax(I = Ty )|
= ape| (ke = Toxg + Toxg = Tzie = (I = Ty, yie — x + ax(I = T)yi )|
= a[((I - T)xx = (I = T)yi, yi — xk + (I = T)yi) + (Txx = Tzi, yk — Xk + ar(I = T)yy) |
< ar(Ly + 1) |2 = yie|| |lye = xk + (T = T)yie||

+ zkaT||xk - Zk” ”yk — Xk + cxk(I — T)yk”
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= ar (L + 1) || =y || lyx — 20k + et (I = T)yie|

+ arPrLrlxi — Sxiell ||y — xk + ax (I = T)yie|

Lr+1
< WD (gl + s+ - Do)

+ arPiLr|lxk = Sxicll||yx — xi + (I = Ty |-

(3.3)
Substituting (3.3) into (3.2), we obtain
[l = p = a1 = T)yill” < [l = pII* = ek = el = e = xx + (T = Ty
+a(Lr+ 1) (oo = yell® + Ny = 2+ (T = Dye|*)
(3.4)
+ 2o i Lok — Sxll || yx — xi + a(T = Ty ||
<l - P”2 + 20 i Lr || xic = Sxiell|| vk — xx + ar (I = T)yic]|-
Notice that
(3.5)

llxk = p = @ = T)yie||* = ||k = p||” = 2 (xi = p, (I = Tyic) + [l (I = Ty ||

Therefore, from (3.4) and (3.5), we get

llew (T = T)yi||” < 2k (xx = p, (I = Ty ) + 20 Ll — Soxl]| yx — xx + a (I = Ty |-
(3.6)

On the other hand, we found that

[l = p = BT = S)ze]|* = ||k = pl|* = [|Be(I = S)zi||” = 2Bi{(I = S)zi, xic — p = P - S)zi)
= [|xck = p||* = |8 (I = S)z||* - 2Bx((T = S)zx - (I - S)p, 2k — p)

= 2P((I = S)zie, xic — zi — (I — S)zi)
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< lxk - P”Z — || Bk (I - 5)Zk||2 = 2(B(I = S)zie, xic — zk = Prc(I = S)z)
= [lx = pII* = 1A = S)z

+ (18T = S)zel* = llxic = 2l + ek = 2= el = )z )
= || Gex = zi) + (zx =PI = Nl = zell* + || Bed = S)xic = Bred = )z ||
= e = 2l + 2k — 2k, zic = p) + |2k I =l = 2l
+ 18T = S)xi = (T = S)ze|”
= 2(xx = 2z, (2k = x1) + (= p)) + || (1 = i) (xic = p) + Pre(Sxic = p) ||
+ 1B = S)xic = il = )z’
< 2(xk = p, I = S)xic) + (1= i) |k = pI* + Bell Sxe — p |
= Pic(1 = Pie) Ik = Sacill” = 2611 = S)xiel”
B (1) -zl
< 2~ p,Bell - S)xe) + (1= po) i pI + Bellxe - I

+ Bl (I = S)axkl* = B (1 = Br) 1T = S)xkl” = 2831 (I = S)xil”

2
(125 ) 1= Sl
= 2~ p, il - )x1) + i plI* - (1 - 0T - S

2
- - Syl + gt (125 ) - Sy

(3.7)
Notice that
lxk —p = B = S)z||” = |2k = p|* = 2Bk (xk = p, (I = )z ) + BT - S)z |- (3.8)

Combining (3.7) and (3.8) and then it implies that

2 2 2P ? 2
Bt =)l = Sxil < 2 (xi =, (1= D)z (= Sy + i (725 ) =1 )10 -SmlP

(3.9)
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Since f, > 0 for all n, so we get

2
(1 —x)|lxx — Sxil* < 2(xk —p, (I = S)zx + (I - S)xk ) + Px <<%> - 1> (I = S)xx||
(3.10)

It follows from (3.6) and (3.10) that we obtain

llae (X = T)ye]|* + (1 = %) (I = S) il
< 2ai(xk —v, (I = T)yx) + 2{xk — v, (I = S)z + (I - S)x)

2 2
+ 2akPrLrl|x = Sxicll[|yi — xi + e (I = Ty || + Pr <<1 ka> - 1> 1T = S)axlf.
(3.11)

Therefore, p € Ci,1. By mathematical induction, we have FcC,foralln € N. Itis easy to
check that C, is closed and convex, and then { an} is well defined. From x, = Pc,(xo), we
have (xo — x,,x, —y) > 0 for all y € C,,. Using F C C,, we also have (xy — x,, x, —u) > 0 for
allu € F. So, for u € F, we have

0 < (x0 = Xp, X —U) = (X0 — Xy, X — X0 + X0 — U)

= —lxo = xull* + (30 — X, X0 — 1) (3.12)

< =llxo = 2all® + llx0 = xullllx0 = -

Hence, ||xo — x| < ||lx0 — |, for all u € F. In particular,

lIxo = xull < ||x0 =g, where q = Pg(xo). (3.13)

This implies that {x,} is bounded, and then {y,}, {Ty,}, {z+}, {Sz.}, and {Sx,} are as well.
From x,, = Pc,(x0) and x,11 = Pc,,, (x0) € Cpy1 C C,, we have

(x0 = X, Xp — Xps1) = 0. (3.14)

Hence
0 < (X0 = Xn, X = Xp41) = (X0 = Xp, X — X0 + X0 = Xps1)
= —”Xo - xn“2 + <Xo - Xn, X0 — xn+1> (315)

< =llx0 = xall? + [Ix0 = xullllX0 = Xnsa [,
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and; therefore,

[0 = xul < [Ix0 = Xna1l, (3.16)
which implies that lim,, ., ., ||x, — x| exists. From Lemma 2.1 and (3.14), we obtain

21 = Xnll* = [|(ne1 = X0) = (3 = x0) |I*
= |1 = %0l = |20 = Xo|* = 2211 = X, X — X0) (3.17)

2 2
< %1 = xo0ll” = llxn = x0l|” — 0.

Since x,,41 € Cp41 C C,,, we have

llan(I = T)yu)* + A = %)L - S)xal?
< 20, (%0 — X1, (I = T)Yn) + 2(xp = Xpe1, (I = S)z + (I = S)x)

+ 20, BuLr|| %0 — Sxul ||y = X + an(I = T) || (3.18)
26, \2
+[5<<£> - 1>||(I—S)xn||2 —0 asn— oo,
therefore, we obtain
lvn —Tya|| — O, |l — Sx,|| — 0. (3.19)
We note that
126w = Toull < |20 = Yl + |y = Tyul + [ Tyn = T |
< (Lr + D[xn = yull + llyn = Tyall
< an(Lr + 1)||xn = Tzl + ”yn - Tyn” (3.20)

< an(LT + 1)I|xn - Txn“ +a, (Lt + 1)||Txn - Tzn” + "yn - Tyn”
< an(Lr + D)llxn = Txull + anPulr (Lt + 1)||xn = Sxn|| + ”]/n - Tyn”/

that is,

anﬂnLT(LT + ].)

Sl ) T .
T—an(Lr +1) Yall =0, asn— oo

(3.21)

1
—Tx,| < - -
loen =T a1

llxtn = Soxall +

By Lemma 2.4(ii), I - T and I — S are demiclosed at zero. Together with the fact that
{x,} is bounded, which guarantees that every weak limit point of {x,} is a fixed point of T
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and S, that is wy,(x,;) € F(T) N F(S) = F, therefore, by inequality (3.13) and Lemma 2.5, we
know that {x,} converges strongly to g = Pz(x¢). This completes the proof. O

If S = I, then we obtain the following corollary.

Corollary 3.2 (Yao et al. [26, Theorem 3.1]). Let C be a nonempty closed convex subset of a real
Hilbert space H. Let T : C — C be L-Lipschitz pseudocontraction such that F(T) #@. Assume the
sequence {ay} be such that 0 < a < a, < b < 1/(L+1) < 1 for all n. Then the sequence {x,}
generated by (1.7) converges strongly to Pr(ty(xo).

If T and S are nonexpansive, then we also have the following corollary.

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H, and let S,T : C —
C be nonexpansive mappings. Suppose that F:=F (S)NF(T) # 0. Assume the sequence {a,} be such
that 0 <a < a, < b<1/2and 0 < B, < 1forall n € N with lim,_, , = 0. Let xo € H. For
C1 = Cand x1 = Pc,(xo), define a sequence {x,} of C as follows:

Yn=(1—-an)x, +a,Tz,,
zn = (1= Pn)xXn + BnSxn,

Cu1 = {U €Cy: ”“n(l _T)yn||2 +I(T - S)xn||2
< 2a,(xp =0, (I =T)yn) +2(xp —0, (I = S)zn + (I - S)xy) (3.22)
+20 B % = Sxull||yn — X0 + @ (I = T)yal|
(482 - DI - S)xll},

xn+1 = PCVH-l (xo)'

Then {x,} converges strongly to P (xo).

Recall that a mapping A is said to be monotone if (x — y, Ax — Ay) > 0 for all
x,y € H and inverse strongly monotone if there exists a real number y > 0 such that
(x —y,Ax — Ay) > y||Ax - Ay||2 for all x,y € H. For the second case, A is said to be y-
inverse strongly monotone. It follows immediately that if A is y-inverse strongly monotone,
then A is monotone and Lipschitz continuous, that is, |[Ax — Ay|| < (1/y)||x — y||. It is well
known (see e.g., [29]) that if A is monotone, then the solutions of the equation Ax = 0
correspond to the equilibrium points of some evolution systems. Therefore, it is important
to focus on finding the zero point of monotone mappings. The pseudocontractive mapping
and strictly pseudocontractive mapping are strongly related to the monotone mapping and
inverse strongly monotone mapping, respectively. It is well known that

(i) Ais monotone & T := (I — A) is pseudocontractive,

(ii) A isinverse strongly monotone & T := (I — A) is strictly pseudocontractive.

Indeed, for (ii), we notice that the following equality always holds in a real Hilbert space:

11 = A)x = (1= AP = -yl + | Ax - Ay| ~2(x -y, Ax - Ay), ¥x,y € H.
(3.23)
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Without loss of generality, we can assume that y € (0,1/2], and then it yields

(x~y,Ax - Ay) > y|| Ax - Ay’
— 2(x -y, Ax - Ay) < -2y]|Ax - Ay’
= - A= - AP < B -wlf + G- llax- Al
(via (3.23))
= | Tx-Ty|* < [|x-y|* +x[|d - Dx - T - Dy’
(where T := (I - A), x:=1-2y).

Due to Theorem 3.1, we have the following corollary which generalize the corresponding
results of Yao et al. [26].

Corollary 3.4. Let A : H — H be La-Lipschitz monotone mapping and let B : H — H be
an y-inverse strongly monotone which A=1(0) N B~1(0) # (. Assume the sequence {a,} be such that
O<a<a,<b<1/(La+2),0<p,<1foralln e Nuwithlim,_,p, =0andy € (0,1/2] such
thaty > y. Let xo € H. For C; = H and x1 = Pc, (x0) = xo, define a sequence {x,} as follows:

Yn =Xn— A (Xp — 2n) — 0y Azy,

Zp =Xp — ﬂannr

Cpi1 = {U €Cy: ||l3[1114]/n”2 + ZY”an”z
< 2a,(xy — v, AYn) +2(xy — v, Bz, + Bxy) (3.25)
+20fn(La + D[ Bxall|yn = %n + 2 Ay,

+ﬁn<(%)2 —1>||an||2},

Xn+l = PCnH (xo)'

Then {x,} converges strongly to Pa-1(9)np-1(0)(X0)-

Proof. Let T := (I - A) and let S := (I — B). Then T and S are pseudocontractive and (1 - 2y)-
pseudocontractive, respectively. Moreover, T is also (Lo +1)-Lipschitz, and if we set x := 1-2y,
Sisalso ((1-y)/y)-Lipschitz, and then (2/ (1-x))* =1/ y2. Hence, it follows from Theorem 3.1
that we have the desired result. O

If B = 0 (zero mapping), then z, = x, and B™1(0) = H. So, we obtain the following
corollary.
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Corollary 3.5 (Yao et al. [26, Corollary 3.2]). Let A : H — H be a La-Lipschitz monotone
mapping for which A7*(0) #@. Assume that the sequence {a,} be as in Corollary 3.4. Then the
sequence {x,} generated by

Yn =Xn — anAzy,
Cpi1 = {z) €C,: ||0£,,Ayn||2 < 2a,(xn - v, Ayn>}, (3.26)

Xn+l = Pcn+1 (xo)

strongly converges to Pa- ) (Xo).
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