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Received 24 January 2011; Revised 30 May 2011; Accepted 31 July 2011

Academic Editor: Alexander I. Domoshnitsky
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The definition of convergence of an infinite product of scalars is extended to the infinite usual and
Kronecker products of matrices. The new definitions are less restricted invertibly convergence.
Whereas the invertibly convergence is based on the invertible of matrices; in this study, we assume
that matrices are not invertible. Some sufficient conditions for these kinds of convergence are
studied. Further, some matrix sequences which are convergent to the Moore-Penrose inverses
A+ and outer inverses A

(2)
T,S as a general case are also studied. The results are derived here

by considering the related well-known methods, namely, Euler-Knopp, Newton-Raphson, and
Tikhonov methods. Finally, we provide some examples for computing both generalized inverses
A

(2)
T,S and A+ numerically for any arbitrary matrix Am,n of large dimension by using MATLAB and

comparing the results between some of different methods.

1. Introduction and Preliminaries

A scalar infinite product p =
∏∞

m=1bm of complex numbers is said to converge if bm is nonzero
for m sufficiently large, say m ≥ N, and q = limm→∞

∏∞
m=1bm exists and is nonzero. If this is

so then p is defined to be p = q =
∏N−1

m=1bm. With this definition, a convergent infinite product
vanishes if and only if one of its factors vanishes.

Let {Bm} be a sequence of k × k matrices, then

s∏

m=r
Bm =

⎧
⎨

⎩

BsBs−1 · · ·Br if r ≤ s

I if r > s.
(1.1)

In [1], Daubechies and Lagarias defined the converges of an infinite product of matrices
without the adverb “invertibly” as follows.
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(i) An infinite product
∏∞

m=1Bm of k × k matrices is said to be right converges if
limm→∞B1B2 · · ·Bm exists, in which case

∞∏

m=1

Bm = lim
m→∞

B1B2 · · ·Bm. (1.2)

(ii) An infinite product
∏∞

m=1Bm of k × k matrices is said to be left converges if
limm→∞Bm · · ·B2B1 exists, in which case

∞∏

m=1

Bm = lim
m→∞

Bm · · ·B2B1. (1.3)

The idea of invertibly convergence of sequence of matrices was introduced by Trench [2, 3]
as follows. An infinite product

∏∞
m=1Bm of k × k matrices is said to be invertibly converged if

there is an integer N such that Bm is invertible form ≥ N, and

Q = lim
n→∞

n∏

m=N

Bm, (1.4)

exists and is invertible. In this case,

∞∏

m=1

Bm = Q
N−1∏

m=1

Bm. (1.5)

Let us recall some concepts that will be used below. Before starting, throughout we consider
matrices over the field of complex numbers C or real numbers R. The set of m-by-n complex
matrices is denoted by Mm,n(C) = C

m×n. For simplicity, we write Mm,n instead of Mm,n(C)
and when m = n, we write Mn instead of Mn,n. The notations AT , A∗, A+, A(2)

T,S, rank(A),
rang(A), null(A), ρ(A), ‖A‖s, ‖A‖p, and σ(A) stand, respectively, for the transpose, conjugate
transpose, Moore-Penrose inverse, outer inverse, rank, range, null space, spectral radius,
spectrum norm, p-norm, and the set of all eigenvalues of matrix A.

The Moore-Penrose and outer inverses of an arbitrary matrix (including singular and
rectangular) are very useful in various applications in control system analysis, statistics,
singular differential and difference equations, Markov chains, iterative methods, least-square
problem, perturbation theory, neural networks problem, andmany other subjects were found
in the literature (see, e.g., [4–14]).

It is well known thatMoore-Penrose inverse (MPI) of a matrixA ∈ Mm,n is defined to be
the unique solution of the following four matrix equations (see, e.g. [4, 11, 14–20]):

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA (1.6)

and is often denoted by X = A+ ∈ Mn,m. In particular, when A is a square and nonsingular
matrix, then A+ reduce to A−1.

For x = A+b, x′ ∈ C
n \ {x} arbitrary, it holds, (see, e.g., [14, 18]),

‖b −Ax‖22 = (b −Ax)∗(b −Ax) ≤ ∥
∥b −Ax′∥∥2

2, (1.7)
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and ‖b −Ax‖2 = ‖b −Ax′‖2, then

‖x‖22 = x∗x <
∥
∥x′∥∥2

2. (1.8)

Thus, x = A+b is the unique minimum least-squares solution of the following linear squares
problem, (see, e.g., [14, 21, 22]),

‖b −Ax‖2 = min
z∈Cn

‖b −Az‖2. (1.9)

It is well known also that the singular value decomposition of any rectangular matrix A ∈ Mm,n

with rank(A) = r /= 0 is given by

A = U

[
D 0

0 0

]

V ∗ : U∗U = Im, V ∗V = In, (1.10)

where D = diag(μ1, μ2, . . . , μr) ∈ Mr is a diagonal matrix with diagonal entries δi(i =
1, 2, . . . , r), and μ1 ≥ μ2 ≥ · · · ≥ μr > 0 are the singular values of A, that is, μ2

i (i = 1, 2, . . . , r)
are the nonzero eigenvalues of A∗A. This decomposition is extremely useful to represent the
MPI of A ∈ Mm,n by [20, 23]

A+ = V

[
D−1 0

0 0

]

U∗, (1.11)

where D−1 = diag(μ−1
1 , μ−1

2 , . . . , μ−1
r ) ∈ Mr is a diagonal matrix with diagonal entries μ−1

i (i =
1, . . . , r).

Furthermore, the spectral norm of A is defined by

‖A‖s = max
1≤i≤r

{
μi

}
= μ1; ‖A+‖s =

1
μr

, (1.12)

where μ1and μr are, respectively, the largest and smallest singular value of A.
Generally speaking, the outer inverse A

(2)
T,S of a matrix A ∈ Mm,n, which is a unique

matrix X ∈ Mn,m satisfying the following equations (see, e.g., [20, 24–27]):

AXA = A, rang(A) = T, null(A) = S, (1.13)

where T is a subspace of C
n of s ≤ r, and S is a subspace of C

m of dimension m − s.
As we see in [13, 20, 24–29], it is well-known fact that several important generalized

inverses, such as the Moore-Penrose inverse A+, the weighted Moore-Penrose inverse A+
M,N ,

the Drazin inverse AD, and so forth, are all the generalized inverse A(2)
T,S, which is having the

prescribed range T and null space S of outer inverse of A. In this case, the Moore-Penrose
inverse A+ can be represented in outer inverse form as follows [27]:

A+ = A
(2)
rang(A∗), null(A∗). (1.14)
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Also, the representation and characterization for the outer generalized inverseA(2)
T,S have been

considered by many authors (see, e.g., [15, 16, 20, 27, 30, 31])
Finally, given two matricesA = [aij] ∈ Mm,n, and B = [bkl] ∈ Mp,q, then the Kronecker

product of A and B is defined by (see, e.g., [5, 7, 32–35])

A ⊗ B =
[
aijB

] ∈ Mmp,nq. (1.15)

Furthermore, the Kronecker product enjoys the following well-known and important pro-
perties:

(i) The Kronecker product is associative and distributive with respect to matrix
addition.

(ii) If A ∈ Mm,n, B ∈ Mp,q, C ∈ Mn,r and D ∈ Mq,s, then

(A ⊗ B)(C ⊗D) = AC ⊗ BD (1.16)

(iii) If A ∈ Mm, B ∈ Mp are positive definite matrices, then for any real number r, we
have:

(A ⊗ B)r = Ar ⊗ Br. (1.17)

(iv) If A ∈ Mm,n, B ∈ Mp,q, then

(A ⊗ B)+ = A+ ⊗ B+. (1.18)

2. Convergent Moore-Penrose Inverse of Matrices

First, the need to compute A+ by using sequences method. The key to such results below is
the following two Lemmas, due to Wei [23] and Wei and Wu [17], respectively.

Lemma 2.1. Let A ∈ Mm,n ba a matrix. Then

A+ = Â−1A∗, (2.1)

where Â = A∗A�rang(A∗) is the restriction of A∗A on rang(A∗).

Lemma 2.2. Let A ∈ Mm,n with rank(A) = r and Â = A∗A�rang(A∗). Suppose Ω is an open set

such that σ(Â) ⊂ Ω ⊂ (0,∞). Let {Sn(x)} be a family of continuous real valued function on Ω with
limn→∞Sn(x) = 1/x uniformly onσ(Â). Then

A+ = lim
n→∞

Sn

(
Â
)
A∗. (2.2)

Furthermore,

∥
∥
∥Sn

(
Â
)
A∗ −A+

∥
∥
∥
2
≤ sup

x∈σ(Â)

|Sn(x)x − 1|‖A+‖2. (2.3)
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Moreover, for each λ ∈ σ(Â), we have

μ2
r ≤ λ ≤ μ2

1. (2.4)

It is well known that the inverse of an invertible operator can be calculated by interpolating
the function 1/x, in a similar manner we will approximate the Moore-Penrose inverse by
interpolating function 1/x and using Lemmas 2.1 and 2.2.

One way to produce a family of functions {Sn(x)} which is suitable for use in the
Lemma 2.2 is to employ the well known Euler-Knopp method. A series

∑∞
n=0 an is said to be

Euler-Knopp summable with parameter α > 0 to the value a if the sequence defined by

Sn = α
n∑

k=0

k∑

j=0

(
k

j

)

(1 − α)k−jαjαj (2.5)

converges to a. If ak = (1 − x) for k = 0, 1, 2, . . ., then we obtain as the Euler-Knopp transform
of the series

∑∞
k=0 (1 − x)k, the sequence given by

Sn(x) = α
n∑

k=0

(1 − αx)k. (2.6)

Clearly limn→∞Sn(x) = 1/x uniformly on any compact subset of the set

Eα = {x : |1 − αx| < 1} =
{

x : 0 < x <
2
α

}

. (2.7)

Another way to produce a family functions {Sn(x)} which is suitable also for use in the
Lemma 2.2 is to employ the well-known Newton-Raphson method. This can be done by
generating a sequence yn, where

yn+1 = yn −
s
(
yn

)

s′
(
yn

) = yn

(
2 − xyn

)
, (2.8)

for suitable y0. Suppose that for α > 0 we define a sequence of functions {Sn(x)} by

S0(x) = α; Sn+1(x) = Sn(x)(2 − xSn(x)). (2.9)

In fact,

xSn+1(x) − 1 = −(xSn(x) − 1)2. (2.10)

Iterating on this equality, it follows that if x is confined to a compact subset of Eα = {x : 0 <
x < 2/α}. Then there is a constant β (defining on this compact set) with 0 < β < 1 and

|xSn(x) − 1| = |αx − 1|2n ≤ β2
n −→ 0 (n −→ ∞). (2.11)
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According to the variational definition, A+b is the vector x ∈ C
n which minimizes the

functional ‖Ax − b‖2 and also has the smallest 2 norm among all such minimizing vectors.
The idea of Tikhonov’s regularization [36, 37] of order zero is to approximately minimize
both the functional ‖Ax − b‖2 and the norm ‖x‖2 by minimizing the functional g : C

n → R

defined by

g(x) = ‖Ax − b‖22 + t‖x‖22, (2.12)

where t > 0. The minimum of this functional will occur at the unique stationary point u of g,
that is, the vector u which satisfies ∇g(u) = 0. The gradient of g is given by

∇g(x) = 2(A∗Ax −A∗b) + 2tx, (2.13)

and hence the unique minimizer ut satisfies

ut = (A∗A + tI)−1A∗b. (2.14)

On intuitive grounds, it seems reasonable to expect that

lim
t→ 0+

ut = (A∗A)−1A∗b = A+b. (2.15)

Therefore, if we define a sequence of functions {Sn(x)} by using Euler-Knopp method,
Newton-Raphson method and the idea of Tikhonov’s regularization that mentioned above,
then we get the following nice Theorem.

Theorem 2.3. Let A ∈ Mm,n with rank(A) = r and 0 < α < 2μ−2
1 . Then

(i) the sequence {An} defined by

A0 = αA∗; An+1 = (1 − αA∗A)An + αA∗ (2.16)

converges to A+. Furthermore, the error estimate is given by

‖An −A+‖2 ≤ βn+1‖A+‖2, (2.17)

where 0 < β < 1.

(ii) The sequence {An} defined by

A0 = αA∗; An+1 = An(2I −AAn) (2.18)

converges to A+.

Furthermore, the error estimate is given by

‖An −A+‖2 ≤ β2
n‖A+‖2. (2.19)

where 0 < β < 1.
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(iii) for t > 0,

A+ = lim
t→ 0+

(tI +A∗A)−1A∗. (2.20)

Thus, the error estimate is given by

∥
∥
∥(tI +A∗A)−1A∗ −A+

∥
∥
∥
2
≤ t

μ2
r + t

‖A+‖2. (2.21)

Proof. (i) It follows from σ(Â) ⊆ [μ2
r , μ

2
1] that σ(Â) ⊂ (0, μ2

1], and hence we apply Lemma 2.2
if we choose the parameter α is such a way that (0, μ2

1] ⊆ Eα, where Eα is defined by (2.7). We
may choose α such that 0 < α < 2μ−2

1 . If we use the sequence defined by

S0(x) = α; Sn+1(x) = (1 − αx)Sn(x) + α, (2.22)

it is easy to verify that

lim
n→∞

Sn(x) =
1
x
, (2.23)

uniformly on any compact subset of Eα. Hence, if 0 < α < 2μ−2
1 , then, applying Lemma 2.2,

we get

lim
n→∞

Sn

(
Â
)
A∗ = A+. (2.24)

But it is easy to see from (2.22) that Sn(Â)A∗ = An, whereAn is given by (2.16). This is surely
the case if 0 < α < 2μ−2

1 , then, for such α, we have the representation

A+ = α
n∑

j=0
(1 − αA∗A)jA∗. (2.25)

Note that if we set

An = α
n∑

j=0
(1 − αA∗A)jA∗, (2.26)

then we get (2.16).
To derive an error estimate for the Euler-Knopp method, suppose that 0 < α < 2μ−2

1 . If
the sequence Sn(x) is defined as in (2.22), then

Sn+1(x)x − 1 = (1 − αx)(Sn(x)x − 1). (2.27)
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Therefore, since S0 = α,

|Sn(x)x − 1| = |1 − αx|n+1. (2.28)

By μ2
r ≤ x ≤ μ2

1 for x ∈ σ(Â) and 0 < α < 2μ−2
1 , it follows that

|1 − αx| < β, (2.29)

where β is given by

β = max
{∣
∣
∣1 − αμ2

1

∣
∣
∣,
∣
∣
∣1 − αμ2

r

∣
∣
∣
}
. (2.30)

Clearly,

2 > αμ2
1 ≥ αμ2

r > 0, (2.31)

and therefore 0 < β < 1. From Lemma 2.2, we establish (2.17).
(ii) Using the Newton-Raphson iterations in (2.8)–(2.11) in conjunction with

Lemma 2.2, we see that the sequence of {Sn(Â)} defined by

S0(x) = αI; Sn+1

(
Â
)
= Sn

(
Â
)(

2I −A∗ASn

(
Â
))

(2.32)

has the property that limn→∞Sn(Â)A∗ = A+ uniformly in C
m×n. If we set An = Sn(Â)A∗, then

we get (2.18).
If x ∈ σ(Â) and 0 < α < 2μ−2

1 , then we see that |1 − αx| ≤ β, where β is given by (2.30).
It follows as in (2.11) and hence from Lemma 2.2, then we get the error bound as in (2.19).

(iii) If we set

St(x) = (t + x)−1 : t > 0 (2.33)

in Lemma 2.2 and using the idea of Tikhonov’s regularization as in (2.12)–(2.15), then it is
easy to get (2.20) and (2.21).

Huang and Zhang [28] presented the following sequence which is convergent to A+:

A0 = α0A
∗; An+1 = αn+1(2An −AnAAn), n = 1, 2, . . . , (2.34)

where αn+1 ∈ [1, 2] is called an acceleration parameter and chosen so as to minimize that
which is bound on the maximum distance of any nonzero singular value of An+1A from 1.
They chose A0 according to the first term of sequence (2.34) with α0 = 2/(μ1 + μr), and let
p0 = α0μ1, then the acceleration parameters αn+1 and pn+1 have the following sequences:

αn+1 =
2

1 +
(
2 − pn

)
pn

, pn+1 = αn+1
(
2 − pn

)
pn. (2.35)
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We point out that the iteration (2.18) is a special case of an acceleration iteration (2.34).
Further, we note that the above methods and the first-order iterative methods used by Ben-
Israel and Greville [4] for computing A+ are a set of instructions for generating a sequence
{An : n = 1, 2, 3, . . .} converging to A+.

Similarly, Liu et al. [25] introduced some necessary and sufficient conditions for
iterative convergence to the generalized inverseA(2)

T,S and its existence and estimated the error

bounds of the iterative methods for approximatingA
(2)
T,S by defining the sequence {An} in the

following way:

An = An−1 + βX(I −AAn−1), n = 1, 2, . . . , (2.36)

where β /= 0 with X /=XAA0. Then the iteration (2.36) converges if and only ρ(I − βAX) < 1,
equivalently, ρ(I − βAX) < 1. In which case, if rang(X) = T , null(X) = S, and rang(A0) ⊂ T .
Then, A(2)

T,S exists and {An} converges to A
(2)
T,S. Furthermore, the error estimate is given by

∥
∥
∥A

(2)
T,S −An

∥
∥
∥ ≤

∣
∣β

∣
∣qn

1 − q
‖X‖‖I −AA0‖ = R

(
β, n

)
, (2.37)

where q = min{‖I − βXA‖, ‖I − βAX‖}.
What is the best value βopt such that ρ(I − βAX) minimize in order to achieve good

convergence? Unfortunately, it may be very difficult and still require further studies. If σ(AX)
is a subset of R and λmin = min{λ : λ ∈ σ(AX)} > 0, analogous to [38, Example 4.1], we can
have

βopt =
2

λmin + ρ(AX)
. (2.38)

3. Convergent Infinite Products of Matrices

Trench [3, Definition 1] defined invertibly convergence of an infinite products matrices
∏∞

m=1Bm as in the invertible of matrices Bm for all m > N (where N is an integer number).
Here, we define the less restricted definitions of convergence of an infinite products

∏∞
m=1Bm

and
∏∞

m=1 ⊗ Bm for k × k complex matrices such that

s∏

m=r
⊗ Bm =

⎧
⎨

⎩

Bs ⊗ Bs−1 ⊗ · · · ⊗ Br if r ≤ s

I if r > s
(3.1)

as follows.

Definition 3.1. Let {Bm} be a sequence of k × k matrices. Then An infinite product
∏∞

m=1Bm is
said to be convergent if there is an integer N such that Bm /= 0 (may Bm is invertible or not)
for m ≥ N and

Q = lim
n→∞

n∏

m=N

Bm (3.2)
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exists and is nonzero. In this case, we define

∞∏

m=1

Bm = Q
N−1∏

m=1

Bm. (3.3)

Similarly, an infinite product
∏∞

m=1 ⊗ Bm converges if there is an integer N such that Bm /= 0
for m ≥ N, and

R = lim
n→∞

n∏

m=N

⊗ Bm (3.4)

exists and is nonzero. In this case, we define

∞∏

m=1

⊗ Bm = R ⊗
N−1∏

m=1

⊗ Bm. (3.5)

In the above Definition 3.1, the matrix R may be singular even if Bm is nonsingular for all
m ≥ 1, but R may be singular if Bm is singular for some m ≥ 1. However, this definition does
not require that Bm is invertible for large m.

Definition 3.2. Let {Bm} be a sequence of k×k matrices. Then an infinite product
∏∞

m=1 ⊗Bm is
said to be invertibly convergent if there is an integer N such that Bm is invertible for m ≥ N,
and

R = lim
n→∞

n∏

m=N

⊗ Bm (3.6)

exists and invertible. In this case, we define

∞∏

m=1

Bm = R ⊗
N−1∏

m=1

⊗ Bm. (3.7)

The Definitions 3.1 and 3.2 have the following obvious consequence.

Theorem 3.3. Let {Bm} be a sequence of k × k matrices such that the infinite products
∏∞

m=1Bm and
∏∞

m=1 ⊗ Bm are invertibly convergent. Then, both infinite products are convergent, but the converse,
in general, is not true.

Theorem 3.4. Let {Bm} be a sequence of k × k matrices such that

(i) if the infinite product
∏∞

m=1Bm is convergent, then

lim
m→∞

Bm = QQ+, (3.8)

where Q = limn→∞
∏n

m=NBm.
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(ii) If the infinite product
∏∞

m=1 ⊗ Bm is converge, then

lim
m→∞

Bm = R ⊗ R+. (3.9)

Proof. (i) Suppose that
∏∞

m=1Bm is convergent such that Bm /= 0 when m ≥ N. Let Q =
∏n

m=NBm. Then limn→∞Qn = Q, whereQ/= 0. Therefore, limn→∞Q+
n = Q+. Since Bn = QnQ

+
n−1,

we then have

lim
n→∞

Bn =
(

lim
n→∞

Qn

)(

lim
n→∞

Q+
n−1

)

= QQ+. (3.10)

But if Bm is invertible when m ≥ N, then Q is invertible and

lim
n→∞

Bn =
(

lim
n→∞

Qn

)(

lim
n→∞

Q−1
n−1

)

= QQ−1 = I. (3.11)

Similarly, it is easy to prove (ii).

If the infinite products
∏∞

m=1Bm and
∏∞

m=1 ⊗ Bm are invertibly convergent in
Theorem 3.4, then we get the following corollary.

Corollary 3.5. Let {Bm} be a sequence of k × k matrices such that

(i) if the infinite product
∏∞

m=1Bm is invertibly convergent, then

lim
m→∞

Bm = I (3.12)

(ii) if the infinite product
∏∞

m=1 ⊗ Bm is invertibly convergent, then

lim
m→∞

Bm = R ⊗ R−1, (3.13)

where R = limn→∞
∏n

m=N ⊗ Bm.

The main reason for interest in these products above is to generate matrix sequences
for solving such matrix problems such as singular linear systems and singular coupled
matrix equations. For example, Cao [21] and Shi et al. [22] constructed the general stationary
and nonstationary iterative process generated by {Bm}∞m=1 for solving the singular linear
system Ax = b, and Leizarowitz [39] established conditions for weak ergodicity of
products, existence of optimal strategies for controlledMarkov chains, and growth properties
of certain linear nonautonomous differential equations based on a sequence (an infinite
product) of stochastic matrices {Bm}∞m=1(

∏∞
m=1Bm). Also, as discussed in [2], the motivation

of Definition 3.1 stems from a question about linear systems of difference equations and
coupled matrix equations, under what conditions on {Bm}∞m=1 of, for instance, the system
xm = Bmxm−1, m = 1, 2, . . ., approach a finite nonzero limit whenever x0 /= 0? A system
with property linear asymptotic equilibrium if and only if Bm is invertible for every m ≥ 1
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and
∏∞

m=1Bm invertibly convergent, but a system with the so-called least-squares linear
asymptotic equilibrium if Bm /= 0 for every m ≥ 1 and

∏∞
m=1Bm converges.

Because of Theorem 3.4, we consider only infinite product of the form
∏∞

m=1(I +Am),
where limm→∞Am = 0. We will write

Pn =
n∏

m=1

(I +Am); P =
∞∏

m=1

(I +Am). (3.14)

The following Theorem provides the convergence and invertibly convergence of the infinite
product

∏∞
m=1(I +Am), and the proof here is omitted.

Theorem 3.6. The infinite product
∏∞

m=1(I+Am) converges (invertibly converges) if
∑∞

m=1 ‖Am‖p <
∞, for some p-norm ‖ · ‖.

The following theorem relates convergence of an infinite product to the asymptotic
behavior of least-square solutions of a related system of difference equations.

Theorem 3.7. The infinite product
∏∞

m=1(I + Am) converges if and only if for some integer N ≥ 1
the matrix difference equation

Xn+1 = (I +An)Xn : n ≥ N (3.15)

has a least-square solution {Xn}∞n=N such that limn→∞Xn = I. In this case,

Pn = Xn+1X
+
N

N−1∏

m=1

(I +Am); P = X+
N

N−1∏

m=1

(I +Am). (3.16)

Proof. Suppose that
∏∞

m=1(I +Am) converges. ChooseN so that I +Am /= 0 form ≥ N, and let
Q =

∏n
m=N(I +Am). Define

Xn =

{
n−1∏

m=N

(I +Am)

}

Q+ : n ≥ N. (3.17)

Then {Xn}∞n=N is a solution of (3.15) such that limn→∞Xn = I.
Conversely, suppose that (3.15) has a least-square solution {Xn}∞n=N such that

limn→∞Xn = I. Then

Xn =

{
n−1∏

m=N

(I +Am)

}

XN : n ≥ N, (3.18)

where XN /= 0. Therefore,

n−1∏

m=N

(I +Am) = XnX
+
N : n ≥ N. (3.19)
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Letting n → ∞ shows that

∞∏

m=N

(I +Am) = X+
N (3.20)

which implies that
∏∞

m=1(I +Am) converges.
From (3.14) and (3.18), we get

Pn =
n∏

m=1

(I +Am) = Xn+1X
+
N

{
N−1∏

m=1

(I +Am)

}

, (3.21)

which proves the first expression in (3.16). From (3.14) and (3.20), we get

P =
∞∏

m=1

(I +Am) = X+
N

N−1∏

m=1

(I +Am). (3.22)

which proves the second expression in (3.16).

Remark 3.8. If the infinite product
∏∞

m=1(I+Am) is invertibly convergent in Theorem 3.7, then

Pn = Xn+1X
−1
N

N−1∏

m=1

(I +Am); P = X−1
N

N−1∏

m=1

(I +Am). (3.23)

Theorem 3.7 indicates the connection between convergence of an infinite product of k × k
matrices

∏∞
m=1(I + Am) and the asymptotic properties of least-squares solutions of matrix

difference equation as defined in (3.15). We can say that (3.15) has a least-squares linear
asymptotic equilibrium if every least-squares solution of (3.15) for which XN /= 0 that
approaches I as n → ∞.

For example, Ding and Chen [5] and generalized later by Kılıçman and Al-Zhour [8]
studied the convergence of least-square solutions to the coupled Sylvester matrix equations

AX + YB = C; DX + YE = F, (3.24)

where A,D ∈ Mm, B, E ∈ Mn, C, F ∈ Mm,n are given constant matrices, and X,Y ∈ Mm,n

are the unknown matrices to be solved. If the coupled Sylvester matrix equation determined
by (3.24) has a unique solution X and Y , then the following iterative solution Xn+1 and Yn+1

given by [5, 8]:

Xn+1 = Xn + μG+

[
C −AXn − YnB

F −DXn − YnE

]

;

Yn+1 = Yn + μ
[
C −AXn − YnB F −DXn − YnE

]
H+,

(3.25)
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where G =
[
A
D

]
and H = [ B E ] are full column and full row-rank matrices, respectively;

μ =
1

m + n
or μ =

1

λmax

[
G(G∗G)−1G∗

]
+ λmax

[
H∗(HH∗)−1H∗

] . (3.26)

converges to X and Y for any finite initial values X0 and Y0.
The convergence factor μ in (3.26)may not be the best andmay be conservative. In fact,

there exists a best μ such that the fast convergence rate ofXk toX and Yk to Y can be obtained
as in numerical examples given by Cao [21] and Kılıçman and Al-Zhour [8]. How to find the
connections between convergence of an infinite products of k × k matrices and least-square
solutions of coupled Sylvester matrix equation in (3.24) requires further research.

4. Numerical Examples

Here, we give some numerical example for computing outer inverseA(2)
T,S andMoore-Penrose

inverseA(2)
T,S by applying sequences methods which are studied and derived in Section 2. Our

results are obtained in this Section by choosing Frobenius norm (‖ · ‖2) and using MATLAB
software.

Example 4.1. Consider the matrix

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 0.4 0.4 0.4

0 2 0 0

0 0 2 0

0 0 0 2

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ C
5×4. (4.1)

Let T = C
4, e = [0, 0, 0, 0, 1]T ∈ C

5, S = span{e}.
Take

X = A0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0.4 0 0 0 0

0 0.4 0 0 0

0 0 0.4 0 0

0 0 0 0.4 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ C
4×5. (4.2)

Here R(β, n) = |β|qn(1 − q)−1‖X‖2‖I −AA0‖2. Clearly rang(X) = T , null(X) = S, and
rang(A0) ⊂ T . By computing, we have

A
(2)
T,S =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0.5 −0.1 −0.1 −0.1 0

0 0.5 0 0 0

0 0 0.5 0 0

0 0 0 0.5 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ C
4×5. (4.3)
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Table 1: Results for Example 4.1 using the iterations (2.36) and (2.37) for β = 1.25.

n E(n) = ‖A(2)
T,S −An‖2 R(β, n) ‖An −An−1‖2

1 3.464101615138 × 10−2 0.58943384582443 0.24331050121193
2 2.020636405220133 × 10−16 0.20418587373373 3.464101615138 × 10−2

3 2.020636405220133 × 10−16 7.073206149893 × 10−2 0
4 2.020636405220133 × 10−16 2.450230484805 × 10−2 0
5 2.020636405220133 × 10−16 8.48784737987 × 10−3 0
8 2.020636405220133 × 10−16 3.528331898118804 × 10−4 0
10 2.020636405220133 × 10−16 4.233998277742565 × 10−5 0
12 2.020636405220133 × 10−16 5.080797933291078 × 10−6 0
14 2.020636405220133 × 10−16 6.096957519949294 × 10−7 0

Table 2: Results for Example 4.1 using the iterations (4.4) and (4.5).

n E(n) = ‖A(2)
T,S −An‖2 R(n) ‖An −An−1‖2

5 2.844222213540086 × 10−4 2.06917386097900 × 10−2 9.230211265187883 × 10−4

7 1.485461921416498 × 10−5 4.89980370280000 × 10−3 5.070609777923677 × 10−5

10 1.609342324440632 × 10−7 5.64613461842000 × 10−4 5.734399999925342 × 10−7

13 1.625817851681746 × 10−9 6.50614556479466 × 10−5 5.938877957045854 × 10−9

16 1.571929418012274 × 10−11 7.497152117521204 × 10−6 5.835397257624137 × 10−11

19 1.474087541668810 × 10−13 8.639107335285478 × 10−7 5.537232598086118 × 10−13

22 1.295028878277394 × 10−15 9.955003497416000 × 10−8 5.130710307439707 × 10−15

24 1.942890293094024 × 10−16 2.357344828188108 × 10−8 2.403703357979455 × 10−16

25 2.020636405220133 × 10−16 1.147133503351594 × 10−8 4.807406715958910 × 10−17

In order to satisfy q = min{‖I − βXA‖2, ‖I − βAX‖2} < 1, we get that β should satisfy the
following 0.63474563020816 < β < 1.79243883581125.

From the iteration (2.5) in [24, Theorem 2.2], Let A ∈ C
m×r , and T and S be given

subspaces of C
m×r such that there exists A(2)

T,S. Then the sequence (An)n in C
m×r defined in the

following way:

Rn = PA(T),S − PA(T),SAAn,

An+1 = A0Rn +An n = 0, 1, 2, . . .
(4.4)

converges to A
(2)
T,S if and only if rang(A0) ⊂ T and ρ(R0) < 1 (where R(n) = (‖R0‖n+1/(1 −

‖R0‖))‖A0‖ and R0 = PA(T),S − PA(T),SAA0).
In this case, if ‖R0‖ = q < 1, then

∥
∥
∥A

(2)
T,S −An

∥
∥
∥ ≤ qn+1

1 − q
‖A0‖. (4.5)

Thus we have Tables 1 and 2 respectively, where

R
(
β, n

)
=

∣
∣β

∣
∣qn

1 − q
‖X‖‖I −AA0‖, R(n) =

‖R0‖n+1
1 − ‖R0‖‖A0‖. (4.6)
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Table 1 illustrates that β = 1.25 is best value such that ‖A(2)
T,S−An‖ reaches 2.020636405220133×

10−16 iterating the least number of steps, the reason for which is that such a β is calculating
by using (2.38). Thus, for an appropriate β, the iteration is better than the iteration (4.4)
(cf. Tables 1 and 2). And with respect to the error bound, the iterations for almost all are
also better. Let us take the error bound smaller than 10−16; for instance, the number of steps
of iterations in Table 1 is smaller than that of the iterations in Table 2. But, in practice, we
consider also the quantity ‖An −An−1‖ in order to cease iteration since there exist such cases
as β = 1.25. For example, for ‖An − An−1‖ < μ‖An‖, where μ is the machine precision, the
iteration for β = 1.25 only needs 3 steps. Therefore, in general, the iteration of (2.36) is better
than the iteration (4.4) for an appropriate β. Note that the iterations in both Tables 1 and 2
indicate a fast convergence for the quantity ‖A(2)

T,S − An‖ more than the quantity R(β, n) in
Table 1 and the quantity R(n) in Table 2 since each of R(β, n) and R(n) is an upper bound of
the quantity ‖A(2)

T,S−An‖, and, to find the best or least upper bound for the quantity, ‖A(2)
T,S−An‖

requires further research.

Example 4.2. Consider the matrix

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

22 10 2 3 7

14 7 10 0 8

−1 13 −1 −11 3

−3 −2 13 −2 4

9 8 1 −2 4

9 1 −7 5 −1
2 −6 6 5 1

4 5 0 −2 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ C
8×5. (4.7)

Then by computing we have

A+

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2.1129808×10−2 4.6153846×10−3 −2.1073718×10−3 7.6041667×10−3 3.8060897×10−3

9.3108974×10−3 2.2115385×10−3 2.0528846×10−3 −2.0833333×10−3 1.0016026×10−3

−1.1097756×10−2 2.7403846×10−2 −3.8862179×10−3 −2.7604167×10−2 4.2067308×10−3

−7.9166667×10−3 −5.0000000×10−3 3.3750000×10−2 −5.4166667×10−3 1.0416667×10−3

5.5128205×10−3 9.8076923×10−3 −8.9743590×10−4 −5.0000000×10−3 3.2051282×10−3

1.4318910×10−2 −2.5961538×10−3 −2.0136218×10−2 1.2812500×10−3 −6.2099359×10−3

4.8958333×10−3 −1.5000000×10−2 1.5312500×10−2 1.2395833×10−2 2.4604166×10−3

1.5064103×10−3 7.4038462×10−3 −1.6987179×10−3 −5.0000000×10−3 1.6025641×10−3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

∈ C
5×8.

(4.8)

Thus, (see Tables 3 and 4).
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Table 3: Results for Example 4.2 using an acceleration iteration (2.34).

n ‖XAX −X‖ ‖AXA −A‖ ‖(AX)∗ −AX‖ ‖(XA)∗ −XA‖
1 0.010134 8.8184 1.7808 × 10−15 5.5517 × 10−16

2 0.0017505 1.1564 2.25 × 10−15 4.2698 × 10−16

3 2.7532 × 10−5 0.018018 2.2253 × 10−15 6.3027 × 10−16

4 7.2707 × 10−9 4.6827 × 10−6 2.6984 × 10−15 4.1249 × 10−16

5 4.4545e × 10−16 2.9558 × 10−13 2.7911 × 10−15 5.4318 × 10−16

6 7.4467 × 10−17 6.4138e × 10−15 3.2971 × 10−15 1.0954 × 10−16

7 1.4818 × 10−17 5.2442 × 10−15 2.9214 × 10−15 4.6700 × 10−16

8 2.9927 × 10−18 4.3997 × 10−15 2.7295 × 10−15 7.1699 × 10−16

Table 4: Results for Example 4.2 using the iteration (2.18).

n ‖XAX −X‖ ‖AXA −A‖ ‖(AX)∗ −AX‖ ‖(XA)∗ −XA‖
1 0.013054 14.088 6.8532 × 10−16 3.7436 × 10−16

2 0.0072362 5.6172 9.7451 × 10−16 3.3446 × 10−16

3 0.0013284 0.89207 9.6044 × 10−16 3.7163 × 10−16

4 3.4199 × 10−5 0.022434 1.2231 × 10−16 5.2064 × 10−16

5 2.1567 × 10−8 1.4143 × 10−5 1.9419 × 10−15 9.9378 × 10−16

6 8.5747 × 10−15 5.6179 × 10−12 2.1874 × 10−15 7.6483 × 10−16

7 1.2675 × 10−16 5.8744 × 10−15 2.7634 × 10−15 8.3034 × 10−16

8 2.5102 × 10−16 3.0005 × 10−15 2.5232 × 10−15 8.1248 × 10−16

Table 5: Results for a random matrix A ∈ C100×80 using an acceleration iteration (2.34).

n ‖XAX −X‖ ‖AXA −A‖ ‖(AX)∗ −AX‖ ‖(XA)∗ −XA‖
1 0.094713 45.137 4.1569 × 10−12 3.2203 × 10−12

2 0.12329 45.032 1.6962e × 10−12 1.42 × 10−12

3 0.74538 45.195 6.3723 × 10−13 5.9666 × 10−13

4 0.85654 44.985 2.1027 × 10−13 2.3662 × 10−13

5 0.95103 44.599 6.4066 × 10−14 8.656 × 10−14

6 1.2811 42.945 1.7448 × 10−14 2.9065 × 10−14

7 1.6118 36.615 4.8196 × 10−15 6.8183 × 10−15

8 1.4848 21.984 1.1672 × 10−15 8.3827 × 10−16

9 0.50821 6.0397 1.8502 × 10−15 5.3961 × 10−16

10 0.038445 0.40952 2.0718e × 10−16 1.5552 × 10−16

11 0.00017627 0.0018439 2.0888 × 10−16 1.222 × 10−16

12 3.5682 × 10−9 3.746 × 10−8 2.0885 × 10−16 1.2319 × 10−17

13 4.661 × 10−15 6.7753 × 10−14 2.0898 × 10−16 1.588 × 10−17

14 5.3525 × 10−15 6.805 × 10−14 2.0897 × 10−16 1.4264 × 10−17

15 4.0198 × 10−15 6.8871 × 10−14 2.0891 × 10−16 1.4191 × 10−17

Example 4.3. We generate a random matrix, A ∈ C
100×80 by using MATLAB, and then we

obtain the results as in Tables 5 and 6.

Note that from Tables 3, 4, 5, and 6, it is clear that the quantities ‖XAX − X‖, and
‖AXA−A‖, ‖(AX)∗ −AX‖, ‖(XA)∗ −XA‖ are becoming smaller and smaller and goes to zero
as n increases in both iterations (2.34) and (2.18). We can also conclude that both iterations
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Table 6: Results for a random matrix A ∈ C100×80 using the iteration (2.18).

n ‖XAX −X‖ ‖AXA −A‖ ‖(AX)∗ −AX‖ ‖(XA)∗ −XA‖
1 0.060276 45.097 2.0509 1.5239 × 10−4

2 0.089542 45.082 3.9427 × 10−1 4.0096 × 10−5

3 0.10119 45.081 8.3223 × 10−2 8.8403 × 10−6

4 0.096287 45.121 1.627 × 10−3 1.8814 × 10−6

5 0.1096 45.185 3.2587 × ×10−4 3.8609 × 10−7

6 0.12111 45.207 6.1535 × 10−5 7.7762 × 10−8

7 0.13823 45.146 1.1418 × 10−5 1.4853 × 10−9

8 0.17182 44.971 2.0472 × 10−6 2.9817 × 10−10

9 0.21594 44.623 3.5587 × 10−7 5.422e × 10−11

10 0.27022 43.962 6.0384 × 10−8 9.337 × 10−12

11 0.34782 42.688 9.8614 × 10−9 1.5714 × 10−12

12 0.46134 40.249 1.5947 × 10−9 2.5064 × 10−13

13 0.62169 35.766 2.5794 × 10−10 3.6162 × 10−14

14 0.74641 28.232 4.0931 × 10−11 4.6385 × 10−15

15 0.73592 17.588 6.0751 × 10−12 5.0276 × 10−16

16 0.39382 6.8259 8.0089 × 10−13 3.3054 × 10−16

17 0.068122 1.0281 9.0865 × 10−14 2.3201 × 10−17

18 0.0015796 0.023321 9.2857 × 10−15 2.1781 × 10−17

19 8.1324e − 007 1.2001e − 005 9.2907 × 10−16 1.7884 × 10−17

almost have same fast of convergence when the dimension of any arbitrary matrix A is not
so large, but the acceleration iteration (2.34) is better more than the iteration (2.18) when the
dimension of any arbitrary matrix A is so large with an appropriate acceleration parameter
αn+1 ∈ [1, 2].

5. Concluding Remarks

In this paper, we have studied some matrix sequences convergence to the Moore-Penrose
inverse A+ and outer inverse A(2)

T,S of an arbitrary matrix A ∈ Mm,n. The key to derive matrix
sequences which are convergent to weighted Drazin and weighted Moore-Penrose inverses
is the Lemma 2.2. Some sufficient conditions for infinite products

∏∞
m=1Bm and

∏∞
m=1 ⊗ Bm

of k × k matrices are also derived. In our opinion, it is worth establishing some connections
between convergence of an infinite products of k × k matrices and least-square solutions of
such linear singular systems as well as the singular coupled matrix equations.
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