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Let ϕ(z) = zn, z ∈ U, for some positive integer n and Cϕ the composition operator on the Dirichlet
space D induced by ϕ. In this paper, we completely determine the point spectrum, spectrum, es-
sential spectrum, and essential norm of the operators C∗

ϕCϕ, CϕC
∗
ϕ and self-commutators of Cϕ,

which expose that the spectrum and point spectrum coincide. We also find the eigenfunctions of
the operators.

1. Introduction

Let ϕ be a holomorphic self-map of the unit disk U := {z ∈ C : |z| < 1}. The function ϕ
induces the composition operator Cϕ, defined on the space of holomorphic functions on U by
Cϕf = f ◦ϕ. The restriction of Cϕ to various Banach spaces of holomorphic functions on U has
been an active subject of research for more than three decades, and it will continue to be for
decades to come (see [1–3]). Let D denote the Dirichlet space of analytic functions on the unit
disk with derivatives that are square integrable with respect to the area measure on the disk.
In recent years, the study of composition operators on the the Dirichlet space has received
considerable attention (see [4–9] and references cited therein).

Let ϕ(z) = zn, z ∈ U, for some positive integer n, and Cϕ : D → D the composition
operator on the Dirichlet space D induced by ϕ. The main aim here is to find the spectrum,
point spectrum, essential spectrum, and essential norm of C∗

ϕCϕ, CϕC
∗
ϕ, self-commutator

[C∗
ϕ, Cϕ] = C∗

ϕCϕ − CϕC
∗
ϕ and anti-self-commutator {C∗

ϕ, Cϕ} = C∗
ϕCϕ + CϕC

∗
ϕ, for composition

operators Cϕ on the Dirichlet space.
In [10], by using Cowen’s formula for the adjoint of Cϕ on H2(U), the authors

have completely determined the spectrum, essential spectrum, and point spectrum for
selfcommutators of automorphic composition operators acting on the Hardy space of unit
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disk. In [4], the first author, has extended these results from the Hardy space to the Dirichlet
space.

The other problemwhich is important to the study of composition operators is finding
the relationships between the properties of the symbol ϕ and essential normality of the com-
position operatorCϕ. Recall that an operator T on a Hilbert spaceH is called essentially normal
if its image in the Calkin algebra is normal or equivalently if the self-commutator [T ∗, T] =
T ∗T − TT ∗ is compact on H.

In [11], the authors have determined which composition operators with automor-
phism symbol are essentially normal on A2(BN) and H2(BN) for N ≥ 1. They have shown
that the only essential normal automorphic composition operators are actually normal. This
was first shown in the setting H2(U) by Zorboska in [12]. The related works and some
historical remarks can be found in [10–13].

In [5], the authors consider composition operators Cϕ, where ϕ is a linear-fractional
self-map of the unit disk U, acting on the Dirichlet space D. By using the E. Gallardo and
A. Montes’ adjoint formula given in [6], they show that the essentially normal linear
fractional composition operators on D are precisely those whose symbol is not a hyperbolic
nonautomorphism with a boundary fixed point. They also obtained conditions for the linear
fractional symbols ϕ and ψ of the unit disk for which C∗

ψCϕ or CϕC
∗
ψ is compact.

In the next section, after giving some background material and presenting formula for
the adjoint of Cϕ on D, we give useful formula for the operators C∗

ϕCϕ, CϕC
∗
ϕ, [C

∗
ϕ, Cϕ], and

{C∗
ϕ, Cϕ}, when ϕ is an arbitrary monomial symbol ϕ(z) = zn. In Section 3, we completely

determine the point spectrum, spectrum, and essential spectrum of C∗
ϕCϕ and CϕC

∗
ϕ. Finally,

in Section 4, we determine the same for [C∗
ϕ, Cϕ] and {C∗

ϕ, Cϕ}.

2. Preliminaries

Throughout the paper, for a Hilbert space H, B(H) denotes the set of bounded operators
on H and B0(H) denotes the closed ideal of all compact operators in B(H). The natural
homomorphism of B(H) onto the quotient Banach algebra B(H)/B0(H) = B/B0—the Calkin
algebra—is denoted by T �→ ˜T = T + B0(H).

For an operator T ∈ B(H), the essential norm of T is defined by

‖T‖e := inf{‖T +K‖ : K ∈ B0(H)}, (2.1)

and the essential spectrum σe(T) is defined as the spectrum of the image ˜T of T in the Calkin
algebra B(H)/B0(H). It is well known that the essential spectrum of a normal operator
consists of all points in the spectrum of the operator except the isolated eigenvalues of finite
multiplicity (see [14]).

As we mentioned in the Introduction, an operator T on a Hilbert space H is called
essentially normal if its image in the Calkin algebra is normal or equivalently if the self-com-
mutator [T ∗, T] = T ∗T − TT ∗ is compact on H.

The Dirichlet space, which we denote by D, is the set of all analytic functions f on the
unit disk U for which

∫

U

∣

∣f ′(z)
∣

∣

2
dA(z) <∞, (2.2)
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where dA denote the normalized area measure, and equivalently an analytic function f is in
D if

∑∞
n=1 n| ̂f(n)|2 < ∞, where ̂f(n) denotes the n-th Taylor coefficient of f at 0. Background

on the Dirichlet space can be found in [15] and the references cited therein.
For each holomorphic self-map ϕ of U, we define the composition operator Cϕ by Cϕf =

f ◦ ϕ(f ∈ D).
Martı́n and Vukotić in [9] express and prove formulas for the adjoint of Cϕ on the

Hardy space, when ϕ is finite Blaschke product and also is rational self-map of the unit disk
U. By using the same arguments as in [9] for the Hardy space, one can prove the following
theorem for the Dirichlet space case.

Theorem 2.1. Let ϕ(z) = zn. For an arbitrary point w = reiθ in U, writing its nth roots as rk,w =
r1/nei(θ+2kπ)/n, k = 0, 1, . . . , n − 1. The adjoint of Cϕ (viewed as an operator on the Dirichlet space D)
is given by the formula

C∗
ϕf(w) =

n−1
∑

k=0

f(rk,w) − (n − 1)f(0). (2.3)

Throughout this paper, we denote byM the closed subspace of D spanned by the mo-
nomials {znk : k = 0, 1, . . .} and by PM : D → M the corresponding orthogonal projection
ontoM.

Remark 2.2. Let ϕ(z) = zn and rk,ϕ(w) = r1/nei(θ+2kπ)/n, k = 0, 1, . . . , n − 1, be the nth roots of
ϕ(z) = ϕ(w). For f ∈ D with f(z) =

∑∞
m=0 cmz

m, we have

n−1
∑

k=0

f
(

rk,ϕ(w)
)

=
n−1
∑

k=0

∞
∑

m=0

cmr
m
k,ϕ(w)

=
∞
∑

m=0

cm
n−1
∑

k=0

rmk,ϕ(w)

= n
∞
∑

j=0

cnjw
nj = n

(

PMf
)

(w).

(2.4)

Before stating our main results, we also need the next results.

Theorem 2.3. Let ϕ(z) = zn. Then,

C∗
ϕCϕ = nI mod B0(D), (2.5)

(

CϕC
∗
ϕf

)

(w) = n
(

PMf
)

(w) − (n − 1)f(0), (2.6)

B0(D) is the ideal of compact operators on D.
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Proof. By a simple computation and using formula (2.3), it follows that

(

C∗
ϕCϕf

)

(w) = nf(w) − (n − 1)f(0), (2.7)

(

CϕC
∗
ϕf

)

(w) =
n−1
∑

k=0

f
(

rk,ϕ(w)
) − (n − 1)f(0), (2.8)

for each w ∈ U, f ∈ D. Thus,

C∗
ϕCϕ = nI mod B0(D),

(

CϕC
∗
ϕf

)

(w) = n
(

PMf
)

(w) − (n − 1)f(0).
(2.9)

3. Spectrum of C∗
ϕCϕ and CϕC

∗
ϕ

Let ϕ(z) = zn. In this section, we are going to find the point spectrum, spectrum, essential
spectrum, and the eigenfunctions of the operators C∗

ϕCϕ and CϕC
∗
ϕ.

Theorem 3.1. Let ϕ(z) = zn. Then,

σe
(

C∗
ϕCϕ

)

= {n}, σp
(

C∗
ϕCϕ

)

= σ
(

C∗
ϕCϕ

)

= {1, n}, (3.1)

and, for n ≥ 2,

σe
(

CϕC
∗
ϕ

)

= {0, n}, σp
(

CϕC
∗
ϕ

)

= σ
(

CϕC
∗
ϕ

)

= {1, 0, n}, (3.2)

and, in the case that n = 1,

σp
(

CϕC
∗
ϕ

)

= σe
(

CϕC
∗
ϕ

)

= σ
(

CϕC
∗
ϕ

)

= {1}. (3.3)

Proof. Since the operator C∗
ϕCϕ is a finite rank perturbation of nI, the essential spectrum of

this operator is {n}. Since any points in the spectrum of a normal operator which are not in
the essential spectrum are isolated eigenvalues of finite multiplicity, it is enough to find the
eigenvalues. We first do this for the operator C∗

ϕCϕ. Let λ ∈ C be an eigenvalue of the operator
C∗
ϕCϕ with corresponding eigenvector f ∈ D. Then, C∗

ϕCϕf = λf . By using formula (2.7) for
C∗
ϕCϕ, we have

nf(w) − (n − 1)f(0) = λf(w), w ∈ U. (3.4)

By putting w = 0, it follows that nf(0) − (n − 1)f(0) = λf(0). If f(0)/= 0, then λ = 1. Thus for
the case λ = 1, the function f(w) = f(0) is a nonzero function in D that satisfies the equation,
and, hence, λ = 1 is an eigenvalue of the operator C∗

ϕCϕ. If f(0) = 0, then λ = n, and, in this
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case, the function wk, k ≥ 1 is a nonzero function in D that satisfies (3.4). Hence, λ = n is an
eigenvalue of the operator C∗

ϕCϕ with infinite multiplicity. So

σp
(

C∗
ϕCϕ

)

= σ
(

C∗
ϕCϕ

)

= {1, n}. (3.5)

Now, let λ ∈ C be an eigenvalue of the operator CϕC
∗
ϕ with corresponding eigenvector f ∈ D.

Then, CϕC
∗
ϕf = λf . By using formula (2.6) for CϕC

∗
ϕ, we have

n
(

PMf
)

(w) − (n − 1)f(0) = λf(w). (3.6)

By putting w = 0, it follows that

nf(0) − (n − 1)f(0) = λf(0). (3.7)

If f(0)/= 0, then λ = 1. Thus,

n
(

PMf
)

(w) − (n − 1)f(0) = f(w). (3.8)

Let f(z) =
∑∞

m=0 cmz
m. Then,

n
∞
∑

j=0

cnjw
nj − (n − 1)c0 =

∞
∑

m=0

cmw
m, w ∈ U. (3.9)

For n ≥ 2, it follows that cm = 0, wheneverm ≥ 1. So f ≡ 1 is an eigenfunction corresponding
to λ = 1. Thus, λ = 1 is an eigenvalue of the operator CϕC

∗
ϕ.

Now suppose that f(0) = 0. Then, nPMf = λf and so λ/n is an eigenvalue of PM.
Hence, λ = 0 or λ = n.

So, for the case λ = 0 and n ≥ 2, the functionw is a nonzero function in D that satisfies
(3.6), and, hence, λ = 0 is an eigenvalue of the operator CϕC

∗
ϕ.

So when n ≥ 2, the eigenvalues of CϕC
∗
ϕ are {1, 0, n}. In the case that λ = n, for each

natural number k,wnk is a nonzero function in D that satisfies (3.6), and, hence, the essential
spectrum CϕC

∗
ϕ contains n. If λ = 0 and n ≥ 2, then we conclude that for each natural

numbermwhich is not a multiple of n,wm is a nonzero function inD that satisfies (3.6), and,
hence, λ = 0 is an eigenvalue of the operator CϕC

∗
ϕ with infinite multiplicity. So the essential

spectrum CϕC
∗
ϕ contains 0. Since

σ
(

CϕC
∗
ϕ + B0(D)

)

∪ {0} = σ
(

C∗
ϕCϕ + B0(D)

)

∪ {0}, (3.10)

and σe(C∗
ϕCϕ) = {n}, for n ≥ 2, we conclude that

σe
(

CϕC
∗
ϕ

)

= {0, n}. (3.11)
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So when ϕ(z) = zn and n ≥ 2,

σp
(

CϕC
∗
ϕ

)

= σ
(

CϕC
∗
ϕ

)

= {1, 0, n}, (3.12)

and, for n = 1,

σp
(

CϕC
∗
ϕ

)

= σe
(

CϕC
∗
ϕ

)

= σ
(

CϕC
∗
ϕ

)

= {1}. (3.13)

4. The Spectrum of [C∗
ϕ, Cϕ] and {C∗

ϕ, Cϕ}
Theorem 4.1. Let ϕ(z) = zn. Then, for n = 1,

σp
([

C∗
ϕ, Cϕ

])

= σe
([

C∗
ϕ, Cϕ

])

= σ
([

C∗
ϕ, Cϕ

])

= {0}, (4.1)

and, for n ≥ 2,

σp
([

C∗
ϕ, Cϕ

])

= σe
([

C∗
ϕ, Cϕ

])

= σ
([

C∗
ϕ, Cϕ

])

= {0, n}. (4.2)

Proof. Let T = C∗
ϕCϕ − CϕC

∗
ϕ. Then,

T = n(I − PM). (4.3)

Since any points in the spectrum of a normal operator which are not in the essential spectrum
are isolated eigenvalues of finite multiplicity, we first find the eigenvalues.

If n ≥ 2, then I − PM is a nontrivial projection and so σ(T) = {0, n}.
In the case that λ = n, for each natural number m which is not a multiple of n, the

functionwm is an eigenfunction of T , and, hence, λ = n is an eigenvalue of the operator T with
infinite multiplicity. For the case λ = 0, for each natural number k, wkn is an eigenfunction of
T , and, hence, λ = 0 is an eigenvalue of the operator T with infinite multiplicity.

The essential spectrum of [C∗
ϕ, Cϕ] can be computed directly by using the following:

σe
([

C∗
ϕ, Cϕ

])

= σ
(

C∗
ϕCϕ − CϕC

∗
ϕ + B0(D)

)

= σ
(

nI − CϕC
∗
ϕ + B0(D)

)

.

(4.4)

So if ϕ(z) = z, then

σp
([

C∗
ϕ, Cϕ

])

= σe
([

C∗
ϕ, Cϕ

])

= σ
([

C∗
ϕ, Cϕ

])

= {0}, (4.5)
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and, if ϕ(z) = zn and n ≥ 2, then

σp
([

C∗
ϕ, Cϕ

])

= σe
([

C∗
ϕ, Cϕ

])

= σ
([

C∗
ϕ, Cϕ

])

= {0, n}. (4.6)

Theorem 4.2. Let ϕ(z) = zn. Then, for n = 1,

σp
({

C∗
ϕ, Cϕ

})

= σe
({

C∗
ϕ, Cϕ

})

= σ
({

C∗
ϕ, Cϕ

})

= {2}, (4.7)

for n ≥ 2,

σe
({

C∗
ϕ, Cϕ

})

= {2n, n},

σp
({

C∗
ϕ, Cϕ

})

= σ
({

C∗
ϕ, Cϕ

})

= {2, n, 2n}.
(4.8)

Proof. Let S = C∗
ϕCϕ + CϕC

∗
ϕ. Then for each f ∈ D and w ∈ U,

(

Sf
)

(w) = nf(w) + n
(

PMf
)

(w) − 2(n − 1)f(0). (4.9)

Since S is self-adjoint, any points in the spectrum of Swhich are not in the essential spectrum
are eigenvalues of finite multiplicity. So we first find such points.

Let λ ∈ C be an eigenvalue of the operator S with corresponding eigenvector f ∈ D.
Then, Sf = λf . So we have

nf(w) + n
(

PMf
)

(w) − 2(n − 1)f(0) = λf(w). (4.10)

By puttingw = 0, it follows that 2nf(0)− 2nf(0) + 2f(0) = λf(0). If f(0)/= 0, then λ = 2. Thus,

nf(w) + n
(

PMf
)

(w) − 2(n − 1)f(0) = 2f(w). (4.11)

The function f(w) = 1 is a nonzero function in D that satisfies the equation, and, hence, λ = 2
is an eigenvalue of the operator S. If f(0) = 0, then

n
(

PMf
)

(w) = (λ − n)f(w), (4.12)

and it follows that λ = n or λ = 2n. For the case λ = n with n ≥ 2, for each natural number m
which is not a multiple of n, the function wm is a nonzero function in D that satisfies (4.12),
and, hence, λ = n is an eigenvalue of the operator S with infinite multiplicity. In the case
that λ = 2n, for each natural number k, wkn is a nonzero function in D that satisfies (4.12),
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and, hence, λ = 2n is an eigenvalues of the operator S with infinite multiplicity. The essential
spectrum of {C∗

ϕ, Cϕ} can be computed directly by using the following:

σe
({

C∗
ϕ, Cϕ

})

= σ
(

C∗
ϕCϕ + CϕC

∗
ϕ + B0(D)

)

= σ
(

nI + CϕC
∗
ϕ + B0(D)

)

.

(4.13)

Hence, we conclude that when ϕ(z) = zn and n ≥ 2,

σe
({

C∗
ϕ, Cϕ

})

= {n, 2n}. (4.14)

Also, if ϕ(z) = z, then

σp
({

C∗
ϕ, Cϕ

})

= σe
({

C∗
ϕ, Cϕ

})

= σ
({

C∗
ϕ, Cϕ

})

= {2}, (4.15)

and, for n ≥ 2,

σp
({

C∗
ϕ, Cϕ

})

= σ
({

C∗
ϕ, Cϕ

})

= {2, n, 2n}. (4.16)
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