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The notion of the completely dissipative maps on σ-C∗-algebras is introduced. We show that a
completely dissipative map induces a representation of a σ-C∗-algebra. The classical Stinespring’s
dilation-type theorem is extended to a more general setting.

1. Introduction

There has been increased interest [1–12] in topological ∗-algebras that are inverse limits of C∗-
algebras, called Pro-C∗-algebras. These algebras were introduced in [5] as a generalization of
C∗-algebras and were called locally C∗-algebras. The same objects have been studied by other
authors, for instance in [2, 13]. It is shown in [7, 14] that they arise naturally in the study
of certain aspects of C∗-algebras such as the tangent algebras of C∗-algebras, multipliers of
Pedersen’s ideal, noncommutative analogues of classical Lie groups, and K-theory.

Motivated mainly by the works [11, 12, 15–18], in this paper, we shall introduce the
notion of the completely dissipative maps on σ-C∗-algebras consider an abstract version of
Stinespring’s dilation-type theorem, and explore the natural relation completely dissipative
maps to σ-C∗-algebras. We shall show that a completely positive definite map induces a
representation of a σ-C∗-algebra. We also get a classification of completely positive definite
maps on σ-C∗-algebras. Our approach is motivated by the setting of Banach algebras
and C∗-algebras. This paper is organized as follows. In Section 1, introduction and some
preliminaries are given. In Section 2, we present some definitions, results and notation which
will be used throughout the paper. In Section 3, we shall prove the main result of this paper.

All the vector spaces and algebras considered throughout this paper are over the field
C of complexes, and the topological spaces are supposed to be Hausdorff.
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A locallym-convex (lmc-) algebra is a topological algebraAwhose topology is defined
by a family (pα), α ∈ I (I a directed index set), of submultiplicative seminorms.A is called an
lmc∗-algebra if, in addition, has an involution ∗ such that pα(x∗) = pα(x), for any α ∈ I, x ∈ A.
If moreover, each pα, α ∈ I, is a C∗-seminorm, that is, pα(x∗x) = pα(x)

2 for any α ∈ I, x ∈ A,A
is called to be an lmc-C∗-algebra. Given an lmc-algebra A denote by (Aα) the inverse system
of Banach algebras corresponding to A, that is, Aα is the completion of the normed algebra
A/Nα, Nα = Ker(pα), α ∈ I, under norm ‖ · ‖α, with ‖xα‖α = pα(x), xα = x +Nα, x ∈ A. A
Pro-C∗-algebra A is a complete lmc-C∗-algebra. In this setting, (pα) can be replaced with the
collection S(A), the set of all continuous C∗-seminorms onA. For a Pro-C∗-algebraA, and for
a p ∈ S(A), the normed ∗-algebra (A/Nα, ‖ · ‖α) is automatically complete (see [13]), so that
Aα = A/Nα is a C∗-algebra. Thus,A is an inverse limit of C∗-algebras, that is,A = lim

←
Aα (see

[6]). A metrizable Pro-C∗-algebra is called a σ-C∗-algebra with its topology determined by a
countable subfamily (pn) of S(A), n ∈ N.

2. Preliminaries

In this section, we present some definitions and results used in this paper. Our first goal is to
define completely dissipative maps on σ-C∗-algebras. For this, we need to recall the following
theorem in [15, Theorem 3.1.2 and Corollary 3.2.1].

Theorem 2.1 (see [15]). Let A be a C∗-algebra with unit e, L : A → A a bounded ∗-map and
L(e) = 0. Let φt = exp(tL). Then φt(t ∈ R

+) is completely positive onA if and only if L is completely
dissipative, that is,D(Ln;X,X) ≥ 0 for allX ∈Mn(A), whereD(Ln;X,Y ) = Ln(X∗Y )−Ln(X∗)Y −
X∗Ln(Y ), for all X,Y ∈Mn(A), and Ln = L ⊗ In.

We can now introduce completely dissipative maps on σ-C∗-algebras as follows.

Definition 2.2. Let A be a σ-C∗-algebra,H a Hilbert space, φ : A → B(H) a continuous map.
Set D : A × A → B(H) as D(a, b) = φ(ab) − φ(a) − φ(b). If the following conditions are
satisfied:

(i)

[
D
(
a∗i , aj

)]n
i,j=1 ∈M+

n(B(H)); (2.1)

(ii) there exists a function ρ : A → R
+ such that

n∑

i=1

n∑

j=1

〈[
D
(
b∗i a

∗
i a
∗aaj , bj

) −D(a∗i a∗aaj , bj
)]
xj , xi

〉
H

≤ ρ(a∗a)
n∑

i=1

n∑

j=1

〈[
D
(
b∗i a

∗
i aj , bj

) −D(a∗i aj , bj
)]
xj , xi

〉
H

(2.2)

for every a, a1, a2, . . . , an, b1, b2, . . . , bn ∈ A, x1, x2, . . . , xn ∈ H, and n ∈ N, then φ is
called a completely dissipative map.
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From the corresponding facts in the Aronszajn-Kolmogorov theorem of [17], we have
the following result.

Lemma 2.3 (see [17]). Let A be a σ-C∗-algebra,H a Hilbert space, and a map T : A ×A → B(H)
be given such that, for all a1, a2, . . . , an ∈ A,

[
T
(
a∗i , aj

)]n
i,j=1 ∈M+

n(B(H)). (2.3)

Then there exists a Hilbert space K and a map V : A → B(H,K) such that

T(a, b) = V (a∗)∗V (b), ∀a, b ∈ A. (2.4)

Definition 2.4. Let A be a σ-C∗-algebra,H a Hilbert space, and a map φ : A ×A ×A → B(H).
We say that φ is completely positive definite if for any ai, bi ∈ A, i = 1, 2, . . . , n ∈ N, we have

[
φ
(
b∗i , a

∗
i aj , bj

)]n
i,j=1 ∈M+

n(B(H)). (2.5)

If there exists a function ρ : A → R
+ such that the map φ : A × A × A → B(H) satisfies the

following additional condition:

n∑

i=1

n∑

j=1

〈
φ
(
b∗i , a

∗
i a
∗aaj , bj

)
xj , xi

〉 ≤ ρ(a∗a)
n∑

i=1

n∑

j=1

〈
φ
(
b∗i , a

∗
i aj , bj

)
xj , xi

〉
, (2.6)

for every a, a1, a2, . . . , an, b1, b2, . . . , bn ∈ A, x1, x2, . . . , xn ∈ H, and n ∈ N, then we say, φ is
relatively bounded.

3. The Stinespring’s Dilation-Type Theorem

To prove the main theorem, the following things have to be elucidated. If X and Y are
vector spaces, we denote by X ⊗ Y their algebraic tensor product. This is linearly spanned
by elements x ⊗ y (x ∈ X, y ∈ Y ). If σ : X × Y → Z is a bilinear map, where X,Y , and Z are
vector spaces, then there is a unique linear map σ ′ : X ⊗ Y → Z such that σ ′(x ⊗ y) = σ(x, y)
for all x ∈ X and y ∈ Y .

If τ, μ are linear functionals on the vector spaces X,Y , respectively, then there is a
unique linear functional τ ⊗ μ on X ⊗ Y such that

(
τ ⊗ μ)(x ⊗ y) = τ(x)μ(y), ∀x ∈ X, y ∈ Y, (3.1)

since the function

X × Y −→ C,
(
x, y
) −→ τ(x)μ

(
y
)

(3.2)

is bilinear.
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Suppose that
∑n

j=1xj ⊗ yj = 0, where xj ∈ X and yj ∈ Y . If y1, . . . , yn are linearly
independent, then x1 = · · · = xn = 0. For, in this case, there exist linear functionals μj : Y → C

such that μj(yi) = δij (Kronecker delta). If τ : X → C is linear, we have

0 =
(
τ ⊗ μj

)
(

n∑

i=1

xi ⊗ yi
)

=
n∑

i=1

τ(xi)ρj
(
yi
)
=

n∑

i=1

τ(xi)δij = τ
(
xj
)
. (3.3)

Thus, τ(xj) = 0 for arbitrary τ , and this shows that x1 = · · · = xn = 0.
Similarly, if

∑n
j=1xj ⊗ yj = 0, and x1, . . . , xn are linearly independent, then y1 = · · · =

yn = 0.

Theorem 3.1. Let A be a σ-C∗-algebra with unit e, H a Hilbert space, φ : A → B(H) be a
completely dissipative map, and D̂ : A ×A ×A → B(H) defined by

D̂(a, b, c) = D(ab, c) −D(b, c), (3.4)

where D(a, b) = φ(ab) − φ(a) − φ(b), then

(i) D̂ is a relatively bounded completely positive definite map,

(ii) there exists a Hilbert space X, a representation ϕ ofA on X, and a map V : A → B(H,X)
such that

D̂(a, b, c) = V (a∗)∗ϕ(b)V (c), ∀a, b, c ∈ A, (3.5)

(iii) {ϕ(a)V (b)x : a, b ∈ A,x ∈ H} spans a dense subspace of X,

(iv) the representation (ϕ,X, V ) associated with φ is unique up to a unitary equivalence,

(v) the map V : A → B(H,X) is a 1-cocycle with respect to the representation ϕ, that is,
Δ1
ϕV = ϕ(a)V (b) − V (ab) + V (a) = 0.

Proof. (i) By the definition, for any ai, bi ∈ A, i = 1, 2, . . . , n, n ∈ N, we have

D̂
(
b∗i , a

∗
i aj , bj

)

= D
(
b∗i a

∗
i aj , bj

) −D(a∗i aj , bj
)

= φ
(
b∗i a

∗
i ajbj

) − φ(b∗i a∗i aj
) − φ(bj

) − [φ(a∗i ajbj
) − φ(a∗i aj

) − φ(bj
)]

= φ
(
b∗i a

∗
i ajbj

) − φ(b∗i a∗i aj
) − φ(a∗i ajbj

)
+ φ
(
a∗i aj

)
,

D
(
b∗i a

∗
i , ajbj

) −D(b∗i a∗i , aj
)
+D
(
a∗i , aj

) −D(a∗i , ajbj
)

= φ
(
b∗i a

∗
i ajbj

) − φ(b∗i a∗i
) − φ(ajbj

) − [φ(b∗i a∗i aj
) − φ(b∗i a∗i

) − φ(aj
)]

+
[
φ
(
a∗i aj

) − φ(a∗i
) − φ(aj

)] − [φ(a∗i ajbj
) − φ(a∗i

) − φ(ajbj
)]

= φ
(
b∗i a

∗
i ajbj

) − φ(b∗i a∗i aj
)
+ φ
(
a∗i aj

) − φ(a∗i ajbj
)
.

(3.6)
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Thus,

D̂
(
b∗i , a

∗
i aj , bj

)
= D
(
b∗i a

∗
i , ajbj

) −D(b∗i a∗i , aj
)
+D
(
a∗i , aj

) −D(a∗i , ajbj
)
. (3.7)

From Lemma 2.3, there exists a Hilbert space K, and a map V : A → B(H,K) such that

D(a, b) = V (a∗)∗V (b), ∀a, b ∈ A. (3.8)

It follows that

D̂
(
b∗i , a

∗
i aj , bj

)
= V (aibi)

∗V
(
ajbj
) − V (aibi)

∗V
(
aj
)
+ V (ai)∗V

(
aj
) − V (ai)∗V

(
ajbj
)

= V (aibi)
∗[V
(
ajbj
) − V (aj

)]
+ V (ai)∗

[
V
(
aj
) − V (ajbj

)]

=
[
V (aibi)

∗ − V (ai)∗
][
V
(
ajbj
) − V (aj

)]

= [V (aibi) − V (ai)]
∗[V
(
ajbj
) − V (aj

)]
.

(3.9)

Therefore, we obtain
[
D̂
(
b∗i , a

∗
i aj , bj

)]n

i,j=1
∈M+

n(B(H)). (3.10)

Since φ : A → B(H) be a completely dissipative map, then by Definition 2.2(ii), there
exists a function ρ : A → R

+ such that

n∑

i=1

n∑

j=1

〈[
D
(
b∗i a

∗
i a
∗aaj , bj

) −D(a∗i a∗aaj , bj
)]
xj , xi

〉
H

≤ ρ(a∗a)
n∑

i=1

n∑

j=1

〈[
D
(
b∗i a

∗
i aj , bj

) −D(a∗i aj , bj
)]
xj , xi

〉
H
,

(3.11)

whereD(a, b) = φ(ab)−φ(a)−φ(b), and a, a1, a2, . . . , an, b1, b2, . . . , bn ∈ A, x1, x2, . . . , xn ∈ H.
Thus, we have

n∑

i=1

n∑

j=1

〈
D̂
(
b∗i , a

∗
i a
∗aaj , bj

)
xj , xi

〉

H

=
n∑

i=1

n∑

j=1

〈[
D
(
b∗i a

∗
i a
∗aaj , bj

) −D(a∗i a∗aaj , bj
)]
xj , xi

〉
H

≤ ρ(a∗a)
n∑

i=1

n∑

j=1

〈[
D
(
b∗i a

∗
i aj , bj

) −D(a∗i aj , bj
)]
xj , xi

〉
H

= ρ(a∗a)
n∑

i=1

n∑

j=1

〈
D̂
(
b∗i , a

∗
i aj , bj

)
xj , xi

〉

H
.

(3.12)

It follows that D̂ is relatively bounded.
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(ii) LetA⊗A⊗H be the algebraic tensor product ofA,A, andH. The algebraic tensor
product of A,A, and H consists of elements of the form

∑n
i=1ai ⊗ bi ⊗ xi for all ai, bi in A, xi

in H, i = 1, 2, . . . , n and n in N. A map 〈·, ·〉 : (A ⊗A ⊗H) × (A ⊗A ⊗H) → C is defined on
elementary terms by

〈
a ⊗ b ⊗ x, c ⊗ d ⊗ y〉 =

〈
D̂(d∗, c∗a, b)x, y

〉

H
, (3.13)

where 〈·, ·〉H refers to the Hilbert inner product onH, and extending by linearity. Hence, we
have

〈
ξ, η
〉
=

n∑

i=1

m∑

j=1

〈
D̂
(
d∗j , c

∗
j ai, bi

)
xi, yj

〉

H
, (3.14)

for ξ =
∑n

i=1ai ⊗ bi ⊗ xi, and η =
∑m

j=1cj ⊗ dj ⊗ yj in A ⊗A ⊗H.
It is clear that 〈·, ·〉 is linear in the first variable and conjugate linear in the second. For

such a form, the polarisation identity

〈
ξ, η
〉
=

1
4

3∑

k=0

ik
〈
ξ + ikη, ξ + ikη

〉
(3.15)

holds. The existence of such sesquilinear form is easily seen if we show that

n∑

j=1

aj ⊗ bj ⊗ xj = 0 =⇒
〈

n∑

j=1

aj ⊗ bj ⊗ xj ,
n∑

j=1

aj ⊗ bj ⊗ xj
〉

= 0. (3.16)

Choose linearly independent elements e1, . . . , em in H having the same linear span as
x1, . . . , xn. Then xj =

∑m
i=1λij ei for unique scalars λij . Since

∑n
j=1aj ⊗ bj ⊗ xj = 0, we have

n∑

j=1

aj ⊗ bj ⊗
(

m∑

i=1

λijei

)

=
∑

i,j

λijaj ⊗ bj ⊗ ei = 0, (3.17)

and, therefore,
∑n

j=1λijaj ⊗ bj = 0, for i = 1, 2, . . . , m, because e1, . . . , em are linearly
independent.

Similarly, choose linearly independent elements ε1, . . . , εp in A having the same linear
span as b1, . . . , bn. Then bj =

∑p

k=1γkjεk for unique scalars γkj . Since
∑n

j=1λijaj ⊗ bj = 0, for
i = 1, 2, . . . , m, we have

n∑

j=1

λijaj ⊗ bj =
n∑

j=1

λijaj ⊗
(

p∑

k=1

γkjεk

)

=
∑

j,k

λijγkjaj ⊗ εk = 0, (3.18)



Abstract and Applied Analysis 7

and hence
∑n

j=1λijγkjaj = 0, for i = 1, . . . , m, k = 1, . . . , p, because ε1, . . . , εp are linearly
independent. Hence,

〈
n∑

j=1

aj ⊗ bj ⊗ xj ,
n∑

j=1

aj ⊗ bj ⊗ xj
〉

=

〈
∑

i,j,k

λij γkj aj ⊗ εk ⊗ ei,
∑

i,j,k

λij γkj aj ⊗ εk ⊗ ei
〉

=

〈
∑

i,k

0 ⊗ εk ⊗ ei,
∑

i,k

0 ⊗ εk ⊗ ei
〉

=
∑

i,k,s,l

〈
D̂
(
ε∗s, 0, ε

∗
k

)
ei, el

〉
=
∑

i,k,s,l

〈0 ei, el〉 = 0.

(3.19)

It follows from the polarisation identity that a sesquilinear form 〈·, ·〉 is hermitian if
and only if 〈ξ, ξ〉 ∈ R(ξ ∈ A ⊗A ⊗H). Thus, positive sesquilinear forms are hermitian.

Let ξ ∈ A ⊗A ⊗H, and suppose that ξ =
∑n

i=1ai ⊗ bi ⊗ xi, then we have the formula

〈ξ, ξ〉 =
n∑

i,j=1

〈
D̂
(
b∗j , a

∗
j ai, bi

)
xi, yj

〉

H
. (3.20)

Since D̂ : A ⊗ A ⊗ A → B(H) is relatively bounded completely positive definite map from
(i), it follows that

〈ξ, ξ〉 ≥ 0, ∀ξ ∈ A ⊗A ⊗H. (3.21)

Then, the sesquilinear form 〈·, ·〉 is positive semidefinite. Setting

N = {ξ ∈ A ⊗A ⊗H : 〈ξ, ξ〉 = 0}, (3.22)

it follows from the Cauchy-Schwartz inequality that the setN is a subspace ofA⊗A⊗H. The
induced form

〈
ξ +N,η +N

〉
=
〈
ξ, η
〉
, ∀ξ +N, η +N ∈ (A ⊗A ⊗H)

N
(3.23)

on the quotient space (A ⊗ A ⊗H)/N is thus positive definite, and it is an inner product on
(A ⊗ A ⊗H)/N. Thus, the quotient space (A ⊗ A ⊗H)/N is a pre-Hilbert space under this
inner product. By completing it with respect to the induced inner product, we get a Hilbert
space X.

For a ∈ A, define a linear map ϕ(a) onA⊗A⊗H by ϕ(a)(c⊗d⊗x) = (ac)⊗d⊗x, where
c, d ∈ A, x ∈ H, and extending by linearity. Hence for each ξ =

∑n
i=1ai ⊗ bi ⊗ xi in A ⊗A ⊗H,

we have

ϕ(a)

(
n∑

i=1

ai ⊗ bi ⊗ xi
)

=
n∑

i=1

(aai) ⊗ bi ⊗ xi. (3.24)
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Since D̂ : A ⊗A ⊗A → B(H) is relatively bounded completely positive definite map
from (i); hence, there exists a function ρ : A → R

+ such that

n∑

i,j=1

〈
D̂
(
b∗i , a

∗
i a
∗aaj , bj

)
xj , xi

〉

H
≤ ρ(a∗a)

n∑

i,j=1

〈
D̂
(
b∗i , a

∗
i aj , bj

)
xj , xi

〉

H
, (3.25)

for every a, a1, a2, . . . , an ∈ A, x1, x2, . . . , xn ∈ H, and n ∈ N. Thus, for any ξ =
∑n

i=1ai⊗bi⊗xi ∈
A ⊗A ⊗H, by an easy calculation, we have

〈ϕ(a)ξ, ϕ(a) ξ〉 =
n∑

i,j=1

〈
D̂
(
b∗j , a

∗
j a
∗aai, bi

)
xi, xj

〉

H

≤ ρ(a∗a)
n∑

i,j=1

〈
D̂
(
b∗j , a

∗
j ai, bi

)
xi, xj

〉

H

= ρ(a∗a)

〈
n∑

i=1

ai ⊗ bi ⊗ xi,
n∑

j=1

aj ⊗ bj ⊗ xj
〉

= ρ(a∗a)〈ξ, ξ〉.

(3.26)

So ϕ(A) leavesN invariant, and the induced map

ϕ(a)(ξ +N) = ϕ(a)

(
n∑

i=1

ai ⊗ bi ⊗ xi +N
)

= ϕ(a)(ξ) +N

=
n∑

i=1

(aai) ⊗ bi ⊗ xi +N
(3.27)

defines a linear operator on the quotient space (A⊗A⊗H)/N. Since ‖ϕ(a)‖ ≤ ρ(a∗a)1/2 for all
a ∈ A, therefore, ϕ(a) extends to a bounded linear operator from X to X by continuity, which
will be also denoted by ϕ(a), thus ϕ(a) in B(X). It is easily to see that ϕ is representation, and
that ϕ is a ∗-representation, that is, ϕ(a)∗ = ϕ(a∗), for all a ∈ A. Indeed, for ξ =

∑n
i=1ai ⊗bi ⊗xi

and η =
∑m

j=1cj ⊗ dj ⊗ yj in A ⊗A ⊗H, it follows that

〈
ξ, ϕ(a)∗η

〉
=
〈
ϕ(a)ξ, η

〉

=

〈

ϕ(a)

(
n∑

i=1

ai ⊗ b1 ⊗ xi
)

,
m∑

j=1

cj ⊗ dj ⊗ yj
〉

=

〈
n∑

i=1

(aai) ⊗ bi ⊗ xi,
m∑

j=1

cj ⊗ dj ⊗ yj
〉

=
∑

i,j

〈
D̂
(
d∗j , c

∗
j aai, bi

)
xi, yj

〉

H

=
∑

i,j

〈
D̂(d∗j , (a

∗cj)
∗ai, bi)xi, yj

〉

H
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=

〈
n∑

i=1

ai ⊗ bi ⊗ xi,
m∑

j=1

a∗cj ⊗ dj ⊗ yj
〉

=

〈
n∑

i=1

ai ⊗ bi ⊗ xi, ϕ(a∗)
⎛

⎝
m∑

j=1

cj ⊗ dj ⊗ yj
⎞

⎠
〉

=
〈
ξ, ϕ(a∗)η

〉
.

(3.28)

For a ∈ A and x ∈ H, we define V : A → B(H,X) as follows:

V (a)x = e ⊗ a ⊗ x +N. (3.29)

It follows that

〈V (a)x, V (a)x〉 =
〈
D̂(a∗, e, a)x, x

〉

H
≤
∥∥∥D̂(a∗, e, a)

∥∥∥ · ‖x‖2. (3.30)

So

‖V (a)‖ ≤
∥∥∥D̂(a∗, e, a)

∥∥∥
1/2
, (3.31)

and for any a, b, c ∈ A and x, y ∈ H, we obtain

〈
V (a∗)∗ϕ(b)V (c)x, y

〉
H =

〈
ϕ(b)V (c)x, V (a∗)y

〉
H =

〈
D̂(a, b, c)x, y

〉

H
. (3.32)

Hence,

D̂(a, b, c) = V (a∗)∗ϕ(b)V (c), ∀a, b, c ∈ A. (3.33)

(iii) For every a, b in A and x inH, we have

ϕ(a)V (b)(x) = ϕ(a)(e ⊗ b ⊗ x +N) = a ⊗ b ⊗ x +N. (3.34)

So, the linear span of the set {ϕ(a)V (b)x : a, b ∈ A,x ∈ H} is precisely (A ⊗A ⊗H)/N since
every element of (A ⊗A ⊗H)/N is the finite sum of a ⊗ b ⊗ x +N with a, b in A and x ∈ H.
Thus, it follows that {ϕ(a)V (b)x : a, b ∈ A,x ∈ H} spans a dense subspace of X.
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(iv) Let (ϕ,X, V ) and (ψ, Y,W) be the representations associated with φ. For each
a1, a2, . . . , an, b1, b2, . . . , bn ∈ A, and x1, x2, . . . , xn ∈ H, we have

∥∥∥∥∥

n∑

i=1

ϕ(ai)V (bi)xi

∥∥∥∥∥

2

X

=

〈
n∑

i=1

ϕ(ai)V (bi)xi,
n∑

i=1

ϕ(ai)V (bi)xi

〉

=
n∑

i=1

n∑

j=1

〈
V (bj)

∗ϕ(a∗j ai)V (bi)xi, xj
〉

H

=
n∑

i=1

n∑

j=1

〈
D̂
(
b∗j , a

∗
j ai, bi

)
xi, xj

〉

H

=
n∑

i=1

n∑

j=1

〈
W(bj)

∗ψ(a∗j ai)W(bi)xi, xj
〉

H

=

〈
n∑

i=1

ψ(ai)W(bi)xi,
n∑

i=1

ψ(ai)W(bi)xi

〉

=

∥∥∥∥∥

n∑

i=1

ψ(ai)Wxi

∥∥∥∥∥

2

Y

(3.35)

and so the linear map defined by

U0

(
n∑

i=1

ϕ(ai)V (bi)xi

)

=
n∑

i=1

ψ(ai)W(bi)xi (3.36)

extends to an isometry from X to Y , which will be denoted by U. Since the range of U0 is
dense in Y ; thus,U is a unitary operator of X onto Y .

From the relation D̂(a, b, c) = V (a∗)∗ϕ(b)V (c) = W(a∗)∗ψ(b)W(c), a, b, c ∈ A, for all
ai, bi, cj , dj ∈ A, i = 1, 2, . . . , n, j = 1, 2, . . . , m and x1, . . . , xn, y1, . . . , ym ∈ H, we get

〈

U

(
n∑

i=1

ϕ(ai)V (bi)xi

)

,
m∑

j=1

ψ
(
cj
)
W
(
dj
)
yj

〉

=

〈
n∑

i=1

ψ(ai)W(bi)xi,
m∑

j=1

ψ
(
cj
)
W
(
dj
)
yj

〉

=
n∑

i=1

m∑

j=1

〈
W(dj)

∗ψ(c∗j ai)W(bi)xi, yj
〉

H

=
n∑

i=1

m∑

j=1

〈
D̂
(
d∗j , c

∗
j ai, bi

)
xi, yj

〉

H

=

〈
n∑

i=1

ϕ(ai)V (bi)xi,
m∑

j=1

ϕ
(
cj
)
V
(
dj
)
yj

〉

.

(3.37)
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Therefore, U∗(
∑m

j=1ψ(cj)W(dj)yj) =
∑m

j=1ϕ(cj)V (dj)yj . For each a, ai, bi ∈ A, i = 1, 2, . . . , n
and x1, . . . , xn ∈ H, we have

Uϕ(a)U∗
(

n∑

i=1

ψ(ai)W(bi)xi

)

= U

(
n∑

i=1

ϕ(aai)V (bi)xi

)

= ψ(a)

(
n∑

i=1

ψ(ai)W(bi)xi

)

. (3.38)

Since Uϕ(a)U∗ and ψ(a) are bounded, and {ψ(a)W(b)x : a, b ∈ A,x ∈ H} spans a dense
subspace of Y , we then haveUϕ(a)U∗ = ψ(a) for each a ∈ A.

(v) For all a, b ∈ A, we let T = ϕ(a)V (b) − V (ab) + V (a). Then, T ∈ B(H,X). Thus,

T ∗T =
[
ϕ(a)V (b) − V (ab) + V (a)

]∗[
ϕ(a)V (b) − V (ab) + V (a)

]

=
[
V (b)∗ϕ(a)∗ − V (ab)∗ + V (a)∗

][
ϕ(a)V (b) − V (ab) + V (a)

]

= V (b)∗ϕ(a∗a)V (b) − V (b)∗ϕ(a)∗V (ab) + V (b)∗ϕ(a∗a) − V (ab)∗ϕ(a)V (b)

+ V (ab)∗V (ab) − V (ab)∗V (a) + V (a)∗ϕ(a)V (b) − V (a)∗V (ab) + V (a)∗V (a)

= D̂(b∗, a∗a, b) − D̂(b∗, a∗, ab) + D̂(b∗, a∗, a) − D̂(b∗a∗, a, b)

+ D̂(a∗, a, b) + D̂(b∗a∗, e, ab) − D̂(b∗a∗, e, a) − D̂(a∗, e, ab) + D̂(a∗, e, a)

= D(b∗a∗a, b) −D(a∗a, b) −D(b∗a∗, ab) +D(a∗, ab)

+D(b∗a∗, a) −D(a∗, a) −D(b∗a∗a, b) +D(a, b)

+D(a∗a, b) −D(a, b) +D(b∗a∗, ab) −D(e, ab)

−D(b∗a∗, a) +D(e, a) −D(a∗, ab) +D(e, ab) +D(a∗, a) −D(e, a)

= 0.
(3.39)

We, therefore, get T = 0, that is, Δ1
ϕV = ϕ(a)V (b) − V (ab) + V (a) = 0. This completes the

proof.

Finally, as in cohomology theory of Banach algebras [16], we introduce the notion of
n-cocycles.

Definition 3.2. LetA be a σ-C∗-algebra, and ϕ a representation ofA in a Hilbert spaceH. LetK
be another Hilbert space. For n ≥ 1, the group (under pointwise addition) of all n-cochains on
A with values in B(K,H) is denoted by Cn(A;B(K,H)) consisting of all continuous n-linear
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maps of An into B(K,H). We set Cn(A;B(K,H)) = 0 for n ≤ 0. We define a group homomor-
phism (coboundary operator) Δn

ϕ : Cn(A;B(K,H)) → Cn+1(A;B(K,H))with respect to ϕ by
Δn
ϕ = 0 for n ≤ 0 and, n ≥ 1,

Δn
ϕf(a1, a2, . . . , an+1) = ϕ(a1)f(a2, a3, . . . , an+1)

+
n∑

i=1

(−1)if(a1, a2, ai−1, aiai+1, ai+2, . . . , an+1)

+ (−1)n+1f(a1, a2, . . . , an),

(3.40)

where a1, a2, . . . , an+1 ∈ A.
We set

Zn
ϕ(A;B(K,H)) =

{
f ∈ Cn(A;B(K,H)) : Δn

ϕf = 0
}
. (3.41)

Elements of Zn
ϕ(A;B(K,H)) are called n-cocycles with respect to the representation ϕ of A.

We see that a continuous linear map f : A → B(K,H) is called 1-cocycle with respect to the
representation ϕ of A if it satisfied Δ1

ϕf = ϕ(a)f(b) − f(ab) + f(a) = 0. The 1-cocycle appears
at (v) in Theorem 3.1. For further, results will report in another paper.
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