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We consider Lyapunov stability theory of linear time-varying system and derive sufficient con-
ditions for uniform stability, uniform exponential stability, ψ-uniform stability, and h-stability for
linear time-varying system with nonlinear perturbation on time scales. We construct appropriate
Lyapunov functions and derive several stability conditions. Numerical examples are presented to
illustrate the effectiveness of the theoretical results.

1. Introduction

In the past decades, stability analysis of dynamic systems has become an important topic
both theoretically and practically because dynamic systems occur in many areas such as
mechanics, physics, and economics. The theory of dynamic equations on time scales was
first introduced by Hilger [1] with analysis of measure chains in order to unify continuous
and discrete calculus on time scale. The generalized derivative or Hilger derivative fΔ(t)
of a function f : T → R, where T is a so-called time scale (an arbitrary closed nonempty
subset of R) becomes the usual derivative when T = R, namely, fΔ(t) = f ′(t). On the other
hand, if T = Z, then fΔ(t) reduces to the usual forward difference, namely, fΔ(t) = Δf(t).
The development of theory on time scale calculus allows one to get some insight into and
better understanding of the subtle differences between discrete and continuous systems [2, 3].
Therefore, the problem of stability analysis for dynamic equations (systems) on time scales
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has been investigated by many researchers, see [1–6], in which most results on stability of
dynamic systems are obtained by the method of estimation of general solution of the systems.
It seems that there are not many researches concerning with stability of dynamic systems on
time scales by using Lyapunov functions on time scales.

There are various types of stability of dynamic systems on time scales such as uniform
stability, uniform asymptotic stability [5], ψ-uniform stability [6], and h-stability [4]. In [5],
necessary and sufficient conditions for uniform stability and uniform asymptotic stability for
dynamic systems on time scales are obtained. In [4, 6], the method presents in [5] are used
to derive sufficient conditions for ψ-uniformly stability [6] and h-stability [4] for dynamic
systems on time scales.

In this paper, we shall develop Lyapunov stability theory for various types of stability
for linear time-varying system with nonlinear perturbation on time scales. By using this
Lyapunov stability theory, we derive several sufficient conditions for stabilities of dynamic
systems on time scales.

2. Problem Formulation and Preliminaries

In this section, we introduce some notations, definitions, and preliminary results which will
be used throughout the paper. R

+ denotes the set of all nonnegative real numbers; R denotes
the set of all real numbers; Z

+ denotes the set of all non-negative integers; Z denotes the set
of all integers; Rn denotes the n-dimensional Euclidean space with the usual Euclidean norm
‖ · ‖; ‖x‖ denotes the Euclidean vector norm of x ∈ R

n; R
n×r denotes the set of n × r real

matrix; AT denotes the transpose of the matrix A; A is symmetric if A = AT ; I denotes the
identity matrix; λ(A) denotes the set of all eigenvalues ofA; λmax(A) = max{Reλ : λ ∈ λ(A)};
λmin(A) = min{Reλ : λ ∈ λ(A)}.

Definition 2.1. A time scale T is an arbitrary nonempty closed subset of the real numbers R.

Definition 2.2. The mapping σ, ρ : T → T defined by σ(t) = inf{s ∈ T : s > t}, and ρ(t) =
sup{s ∈ T : s < t} are called the jump operators.

Definition 2.3. A nonmaximal element t ∈ T is said to be right-scattered (rs) if σ(t) > t and
right-dense (rd) if σ(t) = t. A nonminimal element t ∈ T is called left-scattered (ls) if ρ(t) < t
and left-dense (ld) if ρ(t) = t.

Definition 2.4. The mapping μ : T → R
+ defined by μ(t) = σ(t) − t is called the graininess

function.

Definition 2.5. (Delta derivative) assume f : T → R is a function and let t ∈ T. Then we
define fΔ(t) to be the number (provided it exists) with the property that given any ε > 0,
there is a neighborhood U of t (i.e.,U = (t − δ, t + δ) ∩ T for some δ > 0) such that |[f(σ(t)) −
f(s)] − fΔ(t)[σ(t) − s]| ≤ ε|σ(t) − s| for all s ∈ U.

The function fΔ(t) is the delta derivative of f at t.
In the case that T = R, we have fΔ(t) = f ′(t). In the case that T = Z, we have fΔ(t) =

f(t + 1) − f(t).
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The following are some useful relationships regarding the delta derivative, see [2].

Theorem 2.6 (see [2]). Assume that f : T → R
n and let t ∈ T.

(i) If f is differentiable at t, then f is continuous at t.

(ii) If f is continuous at t and t is right scattered, then f is differentiable at t with

fΔ(t) =
f(σ(t)) − f(t)

σ(t) − t . (2.1)

(iii) If f is differentiable at t and t is right dense, then

fΔ(t) = lim
s→ t

f(t) − f(s)
t − s . (2.2)

(iv) If f is differentiable at t, then

f(σ(t)) = f(t) + μ(t)fΔ(t). (2.3)

Theorem 2.7 (see [2]). Assume that f, g : T → R
n and let t ∈ T.

(i) The sum f, g : T → R
n are differentiable at t with

(
f + g

)Δ(t) =
(
f
)Δ(t) +

(
g
)Δ(t). (2.4)

(ii) For any constant α, αf : T → R
n is differentiable at t with

(
αf

)Δ(t) = αfΔ(t). (2.5)

(iii) The product fg : T → R
n is differentiable at t with

(
fg

)Δ(t) = fΔ(t)g(t) + f(σ(t))gΔ(t) = f(t)gΔ(t) + fΔ(t)g(σ(t)). (2.6)

Definition 2.8. The function f : T → R
n is said to be rd-continuous (denoted by f ∈

Crd(T,Rn)) if the following conditions hold.
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(i) f is continuous at every right-dense point t ∈ T.

(ii) lims→ t−f(s) exists and is finite at every ld-point t ∈ T.

Definition 2.9. Let f ∈ Crd(T,Rn). Then g : T → R
n is called the antiderivative of f on T if it

is differentiable on T and satisfies gΔ(t) = f(t) for t ∈ T. In this case, we define

∫ t

a

f(s)Δs = g(t) − g(a), a ≤ t ∈ T. (2.7)

Consider the linear time-varying system with nonlinear perturbation on time scales (T) of
the form

xΔ(t) = A(t)x(t) + f(t, x(t)), t ∈ T, (2.8)

where x(t) ∈ R
n, A : T → R

n×n is an n × n matrix-valued function and f : T × R
n → R

n is
rd-continuous in the first argument with f(t, 0) = 0. The uncertain perturbation is known to
satisfy a bound of the form

∥∥f(t, x(t))
∥∥ ≤ γ‖x(t)‖, (2.9)

or equivalently, the perturbation is conically bounded. The solution of (2.8) through (t0, x(t0))
satisfies the variation of constants formula

x(t) = ΦA(t, t0)x(t0) +
∫ t

t0

ΦA(t, σ(s))f(s, x(s))Δs, t ≥ t0. (2.10)

When f(t, x(t)) = 0, (2.8) becomes the linear time-varying system

xΔ(t) = A(t)x(t), x(t0) = x0, t0 ∈ T. (2.11)

For the case when f(t, x(t)) = B(t)x(t), B(t) ∈ R
n×n, (2.8) becomes the linear time-varying

system

xΔ(t) = [A(t) + B(t)]x(t), x(t0) = x0, t0 ∈ T. (2.12)

The norm of n × nmatrix A is defined as

‖A‖ = max
‖x‖=1

‖Ax‖. (2.13)

The Euclidean norm of n × 1 vector x(t) is defined by

‖x(t)‖ =
√
xT (t)x(t). (2.14)
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Definition 2.10. A function φ : [0, r] → [0,+∞) is of class K if it is well-defined, continuous,
and strictly increasing on [0, r] with φ(0) = 0.

Definition 2.11. Assume g : T → R. Define and denote g ∈ Crd(T;R) as right-dense
continuous (rd-continuous) if g is continuous at every right-dense point t ∈ T and
lims→ t−g(s) exists, and is finite, at every left-dense point t ∈ T. Now define the so-called
set of regressive functions, R, by

R =
{
p : T → R | p ∈ Crd(T;R), 1 + p(t)μ(t)/= 0, t ∈ T

}
, (2.15)

and define the set of positively regressive functions by

R+ =
{
p ∈ R | 1 + p(t)μ(t) > 0, t ∈ T

}
. (2.16)

Definition 2.12. The zero solution of system (2.8) is called uniformly stable if there exists a
finite constant γ > 0 such that

‖x(t, x0, t0)‖ ≤ γ‖x0‖, (2.17)

for all t ∈ T, t ≥ t0.

Definition 2.13. The zero solution of system (2.8) is called uniformly exponentially stable if
there exist finite constants γ, λ > 0 with −λ ∈ R+ such that

‖x(t, x0, t0)‖ ≤ γ‖x0‖e−λ(t, t0), (2.18)

for all t ∈ T, t ≥ t0.

Definition 2.14. The zero solution of system (2.8) is called ψ-uniformly stable if there exists a
finite constant γ > 0 such that for any t0 and x(t0), the corresponding solution satisfies

∥∥ψ(t)x(t, x0, t0)
∥∥ ≤ γ∥∥ψ(t0)x0

∥∥, (2.19)

for all t ∈ T, t ≥ t0.

Definition 2.15. System (2.8) is called an h-system if there exist a positive function h : T → R,
a constant c ≥ 1 and δ > 0 such that

‖x(t, x0, t0)‖ ≤ c‖x0‖h(t)h(t0)−1, t ≥ t0, (2.20)

if ‖x0‖ < δ (here h(t)−1 = 1/h(t)). If h is bounded, then (2.8) is said to be h-stable.

Definition 2.16. A continuous function P : T → R with P(0) = 0 is called positive definite
(negative definite) on T if there exists a function φ ∈ K such that φ(t) ≤ P(t) (φ(t) ≤ −P(t))
for all t ∈ T.
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Definition 2.17. A continuous function P : T → R with P(0) = 0 is called positive semidefinite
(negative semi-definite) on T if P(t) ≥ 0 (P(t) ≤ 0) for all t ∈ T.

Definition 2.18. A continuous function P : T × R
n → R with P(t, 0) = 0 is called positive

definite (negative definite) onT×R
n if there exists a function φ ∈ K such that φ(‖x‖) ≤ P(t, x)

(φ(‖x‖) ≤ −P(t, x)) for all t ∈ T and x ∈ R
n.

Definition 2.19. A continuous function P : T × R
n → R with P(t, 0) = 0 is called positive

semi-definite (negative semi-definite) on T × R
n if 0 ≤ P(t, x) (0 ≥ P(t, x)) for all t ∈ T and

x ∈ R
n.

Lemma 2.20 ([7], Completing the square). assume that S ∈Mn×n is a symmetric positive definite
matrix. Then for every Q ∈Mn×n, we obtain

2xTQy − yTSy ≤ xTQS−1QTx, ∀x, y ∈ Rn. (2.21)

3. Main Results

In this section, we first introduce Lyapunov stability theory of various types stability for linear
time varying system with nonlinear perturbation on time scales. Then, we use this Lyapunov
stability theory to obtain sufficient conditions for various types of stabilities of this system.

3.1. Lyapunov Stability Theory

Theorem 3.1. If there exist a continuously differentiable positive definite function V (t, x(t)) ∈
C1
rd(T × R

n,R+), and a, b ∈ R
+ such that

(i) VΔ(t, x(t)) ≤ 0,

(ii) a‖x(t)‖2 ≤ V (t, x(t)) ≤ b‖x(t)‖2,
then the zero solution of system (2.8) is ψ-uniformly stable if there exists ψ(t) ∈ C1

rd(T,R+) satisfying
ψΔ(t) ≤ 0.

Proof. For t0 ∈ T, we let x(t0) = x0. Then, by (i), we have

∫ t

t0

VΔ(s, x(s))Δs = V (t, x(t)) − V (t0, x(t0)) ≤ 0,

∫ t

t0

ψΔ(s)Δs = ψ(t) − ψ(t0) ≤ 0.

(3.1)

We obtain V (t, x(t)) ≤ V (t0, x(t0)) and ψ(t) ≤ ψ(t0) for all t ∈ T, t ≥ t0. By (ii), we get the
estimation as follows:

a
∥∥ψ(t)

∥∥2‖x(t)‖2 ≤ ∥∥ψ(t)
∥∥2
V (t, x(t)) ≤ ∥∥ψ(t0)

∥∥2
V (t0, x(t0)) ≤ b

∥∥ψ(t0)
∥∥2‖x(t0)‖2. (3.2)

We conclude that ‖ψ(t)x(t)‖ ≤ γ‖ψ(t0)x(t0)‖where γ =
√
b/a > 0. Therefore, the zero solution

of system (2.8) is ψ-uniformly stable. The proof of the theorem is complete.
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Corollary 3.2. If there exist a continuously differentiable positive definite function V (t, x(t)) ∈
C1
rd(T × R

n,R+) and a, b ∈ R
+ such that

(i) VΔ(t, x(t)) ≤ 0,

(ii) a‖x(t)‖2 ≤ V (t, x(t)) ≤ b‖x(t)‖2,

then the zero solution of system (2.8) is uniformly stable.

Theorem 3.3. If there exist a continuously differentiable positive definite function V (t, x(t)) ∈
C1
rd(T × R

n,R+) and a, b, ε ∈ R
+ with −ε/b ∈ R+ satisfying

(i) VΔ(t, x(t)) ≤ −ε‖x(t)‖2,
(ii) a‖x(t)‖2 ≤ V (t, x(t)) ≤ b‖x(t)‖2,

then the zero solution of system (2.8) is uniformly exponentially stable.

Proof. For t0 ∈ T, we let x(t0) = x0. We obtain, by (i) and (ii), that for all t ≥ t0,

VΔ(t, x(t)) ≤ −ε‖x(t)‖2 ≤ −ε
b
V (t, x(t)). (3.3)

Since −ε/b ∈ R+, it follows from Gronwall’s inequality for time scales [2] and (ii) that

a‖x(t)‖2 ≤ V (t, x(t)) ≤ V (t0, x(t0))e−ε/b(t, t0) ≤ b‖x(t0)‖2e−ε/b(t, t0). (3.4)

Hence, we get

‖x(t)‖ ≤ γ‖x(t0)‖[e−ε/b(t, t0)]1/2, (3.5)

where γ =
√
b/a for all t ≥ t0. Therefore, the zero solution of system (2.8) is uniformly

exponentially stable. The proof of the theorem is complete.

Theorem 3.4. If there exist a continuously differentiable positive definite function V (t, x(t)) ∈
C1
rd(T × R

n,R+), a bounded positive differentiable function h : T → R and a, b ∈ R
+ such that

(i)

VΔ(t, x(t)) ≤ γhΔ(t)/h(t) ‖x(t)‖2, γ =

⎧
⎨

⎩

a, hΔ(t) ≥ 0;

b, hΔ(t) < 0,
(3.6)

(ii) a‖x(t)‖2 ≤ V (t, x(t)) ≤ b‖x(t)‖2,

then the zero solution of system (2.8) is h-stable.
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Proof. Let t0 ∈ T, x(t0) = x0 and x(t, t0, x0) = x(t) be any solution of system (2.8). By (i), we
have

VΔ(t, x(t)) ≤ γ h
Δ(t)
h(t)

‖x(t)‖2

≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γ

a

hΔ(t)
h(t)

V (t, x(t)), hΔ(t) ≥ 0;

γ

b

hΔ(t)
h(t)

V (t, x(t)), hΔ(t) < 0,

≤ hΔ(t)
h(t)

V (t, x(t)).

(3.7)

From Gronwall’s inequality for time scales [2], (ii) and Lemma 2.15 [4], we obtain

a‖x(t)‖2 ≤ V (t, x(t)) ≤ V (t0, x(t0))ehΔ(t)/h(t)(t, t0) ≤ b‖x(t0)‖2ehΔ(t)/h(t)(t, t0),

≤ b‖x(t0)‖2 h(t)
h(t0)

.
(3.8)

Thus,

‖x(t)‖ ≤ γ‖x(t0)‖H(t)H(t0)−1, t ≥ t0, (3.9)

where γ =
√
b/a andH(t) =

√
h(t). Therefore, zero solution of (2.8) is h-stable.

3.2. Stability Conditions

We introduce the following notation for later use:

Z(t) := PΔ(t) +AT (t)P(t) + P(t)A(t) + μ(t)PΔ(t)A(t) + μ(t)AT (t)PΔ(t) + ε1P(t)P(t)

+ μ(t)AT (t)P(t)A(t) + μ2(t)AT (t)PΔ(t)A(t) + ε2PΔ(t)PΔ(t) + ε−12 γ
2μ(t)2I

+ ε3AT (t)P(t)P(t)A(t) + ε−13 γ
2μ(t)2I + ε4AT (t)PΔ(t)PΔ(t)A(t) + ε−14 γ

2μ(t)4I

+ ε−11 γ
2I + η2γ2μ(t)I + ρ2γ2μ(t)2I.

(3.10)

Theorem 3.5. The system (2.11) is uniformly stable if there exist a positive definite symmetric matrix
function P(t) ∈ C1

rd(T,R
n×n) and η, ρ ∈ R

+ such that

(i) ηI ≤ P(t) ≤ ρI,
(ii) AT (t)P(t) + (I + μ(t)AT (t))(PΔ(t) + P(t)A(t) + μ(t)PΔ(t)A(t)) ≤ 0.
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Remark 3.6. We can prove Theorem 3.5 (see Theorem 3.1 in [5] DaCunha) by using the same
approach as in Theorem 3.1 by choosing V (t, x(t)) = xT (t)P(t)x(t). In this case, we obtain

VΔ(t) = xT (t)
[
AT (t)P(t) +

(
I + μ(t)AT (t)

)(
PΔ(t) + P(t)A(t) + μ(t)PΔ(t)A(t)

)]
x(t). (3.11)

Theorem 3.7. The system (2.8) is uniformly stable if there exist a positive definite symmetric matrix
function P(t) ∈ C1

rd(T,R
n×n) and η1, η2, γ, ε1, ε2, ε3, ε4 ∈ R

+, ρ1, ρ2 ∈ R such that

(i) η1I ≤ P(t) ≤ η2I,
(ii) ρ1I ≤ PΔ(t) ≤ ρ2I,
(iii) Z(t) ≤ 0.

Proof. We consider the following Lyapunov function for system (2.8).

V (t, x(t)) = xT (t)P(t)x(t). (3.12)

By (i), it is easy to see that

η1‖x(t)‖2 ≤ V (t, x(t)) = xT (t)P(t)x(t) ≤ η2‖x(t)‖2. (3.13)

The delta derivative of V along the trajectories of system (2.8) is given by

VΔ(t) =
[
xT (t)P(t)

]Δ
x(t) + xT (σ(t))P(σ(t))xΔ(t)

= xT (t)ΔP(t)x(t) + xT (σ(t))PΔ(t)x(t) + xT (σ(t))P(σ(t))xΔ(t)

=
[
xT (t)AT (t) + fT (t, x)

]
P(t)x(t) +

[
xT (t) + μ(t)

(
xT (t)AT (t) + fT (t, x)

)]

×
[
PΔ(t)x(t) + P(t)

(
A(t)x(t) + f(t, x)

)
+ μ(t)PΔ(t)

(
A(t)x(t) + f(t, x)

)]

= xT (t)PΔ(t)x(t) + xT (t)AT (t)P(t)x(t) + xT (t)P(t)A(t)x(t)

+ μ(t)xT (t)PΔ(t)A(t)x(t)

+ μ(t)xT (t)AT (t)PΔ(t)x(t) + μ(t)xT (t)AT (t)P(t)A(t)x(t)

+ μ(t)2xT (t)AT (t)PΔ(t)A(t)x(t)

+ μ(t)fT (t, x)P(t)f(t, x) + μ(t)2fT (t, x)PΔ(t)f(t, x) + fT (t, x)P(t)x(t)

+ μ(t)fT (t, x)PΔ(t)x(t) + μ(t)fT (t, x)P(t)A(t)x(t)

+ μ(t)2fT (t, x)PΔ(t)A(t)x(t)

+ xT (t)P(t)f(t, x) + μ(t)xT (t)PΔ(t)f(t, x) + μ(t)xT (t)AT (t)P(t)f(t, x)

+ μ(t)2xT (t)AT (t)PΔ(t)f(t, x).

(3.14)
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By (i), (ii), and Lemma 2.20, we have the following estimate:

xT (t)P(t)x(t) ≤ η2xT (t)x(t),

xT (t)PΔ(t)x(t) ≤ ρ2xT (t)x(t),

2xT (t)P(t)f(t, x) ≤ ε1xT (t)P(t)P(t)x(t) + ε−11 fT (t, x)f(t, x),

2μ(t)xT (t)PΔ(t)f(t, x) ≤ ε2xT (t)PΔ(t)PΔ(t)x(t) + ε−12 μ(t)
2fT (t, x)f(t, x),

2μ(t)xT (t)AT (t)P(t)f(t, x) ≤ ε3xT (t)AT (t)P(t)P(t)A(t)x(t) + ε−13 μ(t)
2fT (t, x)f(t, x),

2μ(t)2xT (t)AT (t)PΔ(t)f(t, x) ≤ ε4xT (t)AT (t)PΔ(t)PΔ(t)A(t)x(t) + ε−14 μ(t)
4fT (t, x)f(t, x).

(3.15)

From the above inequalities and ‖f(t, x)‖ ≤ γ‖x(t)‖, we obtain

VΔ(t) ≤ xT (t)PΔ(t)x(t) + xT (t)AT (t)P(t)x(t) + xT (t)P(t)A(t)x(t)

+ μ(t)xT (t)PΔ(t)A(t)x(t)

+ μ(t)xT (t)AT (t)PΔ(t)x(t) + μ(t)xT (t)AT (t)P(t)A(t)x(t)

+ μ(t)2xT (t)AT (t)PΔ(t)A(t)x(t)

+ ε1xT (t)P(t)P(t)x(t) + ε−11 γ
2‖x(t)‖2 + ε2xT (t)PΔ(t)PΔ(t)x(t)

+ ε−12 γ
2μ(t)2‖x(t)‖2

+ ε3xT (t)AT (t)P(t)P(t)A(t)x(t) + ε−13 γ
2μ(t)2‖x(t)‖2 + ε−14 γ2μ(t)4‖x(t)‖2

+ ε4xT (t)AT (t)PΔ(t)PΔ(t)A(t)x(t) + η2γ2μ(t)‖x(t)‖2 + ρ2γ2μ(t)2‖x(t)‖2

= xT (t)Z(t)x(t).

(3.16)

By (iii), we conclude that VΔ(t) ≤ 0. Therefore, the zero solution of (2.8) is uniformly stable
by Corollary 3.2.

Example 3.8. We consider the time-varying dynamic system of the form

xΔ(t) = A(t)x(t) + f(t, x(t)), (3.17)

A(t) =

[−a(t) −1
1 −a(t)

]

, f(t, x(t)) =

[−0.125 sin(t)[x2(t)]
0.125 cos(t)[x1(t)]

]

,
∥∥f(t, x(t))

∥∥ ≤ 0.125‖x(t)‖,

(3.18)

where a(t) = −e�8(t, 0)+1 and f(t, x(t)) are rd-continuous in the first argument with f(t, 0) = 0
for all t ∈ T. Let γ = 1/8, ε1 = 1, ε2 = 1/16, ε3 = 1/2, ε4 = 1/16, η1 = 1/8, η2 = 1/4, ρ1 = −1,
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and ρ2 = 0. By assuming that 0 ≤ μ(t) ≤ 0.25 for all t ∈ T, we can find solution P(t) satisfying
conditions (i)–(iii) of Theorem 3.7 as P(t) =

[
(1/8)e�8(t,0)+(1/8) 0

0 (1/8)e�8(t,0)+(1/8)

]
. Observe that,

PΔ(t) =

[−e�8(t, 0) 0

0 −e�8(t, 0)

]

. (3.19)

Therefore, by Theorem 3.7, the system (3.17) is uniformly stable.

Theorem 3.9. The system (2.8) is uniformly exponentially stable if there exist positive definite
symmetric matrix function P(t) ∈ C1

rd(T,R
n×n) and η1, η2, γ, ε1, ε2, ε3, ε4, ε5 ∈ R

+, ρ1, ρ2 ∈ R such
that

(i) η1I ≤ P(t) ≤ η2I,
(ii) ρ1I ≤ PΔ(t) ≤ ρ2I,
(iii) Z(t) ≤ −ε5I.

Proof. Consider a Lyapunov function for system (2.8) of the form

V (t, x(t)) = xT (t)P(t)x(t). (3.20)

It is easy to see that (i) yields

η1‖x(t)‖2 ≤ V (t, x(t)) = xT (t)P(t)x(t) ≤ η2‖x(t)‖2. (3.21)

The delta derivative of V along the trajectories of system (2.8) is given by

VΔ(t) =
[
xT (t)P(t)

]Δ
x(t) + xT (σ(t))P(σ(t))xΔ(t)

=
[
xT (t)AT (t) + fT (t, x)

]
P(t)x(t) +

[
xT (t) + μ(t)

(
xT (t)AT (t) + fT (t, x)

)]

×
[
PΔ(t)x(t) + P(t)

(
A(t)x(t) + f(t, x)

)
+ μ(t)PΔ(t)

(
A(t)x(t) + f(t, x)

)]
.

(3.22)

From Theorem 3.7, we obtain

VΔ(t) ≤ xT (t)PΔ(t)x(t) + xT (t)AT (t)P(t)x(t) + xT (t)P(t)A(t)x(t) + μ(t)xT (t)PΔ(t)A(t)x(t)

+ μ(t)xT (t)A(t)PΔ(t)x(t) + μ(t)xT (t)A(t)P(t)A(t)x(t) + μ(t)2xT (t)A(t)PΔ(t)A(t)x(t)

+ ε1xT (t)P(t)P(t)x(t) + ε−11 γ
2‖x(t)‖2 + ε2xT (t)PΔ(t)PΔ(t)x(t) + ε−12 γ

2μ(t)2‖x(t)‖2

+ ε3xT (t)AT (t)P(t)P(t)A(t)x(t) + ε−13 γ
2μ(t)2‖x(t)‖2 + ε−14 γ2μ(t)4‖x(t)‖2

+ ε4xT (t)AT (t)PΔ(t)PΔ(t)A(t)x(t) + η2γ2μ(t)‖x(t)‖2 + ρ2γ2μ(t)2‖x(t)‖2.
(3.23)
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By (iii), we conclude that VΔ(t) ≤ −ε5‖x(t)‖2. By Theorem 3.3, the zero solution of (2.8) is
uniformly exponentially stable.

Example 3.10. We consider the linear time-varying system with nonlinear perturbation of the
form

xΔ(t) = A(t)x(t) + f(t, x(t)), (3.24)

where

A(t) =

[−a(t) −1
1 −a(t)

]

, f(t, x(t)) =

[−0.125 cos(t)[x2(t)]
0.125 sin(t)[x1(t)]

]

. (3.25)

a(t) = e�8(t, 0) + 1 and f(t, x(t)) are rd-continuous in the first argument with f(t, 0) = 0 for all
t ∈ T. Then, 1 ≤ a(t) ≤ 2 and ‖f(t, x(t))‖ ≤ 0.125‖x(t)‖ for all t ∈ T. Let γ = 1/8, ε1 = 1, ε2 =
1/16, ε3 = 1/2, ε4 = ε5 = 1/16, η1 = 1/8, η2 = 1/4, ρ1 = −1, and ρ2 = 0. By assuming that
0 ≤ μ(t) ≤ 0.25, for all t ∈ T, we can find a solution P(t) satisfying (i)–(iii) of Theorem 3.9 as

P(t) =

⎡

⎢
⎣

1
8
e�8(t, 0) +

1
8

0

0
1
8
e�8(t, 0) +

1
8

⎤

⎥
⎦. (3.26)

Therefore, by Theorem 3.9, the system (3.24) is uniformly exponentially stable.

Theorem 3.11. The system (2.8) is ψ-uniformly stable if there exist positive definite symmetric
matrix function P(t) ∈ C1

rd(T,R
n×n), ψ(t) ∈ C1

rd(T,R+), and η1, η2, γ, ε1, ε2, ε3, ε4 ∈ R
+, ρ1, ρ2 ∈ R

such that

(i) η1I ≤ P(t) ≤ η2I,
(ii) ρ1I ≤ PΔ(t) ≤ ρ2I,
(iii) Z(t) ≤ 0,

(iv) ψΔ(t) ≤ 0.

Proof. We consider the following Lyapunov function for system (2.8)

V (t, x(t)) = xT (t)P(t)x(t). (3.27)

By (i), it is easy to see that

η1‖x(t)‖2 ≤ V (t, x(t)) = xT (t)P(t)x(t) ≤ η2‖x(t)‖2. (3.28)

By the same argument as in the proof of Theorem 3.7, we obtain VΔ(t) ≤ 0. By (iv) and
Theorem 3.1, the zero solution of (2.8) is ψ-uniformly stable.
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Example 3.12. We consider the linear time-varying dynamic system of the form

xΔ(t) =

[−a(t) −1
1 −a(t)

]

x(t) + f(t, x(t)), (3.29)

a(t) = | sin(t)| + 1 and f(t, x(t)) are rd-continuous in the first argument with f(t, 0) = 0 for all
t ∈ T. We let ψ(t) = −t and

f(t, x(t)) =

[
0.125 sin(t)[x1(t)]

−0.125 cos(t)[x2(t)]

]

. (3.30)

Then ψΔ(t) = −1 ≤ 0 and ‖f(t, x(t))‖ ≤ 0.125‖x(t)‖. Let γ = 1/8, ε1 = 1, ε2 = 1/16, ε3 =
1/2, ε4 = 1/16, η1 = 1/8, η2 = 1/4, ρ1 = −1, and ρ2 = 0. We can find a solution P(t) satisfying
(i)–(iv) of Theorem 3.11 as

P(t) =

⎡

⎢
⎣

1
8
e�8(t, 0) +

1
8

0

0
1
8
e�8(t, 0) +

1
8

⎤

⎥
⎦ (3.31)

ψΔ(t) = −1 ≤ 0.
Therefore, by Theorem 3.11, the system (3.29) is ψ-uniformly stable.

Theorem 3.13. The system (2.8) is h-stable if there exist a positive definite symmetric matrix
function P(t) ∈ C1

rd(T,R
n×n), a bounded positive differentiable function h : T → R, and η1, η2,

γ, ε1, ε2, ε3, ε4 ∈ R
+, ρ1, ρ2 ∈ R satisfying

(i) η1I ≤ P(t) ≤ η2I,
(ii) ρ1I ≤ PΔ(t) ≤ ρ2I,
(iii)

Z(t) ≤ γ1h
Δ(t)
h(t)

I, γ1 =

⎧
⎨

⎩

η1, hΔ(t) ≥ 0;

η2, hΔ(t) < 0.
(3.32)

Proof. Let t0 ∈ T, x(t0) = x0 and x(t, t0, x0) = x(t) be any solution of system (2.8). We consider
a Lyapunov function for system (2.8) of the form

V (t, x(t)) = xT (t)P(t)x(t). (3.33)

By (i), we get

η1‖x(t)‖2 ≤ V (t, x(t)) = xT (t)P(t)x(t) ≤ η2‖x(t)‖2. (3.34)
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The delta derivative of V along the trajectories of system (2.8) is given by

VΔ(t) =
[
xT (t)P(t)

]Δ
x(t) + xT (σ(t))P(σ(t))xΔ(t)

=
[
xT (t)AT (t) + fT (t, x)

]
P(t)x(t) +

[
xT (t) + μ(t)

(
xT (t)AT (t) + fT (t, x)

)]

×
[
PΔ(t)x(t) + P(t)

(
A(t)x(t) + f(t, x)

)
+ μ(t)PΔ(t)

(
A(t)x(t) + f(t, x)

)]
.

(3.35)

By using (i), (ii), (iii), and Lemma 2.20, we obtain

VΔ(t, x(t)) =
[
xT (t)P(t)x(t)

]Δ ≤ γ1h
Δ(t)
h(t)

‖x(t)‖2

≤

⎧
⎪⎪⎨

⎪⎪⎩

γ1
η1

hΔ(t)
h(t)

V (t, x(t)), hΔ(t) ≥ 0,

γ1
η2

hΔ(t)
h(t)

V (t, x(t)), hΔ(t) < 0,

≤ hΔ(t)
h(t)

[
xT (t)P(t)x(t)

]
.

(3.36)

From Gronwall’s inequality for time scales [3], (i) and Lemma 2.15 in [2], we obtain

η1‖x(t)‖2 ≤ xT (t)P(t)x(t) ≤
[
xT (t0)P(t0)x(t0)

]
ehΔ(t)/h(t)(t, t0),

≤ η2‖x(t0)‖2ehΔ(t)/h(t)(t, t0) ≤ η2‖x(t0)‖2
h(t)
h(t0)

.

(3.37)

Hence, we get

‖x(t)‖ ≤ ω‖x(t0)‖H(t)H(t0)−1, t ≥ t0, (3.38)

where ω =
√
η2/η1 andH(t) =

√
h(t). Therefore, the zero solution of (2.8) is h-stable.

Example 3.14. We consider the linear time-varying dynamic system of the form

xΔ(t) =

[−a(t) −1
1 −a(t)

]

x(t) + f(t, x(t)), (3.39)

where a(t) = e�8(t, 0)+1 and f(t, x(t)) are rd-continuous in the first argument with f(t, 0) = 0
for all t ∈ T. Let h(t) = 5 and

f(t, x(t)) =

[
0.125 cos(t)[x2(t)]

−0.125 sin(t)[x1(t)]

]

. (3.40)
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Then hΔ(t) = 0 and ‖f(t, x(t))‖ ≤ 0.125‖x(t)‖. Let γ = 1/8, ε1 = 1, ε2 = 1/16, ε3 =
1/2, ε4 = 1/16, η1 = 1/8, η2 = 1/4, ρ1 = −1, and ρ2 = 0. We can find a solution P(t) satisfying
(i)–(iii) of Theorem 3.13 as

P(t) =

⎡

⎢
⎣

1
8
e�8(t, 0) +

1
8

0

0
1
8
e�8(t, 0) +

1
8

⎤

⎥
⎦. (3.41)

Therefore, by Theorem 3.13, the system (3.39) is 5-stable.

4. Conclusion

In this paper, we have considered Lyapunov stability theory of linear time-varying system
and derived sufficient conditions for uniform stability, uniform exponential stability, ψ-
uniform stability and h-stability for linear time-varying system with nonlinear perturbation
on time scales. By construction of appropriate Lyapunov functions, we have derived several
stability conditions. Numerical examples are presented to illustrate the effectiveness of the
theoretical results.
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