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We prove that the function fα,β(x) = Γβ(x + α)/xαΓ(βx) is strictly logarithmically completely
monotonic on (0,∞) if (α, β) ∈ {(α, β) : 1/

√
α ≤ β ≤ 1, α /= 1} ∪ {(α, β) : 0 < β ≤ 1, ϕ1(α, β) ≥

0, ϕ2(α, β) ≥ 0} and [fα,β(x)]
−1 is strictly logarithmically completely monotonic on (0,∞) if (α, β) ∈

{(α, β) : 0 < α ≤ 1/2, 0 < β ≤ 1} ∪ {(α, β) : 1 ≤ β ≤ 1/
√
α ≤ √

2, α /= 1} ∪ {(α, β) : 1/2 ≤ α < 1, β ≥
1/(1−α)}, where ϕ1(α, β) = (α2+α−1)β2+(2α2−3α+1)β−α and ϕ2(α, β) = (α−1)β2+(2α2−5α+2)β−1.

1. Introduction

It is well known that the classical Euler’s gamma function Γ(x) is defined for x > 0 as

Γ(x) =
∫∞

0
tx−1e−tdt. (1.1)

The logarithmic derivative of Γ(x) defined by

ψ(x) =
Γ′(x)
Γ(x)

(1.2)

is called the psi or digamma function and ψi(x) for i ∈ N are known as the polygamma or
multigamma functions. These functions play central roles in the theory of special functions
and have lots of extensive applications in many branches, for example, statistics, physics,
engineering, and other mathematical sciences.
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For extension of these functions to complex variable and for basic properties, see [1].
Over the past half century, many authors have established inequalities and monotonicity for
these functions (see [2–22]).

Recall that a real-valued function f : I → R is said to be completely monotonic on I if
f has derivatives of all orders on I and

(−1)nf (n)(x) ≥ 0 (1.3)

for all x ∈ I and n ≥ 0. Moreover, f is said to be strictly completely monotonic if inequality
(1.3) is strict.

Recall also that a positive real-valued function f : I → (0,∞) is said to be logarithmi-
cally completely monotonic on I if f has derivatives of all orders on I and its logarithm log f
satisfies

(−1)k[log f(x)](k) ≥ 0 (1.4)

for all x ∈ I and k ∈ N. Moreover, f is said to be strictly logarithmically completely monotonic
if inequality (1.4) is strict.

Recently, the completely monotonic or logarithmically completely monotonic func-
tions have been the subject of intensive research. There has been a lot of literature about
the (logarithmically) completely monotonic functions related to the gamma function, psi
function, and polygamma function, for example, [17, 18, 23–37] and the references therein.
In 1997, Merkle [38] proved that F(x) = Γ(2x)/Γ2(x) is strictly log-concave on (0,∞).
Later, Chen [39] showed that [F(x)]−1 = Γ2(x)/Γ(2x) is strictly logarithmically completely
monotonic on (0,∞). In [40], Li and Chen proved that Fβ(x) = Γβ(x)/Γ(βx) is strictly logarith-
mically completely monotonic on (0,∞) for β > 1, and [Fβ(x)]

−1 is strictly logarithmically
completely monotonic on (0,∞) for 0 < β < 1. Qi et al. in their article [41] showed that
fα(x) = Γ(x + α)/xαΓ(x) is strictly logarithmically complete monotonic on (0,∞) for α > 1,
and [fα(x)]

−1 is strictly logarithmically complete monotonic on (0,∞) for 0 < α < 1.
The aim of this paper is to discuss the logarithmically complete monotonicity proper-

ties of the functions

fα,β(x) =
Γβ(x + α)
xαΓ

(
βx

) (1.5)

and [fα,β(x)]
−1 on (0,∞) where α > 0 and β > 0. The function fα,β(x) is the deformation of

the functions in [40, 41] with respect to the parameters α and β. We show that the properties
of logarithmically complete monotonic are also true for suitable extensions of (α, β) near by
two lines α = 0 and β = 1, which generalizes the results of [40, 41].

For (x, y) ∈ (0,∞) × (0,∞), we define two binary functions as follows:

ϕ1
(
x, y

)
=
(
x2 + x − 1

)
y2 +

(
2x2 − 3x + 1

)
y − x,

ϕ2
(
x, y

)
= (x − 1)y2 +

(
2x2 − 5x + 2

)
y − 1.

(1.6)
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Figure 1: The blue curve is the graph of the equation ϕ1(x, y) = 0 with the vertical asymptotic line x =
(
√
5 − 1)/2 and the green curve is the graph of ϕ2(x, y) = 0 with the vertical asymptotic line x = 1.

For convenience, we need to define five subsets of (0,∞)× (0,∞) and refer to Figure 2,

Ω1 =
{(
α, β

)
:

1√
α
≤ β ≤ 1, α /= 1

}
,

Ω2 =
{(
α, β

)
: 0 < β ≤ 1, ϕ1

(
α, β

) ≥ 0, ϕ2
(
α, β

) ≥ 0
}
,

Ω3 =
{(
α, β

)
: 0 < α ≤ 1

2
, 0 < β ≤ 1

}
,

Ω4 =
{(
α, β

)
: 1 ≤ β ≤ 1√

α
≤
√
2, α /= 1

}
,

Ω5 =
{(
α, β

)
:
1
2
≤ α < 1, β ≥ 1

1 − α
}
.

(1.7)

We summarize the result as follows.

Theorem 1.1. Let α > 0, β > 0, and fα,β(x) be defined as (1.5); then the following statements are
true:

(1) fα,β(x) is strictly logarithmically completely monotonic on (0,∞) if (α, β) ∈ Ω1 ∪Ω2;

(2) [fα,β(x)]
−1 is strictly logarithmically completely monotonic on (0,∞) if (α, β) ∈ Ω3∪Ω4∪

Ω5.

Note that fα,β(x) is the constant 1 for α = β = 1 since Γ(x + 1) = xΓ(x).

2. Lemmas

In order to prove our Theorem 1.1, we need two lemmas which we present in this section.
We consider ϕ1(x, y) and ϕ2(x, y) defined as (1.6) and discuss the properties for these

functions, see Figure 1 more clearly.
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Figure 2: The shading areas are respectively denoted by the subsets Ωi for i = 1, 2, . . . , 5. The function
fα,β(x) is strictly logarithmically completely monotonic on (0,∞) if (α, β) ∈ Ω1 ∪ Ω2, and [fα,β(x)]

−1 is
strictly logarithmically completely monotonic on (0,∞) if (α, β) ∈ Ω3 ∪Ω4 ∪Ω5.

2.1. The Properties of Function ϕ1(x, y)

The function ϕ1(x, y) can be interpreted as a quadric equation with respect to y. Let

ϕ1
(
x, y

)
= a1(x)y2 + b1(x)y + c1(x), (2.1)

where a1(x) = x2 + x − 1, b1(x) = 2x2 − 3x + 1, c1(x) = −x, and its discriminant function

Δ1(x) =
√
b21(x) − 4a1(x)c1(x) = 4x4 − 8x3 + 17x2 − 10x + 1. (2.2)

If x = (
√
5 − 1)/2, then it is easy to see that

ϕ1

(√
5 − 1
2

, y

)
=

11 − 5
√
5

2
y −

√
5 − 1
2

< 0 (2.3)

for y > 0.
Let x1, x2 be two real roots of Δ1(x) with x1 < x2; then we claim that 0 < x1 < x2 <

(
√
5 − 1)/2. Indeed,

Δ1(0) = 1, lim
x→∞

Δ1(x) = +∞, (2.4)

Δ′
1(0) = −10, (2.5)

Δ′
1(x) = 16x3 − 24x2 + 34x − 10, (2.6)

Δ′′
1(x) = 48x2 − 48x + 34 > 0. (2.7)
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From (2.5)–(2.7), we know that Δ′
1(x) has only one root ξ, which is

ξ =
1
2
+

(
−27 +√

8715
)1/3

262/3
− 11

2
[
6
(
−27 +√

8715
)]1/3 ≈ 0.365 . . . . (2.8)

Moreover, Δ′
1(x) < 0 for x ∈ (0, ξ) and Δ′

1(x) > 0 for x ∈ (ξ,∞), which implies that Δ1(x) is
strictly decreasing on (0, ξ) and strictly increasing on (ξ,∞). An easy computation shows that
ξ < (

√
5 − 1)/2, Δ1(ξ) < 0, and Δ1((

√
5 − 1)/2) > 0. Combining with (2.4), there exist two real

roots x1, x2 such that 0 < x1 < x2 < (
√
5 − 1)/2. Furthermore, we conclude that Δ1(x) > 0 for

0 < x < x1 or x > x2 and Δ1(x) < 0 for x1 < x < x2.
If x1 < x < x2, then ϕ1(x, y) < 0 since Δ1(x) < 0 and x2 + x − 1 < 0.
If x2 < x < (

√
5 − 1)/2, then a1(x) < 0, b1(x) < 0, c1(x) < 0, which implies ϕ1(x, y) < 0.

If 0 < x ≤ x1 or x > (
√
5 − 1)/2, then Δ1(x) ≥ 0. We can solve two roots of the equation

ϕ1(x, y) = 0, which are

ỹ1(x) =
−2x2 + 3x − 1 −

√
4x4 − 8x3 + 17x2 − 10x + 1

2(x2 + x − 1)
,

y1(x) =
−2x2 + 3x − 1 +

√
4x4 − 8x3 + 17x2 − 10x + 1

2(x2 + x − 1)
.

(2.9)

For 0 < x ≤ x1, we know that ϕ1(x, y) > 0 for y1(x) < y < ỹ1(x) and ϕ1(x, y) < 0 for
0 < y < y1(x) or y > ỹ1(x). For x > (

√
5 − 1)/2, we know that ϕ1(x, y) < 0 for 0 < y < y1(x)

and ϕ1(x, y) > 0 for y > y1(x). Moreover, we see that y1(x) → +∞ as x → (
√
5 − 1)/2 and

y1(x) → 0 as x → +∞.

2.2. The Properties of Function ϕ2(x, y)

The function ϕ2(x, y) can also be interpreted as a quadric equation with respect to y. Let

ϕ2
(
x, y

)
= a2(x)y2 + b2(x)y + c2(x), (2.10)

where a2(x) = x − 1, b2(x) = 2x2 − 5x + 2, c2(x) = −1, and its discriminant function

Δ2(x) =
√
b22(x) − 4a2(x)c2(x) = 4x4 − 20x3 + 33x2 − 16x. (2.11)

If x = 1, then we have ϕ2(1, y) = −y − 1 < 0 for y > 0.
If x < 1, then a simple calculation leads to Δ2(x) < 0 for 0 < x < (1/6)[10 −

1/(53 − 6
√
78)

1/3 − (53 − 6
√
78)

1/3
] ≈ 0.8427 . . .. This implies that ϕ2(x, y) < 0. Notice that

a2(x) < 0, b2(x) < 0, and c2(x) = −1; for 1/2 < x < 1, then we have ϕ2(x, y) < 0.
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If x > 1, then we can solve the roots of the equation ϕ2(x, y) = 0 but only one of the
roots is positive, that is,

y2(x) =
−2x2 + 5x − 2 +

√
4x4 − 20x3 + 33x2 − 16x
2(x − 1)

. (2.12)

Therefore, we conclude that ϕ2(x, y) < 0 for 0 < y < y2(x) and ϕ2(x, y) > 0 for y > y2(x).
Moreover, it is easy to see that y2(x) → +∞ as x → 1 and y2(x) → 0 as x → +∞.

Finally, we calculate an intersection point of ϕ1(x, y) = 0 and ϕ2(x, y) = 0, that is, the
point

(
2
√
3

3 − √
3
, 2 −

√
3

)
. (2.13)

Lemma 2.1. The psi or digamma function, the logarithmic derivative of the gamma function, and the
polygamma functions can be expressed as

ψ(x) =
Γ′(x)
Γ(x)

= −γ +
∫∞

0

e−t − e−xt
1 − e−t dt, (2.14)

ψ(n)(x) = (−1)n+1
∫∞

0

tn

1 − e−t e
−xtdt (2.15)

for x > 0 and n ∈ N := {1, 2, . . .}, where γ = 0.5772 . . . is Euler’s constant.

Lemma 2.2. Let (α, β) ∈ (0,∞) × (0,∞) and

r(t) =
(
1 − e−t)(βe−αβt − αe−βt) + e−βt − αe−t + α − 1. (2.16)

Then the following statements are true:

(1) if (α, β) ∈ Ω1 ∪Ω2, then r(t) > 0 for t ∈ (0,∞);

(2) if (α, β) ∈ Ω3 ∪Ω4 ∪Ω5, then r(t) < 0 for t ∈ (0,∞);

(3) if 0 < α < 1/2, β > 1 or 1/2 < α < 1, 0 < β < 1, then there exist δ2 � δ1 > 0 such that
r(t) > 0 for t ∈ (0, δ1) and r(t) < 0 for t ∈ (δ2,∞);

(4) if α > 1, β > 1, then there exist δ4 � δ3 > 0 such that r(t) < 0 for t ∈ (0, δ3) and r(t) > 0
for t ∈ (δ4,∞).
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Proof. Let r1(t) = etr ′(t), r2(t) = (1/β)e(αβ−1)tr ′1(t), r3(t) = etr ′2(t), and r4(t) = e(β−αβ)tr ′3(t). Then
simple calculations lead to

r(0) = 0,

r ′(t) =
(
β + αβ2

)
e−(αβ+1)t − (

α + αβ
)
e−(β+1)t − αβ2e−αβt

+
(
αβ − β)e−βt + αe−t,

(2.17)

r1(0) = r ′(0) = 0, (2.18)

r1(t) = β
(
1 + αβ

)
e−αβt − α(1 + β)e−βt − αβ2e−(αβ−1)t

+ β(α − 1)e−(β−1)t + α,
(2.19)

r ′1(t) = −αβ2(1 + αβ)e−αβt + αβ(1 + β)e−βt
+ αβ2

(
αβ − 1

)
e−(αβ−1)t − β(α − 1)

(
β − 1

)
e−(β−1)t,

(2.20)

r2(0) =
1
β
r ′1(0) =

(
β − 1

)
(1 − 2α),

r2(t) = −αβ(1 + αβ)e−t + α(1 + β)e(αβ−β−1)t
− (α − 1)

(
β − 1

)
e(α−1)βt + αβ

(
αβ − 1

)
,

(2.21)

r ′2(t) = αβ
(
1 + αβ

)
e−t + α

(
1 + β

)(
αβ − β − 1

)
e(αβ−β−1)t

− β(α − 1)2
(
β − 1

)
e(α−1)βt,

(2.22)

r3(0) = r ′2(0) = ϕ1
(
α, β

)
,

r3(t) = α
(
β + 1

)(
αβ − β − 1

)
e(α−1)βt

− β(α − 1)2
(
β − 1

)
e(αβ−β+1)t + αβ

(
1 + αβ

)
,

(2.23)

r ′3(t) = αβ(α − 1)
(
β + 1

)(
αβ − β − 1

)
e(α−1)βt

+ β(α − 1)2
(
β − 1

)(
β − αβ − 1

)
e(αβ−β+1)t,

(2.24)

r4(0) = r ′3(0) = β(α − 1)ϕ2
(
α, β

)
,

r4(t) = β(α − 1)2
(
β − 1

)(
β − αβ − 1

)
et

+ αβ(α − 1)
(
β + 1

)(
αβ − β − 1

)
,

(2.25)

r ′4(t) = β(α − 1)2
(
β − 1

)(
β − αβ − 1

)
et. (2.26)

(1) If (α, β) ∈ Ω1 ∪ Ω2, then we divide the proof into two cases. Note that Ω1 ∩ Ω2 =
{(α, β) : max{1/√α, y2(α)} ≤ β ≤ 1}, see Figure 2.
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Case 1. If (α, β) ∈ Ω1, then 1/
√
α ≤ β ≤ 1, α/= 1, and it follows from (2.21) that

r2(t) = −αβ(1 + αβ)e−t + e(α−1)βt[α(1 + β)e−t + (α − 1)
(
1 − β)]

+ αβ
(
αβ − 1

)

> α
(
1 − αβ2

)
e−t + (α − 1)

(
1 − β) + αβ(αβ − 1

)

≥ α
(
1 − αβ2

)
+ (α − 1)

(
1 − β) + αβ(αβ − 1

)

=
(
β − 1

)
(1 − 2α)

≥ 0.

(2.27)

Therefore, r(t) > 0 for t ∈ (0,∞) follows from (2.17), (2.18) together with (2.27).

Case 2. If (α, β) ∈ Ω2, then 0 < β ≤ 1, ϕ1(α, β) ≥ 0, and ϕ2(α, β) ≥ 0. It follows from ϕ2(α, β) ≥ 0
that α > 1 and then (2.20) and (2.22) together with (2.24) lead to

r2(0) ≥ 0, (2.28)

r3(0) = ϕ1
(
α, β

) ≥ 0, (2.29)

r4(0) = β(α − 1)ϕ2
(
α, β

) ≥ 0, (2.30)

r ′4(t) ≥ 0. (2.31)

This could not happen together for all qualities of (2.28)–(2.31) since the qualities of (2.29)
and (2.30) hold only for α = 2

√
3/(3 − √

3), β = 2 − √
3 while the qualities of (2.29) and (2.30)

hold only for β = 1.
Therefore, r(t) > 0 for t ∈ (0,∞) follows from (2.17) and (2.18) together with (2.28)–

(2.31).

(2) If (α, β) ∈ Ω3 ∪Ω4 ∪Ω5, then we divide the proof into three cases.

Case 1. If (α, β) ∈ Ω3, then 0 < α ≤ 1/2 and 0 < β ≤ 1 < 1/(1 − α). From (2.26), we clearly see
that

r ′4(t) ≥ 0. (2.32)

In terms of the properties of ϕ2(x, y), we know that ϕ2(α, β) < 0 for (α, β) lying on the
left-side of the green curve, see Figure 1. From (2.24), we see that

r4(0) = β(α − 1)ϕ2
(
α, β

)
> 0. (2.33)

Combining (2.32) with (2.33) we get that r3(t) is strictly increasing on (0,∞).
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If ϕ1(α, β) ≥ 0, then 0 < β < 1 and r3(t) > 0 follow from (2.22), which implies that r2(t)
is strictly increasing in (0,∞). Thus we can obtain

r2(t) < lim
t→∞

r2(t) = αβ
(
αβ − 1

)
< 0. (2.34)

If ϕ1(α, β) < 0, then it follows from limt→∞r3(t) = +∞ or αβ(1+αβ) > 0 that there exists
σ1 > 0 such that r3(t) < 0 for t ∈ (0, σ1) and r3(t) > 0 for t ∈ (σ1,∞). Hence, r2(t) is strictly
decreasing in (0, σ1) and strictly increasing in (σ1,∞). Then we can obtain

r2(t) < max
{
r2(0), lim

t→∞
r2(t)

}
≤ 0. (2.35)

Finally, we conclude that r(t) < 0 for t ∈ (0,∞) follows from (2.17), (2.18) together with
(2.34), (2.35).

Case 2. If (α, β) ∈ Ω4, then 1/2 ≤ α < 1 and 1 ≤ β ≤ 1/
√
α. It follows from (2.21) that

r2(t) = −αβ(1 + αβ)e−t + e(α−1)βt[α(1 + β)e−t + (1 − α)(β − 1
)]

+ αβ
(
αβ − 1

)

< α
(
1 − αβ2

)
e−t + (1 − α)(β − 1

)
+ αβ

(
αβ − 1

)

≤ α
(
1 − αβ2

)
+ (1 − α)(β − 1

)
+ αβ

(
αβ − 1

)

=
(
β − 1

)
(1 − 2α)

≤ 0.

(2.36)

Therefore, r(t) < 0 for t ∈ (0,∞) follows from (2.17), (2.18) together with (2.36).

Case 3. If (α, β) ∈ Ω5, then 1/2 ≤ α < 1 and β − αβ − 1 ≥ 0. From (2.26), we know that

r ′4(t) ≥ 0. (2.37)

In terms of the location of Ω3, we know that ϕ2(α, β) < 0. From (2.24), we see that

r4(0) = β(α − 1)ϕ2
(
α, β

)
> 0. (2.38)

It follows from (2.37) and (2.38) that r3(t) is strictly increasing on (0,∞).
If ϕ1(α, β) ≥ 0, then 1/2 < α < 1 and r3(t) > 0 follow that from (2.22), which implies

that r2(t) is strictly increasing on (0,∞). From (2.20) and (2.21), we see that

r2(0) =
(
β − 1

)
(1 − 2α) < 0, lim

t→+∞
r2(t) = αβ

(
αβ − 1

)
> 0. (2.39)
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Thus there exists σ2 > 0 such that r2(t) < 0 for t ∈ (0, σ2) and r2(t) > 0 for t ∈ (σ2,∞), which
implies that r1(t) is strictly decreasing on (0, σ2) and strictly increasing on (σ2,∞). It follows
from (2.18) and limt→∞r1(t) = α > 0 that σ3 > σ2 such that r1(t) < 0 for t ∈ (0, σ3) and r1(t) > 0
for t ∈ (σ3,∞), which implies that r(t) is strictly decreasing on (0, σ3) and strictly increasing
on (σ3,∞). Therefore, it follows from (2.17) and limt→∞r(t) = α − 1 < 0 that

r(t) < max
{
r(0), lim

t→∞
r(t)

}
= 0 (2.40)

for t ∈ (0,∞).
If ϕ1(α, β) < 0, then there exists σ4 > 0 such that r3(t) < 0 for t ∈ (0, σ4) and r3(t) > 0 for

t ∈ (σ4,∞) follows from limt→∞r3(t) = αβ(1 + αβ) > 0 or limt→∞r3(t) = β[(α − 1/2)2 + β(2α −
1) + 3/4] > 0. This leads to r2(t) being strictly decreasing in (0, σ4) and strictly increasing in
(σ4,∞). From (2.20), we clearly see that

r2(0) ≤ 0. (2.41)

For special case of αβ = 1, that is, α = 1/2 and β = 2, it follows from (2.41) and (2.21)
that

r2(t) < max
{
r2(0), lim

t→∞
r2(t)

}
= 0, (2.42)

which implies that r(t) < 0 for t ∈ (0,∞) follows from (2.17) and (2.18).
For αβ > 1, it follows from (2.38) and limt→∞r2(t) = αβ(αβ − 1) > 0 that there exists

σ5 > σ4 > 0 such that r2(t) < 0 for t ∈ (0, σ5) and r2(t) > 0 for t ∈ (σ5,∞). Making use of the
same arguments as the case of ϕ1(α, β) ≥ 0, then r(t) < 0 for t ∈ (0,∞) follows from (2.17).

(3) If 0 < α < 1/2, β > 1 or 1/2 < α < 1, 0 < β < 1, then we have

lim
t→∞

r(t) = α − 1 < 0. (2.43)

From (2.20), we know that

r2(0) =
(
β − 1

)
(1 − 2α) > 0. (2.44)

It follows from (2.44) that there exists δ1 > 0 such that r2(t) > 0 for t ∈ (0, δ1), which
implies that r1(t) is strictly increasing on (0, δ1). Therefore, r(t) > 0 for t ∈ (0, δ1) follows from
(2.17) and (2.18).

From (2.43), we know that there exists δ2 � δ1 > 0 such that r(t) < 0 for t ∈ (δ2,∞).
(4) If α > 1, β > 1, then we have

lim
t→∞

r(t) = α − 1 > 0. (2.45)
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From (2.15), we know that

r2(0) =
(
β − 1

)
(1 − 2α) < 0. (2.46)

Making use of (2.45) and (2.46) together with the same arguments as in Lemma 2.2(3),
we know that there exist δ4 � δ3 > 0 such that r2(t) < 0 for t ∈ (0, δ3) and r(t) > 0 for
t ∈ (δ4,∞).

3. Proof of Theorem 1.1

Proof of Theorem 1.1. From (2.15), we have

(−1)n[log fα,β(x)](n) = (−1)n
[
(−1)n α(n − 1)!

xn
+ βψ(n−1)(x + α) − βnψ(n−1)(βx)

]

= α
∫∞

0
sn−1e−xsds + β

∫∞

0

sn−1

1 − e−s e
−(x+α)sds − βn

∫∞

0

tn−1

1 − e−t e
−βxtdt

= αβn
∫∞

0
tn−1e−βxtdt + βn+1

∫∞

0

tn−1

1 − e−βt e
−β(x+α)tdt − βn

∫∞

0

tn−1

1 − e−t e
−βxtdt

= βn
∫∞

0

tn−1e−βxt

(1 − e−t)(1 − e−βt)r(t)dt,
(3.1)

where

r(t) =
(
1 − e−t)(βe−αβt − αe−βt) + e−βt − αe−t + α − 1. (3.2)

(1) If (α, β) ∈ Ω1∪Ω2, then from (3.1) and (3.2) together with Lemma 2.2(1)we clearly
see that

(−1)n[log fα,β(x)](n) > 0. (3.3)

Therefore, fα,β(x) is strictly logarithmically completely monotonic on (0,∞) following from
(3.3).

(2) If (α, β) ∈ Ω3 ∪Ω4 ∪Ω5, then from (3.1)we can get

(−1)n
{
log

[
fα,β(x)

]−1}(n)
= −βn

∫∞

0

tn−1e−βxt

(1 − e−t)(1 − e−βt)r(t)dt, (3.4)

where r(t) is defined as (3.2).
Therefore, [fα,β(x)]

−1 is strictly logarithmically completely monotonic on (0,∞)
following from (3.4) and Lemma 2.2 (2).
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Remark 3.1. Note that neither fα,β(x) nor [fα,β(x)]
−1 is strictly logarithmically completely

monotonic on (0,∞) for (α, β) ∈ {(α, β) : 0 < α < 1/2, β > 1} ∪ {(α, β) : 1/2 < α <
1, 0 < β < 1} ∪ {(α, β) : α > 1, β > 1} following from Lemma 2.2 (3) and (4), it is known
that the logarithmically completely monotonicity properties of fα,β(x) and [fα,β(x)]

−1 are not
completely continuously depended on α and β.

Remark 3.2. Compared with Theorem 9 of [40], we can also extend Ω3 onto one component
of its boundaries, which is

Ω3 → Ω̃3 =
{(
α, β

)
: 0 ≤ α ≤ 1

2
, 0 < β ≤ 1

}
\ {α = 0, β = 1

}
. (3.5)

Then [fα,β(x)]
−1 is strictly logarithmically completely monotonic on (0,∞) for (α, β) ∈ Ω̃3.
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