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Using an integral averaging method and generalized Riccati technique, by introducing a parameter

P > 1, we derive new oscillation criteria for second-order partial differential equations with damp-
ing. The results are of high degree of generality and sharper than most known ones.

1. Introduction

Consider the second-order partial delay differential equation

0 0 ou(x,t) >
— t)— b t =a(t)A b A b= t)) — b b
ai (O 55u000) +pO D = aduCe b + Sarthsulx,t - pr(h) =gt f(ue )

- Zq]-(x, bfi(u(x,t-o0j)), (x,t)eQxR,=G,
i=1

(1.1)

where A is the Laplacian in RN, R, = [0, c0) and Q is a bounded domain in RN with a piece-
wise smooth boundary 0Q.
Throughout this paper, we assume that

(Hy) r(t) € C'(Ry, (0,0)), p(t) € C(R., R);

(H2) q(x,t),q(x,t) € C(E, R,), q(t) = min zq(x,t), q;j(t) = min _zq;(x,t), j € I, = {1,
2,...,m};
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(H3) a(t), ax(t), px(t) € C(Ry, Ry), lim; . o (t — px(t)) = oo, and o; are nonnegative cons-
tants, j € I,,, k € Iy = {1,2,...,s};
(Ha) f(u) € CY(R,R), fi(u) € C(R, R) are convex in R, with uf;(u) >0, uf(u) >0, and
f'(u)>u>0,(us0).
We say that a continuous function H (¢, s) belongs to the function class w, denoted by
Hew,it He C(D,R,),where D = {(t,5) : —o0 < s <t < +o0}, satisfy

H(t,t)=0, H(t,s)>0, —-oo<s<t<+oo. (1.2)

Furthermore, the continuous partial derivative 0H/0S exists on D, and there is h €
Lioc(D, R), such that

%_f = —h(t,s)\/H(t,s). (1.3)

Various results on the oscillation for the partial functional differential equation have
been obtained recently. We refer the reader to [1-3] for parabolic equations and to [4-11] for
hyperbolic equations.

Recently, Li and Cui [12] studied the equation of the form

1 s
% I:p(t)% <u(x, £+ > Ni(t)u(x,t - Ti)>] =a(t)Au(x, t)+ Y ap(t) Au(x,t — pi(t)) —q(t)u(x, t)

i=1 k=1
- qu(x, Hu(x,t-o0j), (x,t)eQxR, =G
j=1
(1.4)
with Robin boundary condition
%’;’” +g(x, u(x,t) =0, (x,t)€dQxR,, (1.5)

where y is the unit exterior vector to 0Q and g(x, t) is a nonnegative continuous function on
0Q x R, and obtained the following result.
Theorem A (see [12, Theorem 2.2]). Suppose that H € w, let

(C1) 0 < infgsy {liminf;, o (H(t,s)/H(t, ty))} < oo, suppose that there exists some jo € Ip,
and there exist two functions ¢ € C'[ty, o), A € C[to, o0) satisfying,

(C2) limsup, _,  (1/H(t,to)) [; p(s — 0},)p(s)H(t, s)ds < oo,
(C3) [, (A%(s)/p(s — 0j,)d(s))ds = oo, and for every ty > to,
(Cy) limsup, _, (1/H(t, 1)) [; [H(t,8)gs(s) — (1/4)p(s)p(s — 0}, K2 (¢, 5)]ds > A(t),

where ¢(s) = exp{-2 fs $(¢)dé}, Ai(s) = max{A(s),0},and ¢(s) = ¢(s){a;j,q;,(s) [1—2521)”-(5—
oj,)1+p(s - 0j0)¢2(s) — [p(s = 0j,)¢(s)]'}. Then every solution u(x,t) of the problem (1.4), (1.5) is
oscillatory in G.
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In 2008, Rogovchenko and Tuncay [13] established new oscillation criteria for second-
order nonlinear differential equations with damping term

(r()x' (1) +p(O)X'(£) + q(t) f (x(£)) = 0, (1.6)

without an assumption that has been required in related results reported in the literature over
the last two decades. Motivated by the ideas in [12, 13], by introducing a Parameter > 1,
we will further improve Theorems A and derive new interval criteria for oscillation of (1.1).
We suggest two different approaches which allow one to remove condition (C;) in Theorem
A. A modified integral averaging technique enables one to simplify essentially the proofs of
oscillation criteria.

2. Main Results

Theorem 2.1. Suppose that there exists a function y € C'[ty, o) such that for some p > 1 and for
some H € w,

hm 0 SUp H(t ) f (H(t, s)p(s) - %v(s)r(s)}ﬁ(t, 5)>ds =o0, t2>0, (2.1)

where

o(b) =exp<—2 I t< y(s) - ; ((S))>ds> 2.2)

w(t) = v®)]a®) + prOyA) - poy® - (rOy®)'], (2.3)

then every solution u(x, t) of the problem (1.1), (1.5) is oscillatory in G.

Proof. Suppose to the contrary that there is a nonoscillatory solution u(x,t) of the problem
(1.1), (1.5) which has no zero on  x [ty, o0) for some ¢y > 0. Without loss of generality, we
assume that u(x, t) > 0, u(x,t—pi(t)) > 0and u(x,t-0;) > 0in Qx [t1, 00),t1 > to,k € L5, j € L.
Integrating (1.1) with respect to x over the domain Q, we have

%(r(t)% ’[Q u(x, t)dx) +p(t) f u(x, t)dx
- a(t)f Au(x,t)dx + iak(t)f Au(x, t - pr(t))dx 0
Q k=1 Q

—f q(x,t)f(u(x,t))dx—ZI gj(x,t) fj(u(x,t —0j))dx, t>t.
Q j=1 Q
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From Green’s formula and the boundary condition (1.5), we have

3 ou(x,t) ,
fQ Au(x,t)dx = LQ 6—de = fag g(x, Hu(x,t)ds <0,
~ ou(x, t - pi(t))
J‘Q Au(x,t - p(t))dx = J‘ag B ~a— ds (2.5)

= —j glx, t—pi®))u(x,t—pi(t))ds <0, t>t, kel
0Q

where ds denotes the surface element on 0. Moreover, from (H;), (Hs) and Jensen’s inequal-
ity, we have

1
fgqm 0 (u(x, )dx > 4(t) fgf(u(x, B)dox > IQIq(t)f<@ fgu(x, t)dx),
[ atonfuest-ode> a0 futxt-op)dx 26

> |1Qlq;(t) fi <|1§| Lz u(x,t - oj)>dx,

where [Q| = [, dx.
Set

Uuft) = LJ‘ u(x, t)ydx, t>t. (2.7)
12 J o
In view of (2.5)—(2.7), (2.4) yields that

(r(HU' () + pOU' (1) +q(1) fFUB) + Dog;(0) fj(U(t=0;)) <O, t>t. (2.8)

i
Note that (Hy), (2.8) yields that
(rOU' (1) +pU'(H) +q(t) fU(H) <0, t>H. (29)
Put
w(t) = v(t)r(t) [ fi;((tt))) + y(t)], >t (2.10)
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where v(t) is given by (2.2), then

[(r(Hu' 1) () f UD) U (1)

p()] |
Tfawy T pae) (r(y(®) ]

w'(t) = —2‘uy(t) +—= 0] w(t) +o(t)

[(r(hyu'(t))’ B (U (1)) ,
210+ B+ o0 | e - iy +(r<t>y(t>>]

IN

(p(HU' (1)

) POU® e\ ,
| fu()) +q(t) + pr(t) <f(ll(t))> (r(hy(h)) ]

—Zﬂy(t)+ 5w -0

IN

p@)]

[ ~ w(t)
- |2t + B o -0 o) (5553

o(b)r(t)

v(®) + 4t

|20 -y - t))]

= [ y(t) + %]w(t)

- olt)[ B w00~ oy +0)

(t (By(t)
vz?;)rz)(t) _zﬂwv(i/) +ur(H)y>(t (r(t)y(t))]

+ur(t)

__ p® PO
=2uy(Hw(t) + 0 w(t) - 0

2
2y -

w(t) - () [-p Oy (1) + () + pr)yE) - (rOy®) ]

w(t)
o(t)r(t)

= —o() [-pOy®) +9(®) + prey’ () - (rBy ) ] - 1

B w?(t)
=—¢(t) TGk

(2.11)

that is,

w?(t)
o(t)r(t)’

y(t) < —w'(t) — (2.12)
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where ¢ (t) is defined by (2.3). Multiplying (2.12) by H(t, s) and integrating from T to t, we
have, forsome f>1and forallt > T > ty,

U
v(s)r(s)

w?(s)ds

t t t
f H(t,s)gp(s)ds < —I H(t,s)w'(s)ds - f H(t,s)
T T T

= H(t, T)w(T) - J; <h(t, s)\/H(t,s)w(s) + H(t,s) :‘(Zsu)zr((ss)) >ds

2
) o[ [uHEs) [pos)r(s)
= H(t, T)ZU(T) - IT [ MW(S) + 4/4 h(t, S)] ds

P 2 By >
+4# Lv(s)r(s)h (t,s)ds L ﬂv(s)r(s)H(t's)w (s)ds.

(2.13)

Writing the latter inequality in the form

J‘; [H(t, s)y(s) - ﬁv(s)r(s)hz(t, s)] ds

2
: pH(t, s) Po(s)r(s)
SH(t,T)w(T)—L [va(s)r(s)w““\/ i h(t,s)] ds (2.14)

PP
- L o) (s) H(t, s)w*(s)ds.

Using the properties of H(t, s), we have
t
[NECETCE 5v(s>r(s>h2<t, $)|ds < Het ool < H ()], t21, 215)
131
and forall t > t; > ¢y,
t ﬂ t
j [H(t, S)p(s) — Ev(s)r(s)hz(t, s)] ds < H(t, ty) [ lg(s)|ds + |w(t1)|] (2.16)
to to

By (2.16),

li L t H(t - —0(s)r h2 t ds < : ds + t
tlm sup H(t, to) ’[t0< ( ,s)qr(s) ‘ (S) (s) ( ,s)) S . |qr(s)| S |w( 1)| < 00,
(2.17)

which contradicts (2.1). This proves Theorem 2.1. O
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Consider a Kamenev-type function H(t, s) defined by H(t,s) = (t - s)"!, (t,s) € D,
where n > 2 is an integer. Obviously, H belongs to the class w, and h(t,s) = (n — 1)(t -
s)("_S)/ 2 (t,s) € D. Then, we can get the following results.

Corollary 2.2. Suppose that there exists a function y(t) € C'([ty, o); R) such that for some integer
n>2and some p > 1,

t —1)2
lim sup tni_l I . (t—s)"3 [(t - 5)%g(s) - '6(n4—‘u)v(s)r(s)] ds = oo, (2.18)

where v(t) and g (t) are as defined in Theorem 2.1. Then every solution u(x,t) of the problem (1.1),
(1.5) is oscillatory in G.

Theorem 2.3. Suppose that

. .. H(,s)
0< gtg (tlirglo inf e, t0)> < 0. (2.19)

Assume that there exist functions f € Ct([to, 0); R) and ¢ € C([to, 0); R) such that, forall t > T >
to and for some ff > 1,

p

lim sup i

1 t
t— o0 H(t,T) IT

<H(t, s)g(s) — v(s)r(s)hz(t,s)>ds > ¢(T), (2.20)

where v(t), g (t) are as defined in Theorem 2.1 and suppose further that

. A C I
tlirg sup . m = oo, (2.21)

where ¢.(t) = max(¢p(t),0). Then every solution u(x,t) of the problem (1.1), (1.5) is oscil-
latory in G.

Proof. Suppose to the contrary that there is a nonoscillatory solution u(x,t) of the problem
(1.1), (1.5) which has no zero on Q x [t1, 00) for some t; > tp, without loss of generality, we
assume that u(x,t) > 0,u(x,t — pr(t)) > 0and u(x,t —o0j) > 0in Q x [t;,0), t > t; > to, k €
I, jel,.
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As in the proof of Theorem 2.1, (2.14) holds for all t > T > t;, we have

_r B .
H(t,T) L [H (t,5)g(s) 4#U(S)r(s)h (t, s)] ds

2
1 t uH(t, s) Po(s)r(s)
<@~ [Vﬂv(s)r(s)w(s) N h(t’s)] 4

1 ([ B-Du
H(t,T) )1 po(s)r(s)
1 (" (f-Dp

H(t,T) )1 po(s)r(s)

H(t, s)w*(s)ds

<w(T) - H(t,s)w?(s)ds.

Therefore, fort > T > Ty,

11m N SUp H(t ) J‘ [H(t s)y(s) - £v(s)r(s)hZ(t‘ s)|ds

C(B-Dp
H(,T) Jr po(s)r(s)

<w(T) - tlim inf H(t,s)w?(s)ds.

It follows from (2.20) that

" (B-Dp

2
HT) ), pv(s)r(s)H(t,s)w (s)ds

w(T) > §(T) + tlirg inf

forall T > t; and for any > 1. Then, forall T > t;,
w(T) 2 ¢(T),

hm inf

1 " H(t,s) w?
H(t, t) f v(s)r(s) (e)ds < (ﬁ )

Now, we claim that
oo 2(5)
————ds < .
L v(s)r(s)

Suppose the contrary, that is,

[ wis) o
R TOEC R

(w(ty) — (t1))-

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)
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By (2.19), there is a positive constant M, satisfying

inf( lim inf H(t,s)

inf (Hm H(E, t0)> > M; > 0. (2.29)

Let M be any arbitrary positive number, then from (2.28) we get that there exists a T; > t;
such that, for all t > T,

bow(s) M
———ds>—. 2.30
J, =t s> (230
Using integration by parts, for all t > T;, we get
1 t w?(s) 1 t ( OH (t s)) J‘S w? (1)
—— | H@,s ds = - 4 ——_dr )ds
H(t,t1) )y, ( )v(s)r(s) H(t, t) )y, 0s 1, 0(T)1(T)
t s 2
> ), () <f e dT> as
I " (2.31)
t
Zﬂ 1 J‘ (_6H(t,s)>dS
My H(t,t1) ), 0s
_ M H(t,T)
B Ml H(tl tl) ’
By (2.29), there exists a T, > T such that, for all t > T>,
H(t/ Tl)
> .
D) 2 M. (2.32)
It follows from (2.31) that for all t > T,
1 ! w?(s)
——— | H(s ds > M. 2.33
o P ero 239
Since M is an arbitrary positive constant,
. ! w?(s)
tILnolo inf m . H(t, S)mds =00, (234)
which contradicts (2.26). Consequently, (2.27) holds. And from (2.25), we obtain
= $i(s) J’°° w?(s)
ds < ds < oo, 2.35
w 2@ =], 2@ (239

which contradicts (2.21). This completes the proof of Theorem 2.3. O
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Choosing H as in Corollary 2.2, by Theorem 2.3, we can obtain the following corollary.

Corollary 2.4. Let v(t) and ¢(t) be as in Theorem 2.1, assume further that there exist functions
fe C'([to, 0); R) and ¢ € C([to, o0); R) such that, for all T > ty, for some integer n > 2, and for
some > 1,

p(n-1)°
4p

hm sup J (t-s)" 3I:(t s)? @(s) - v(s)r(s)]ds > ¢(T) (2.36)

and (2.21) hold. Then every solution u(x, t) of the problem (1.1), (1.5) is oscillatory in G.
Theorem 2.5. Suppose that there exists a function f € C'([ty, 00); R) such that for some § > 1 and

for some H € w,

i
2% P H(, o)

f; [H(t, s) <¢(s) - %> ‘uﬂv(s)r(s)hz(t s)]ds = oo, (2.37)

where

o(t) =exp <—2/¢ Jt y(s)ds> ,
(2.38)

F(t) =30 (q(t) + pr (Y1) - pOY ) - (rBy®)").

Then every solution u(x, t) of the problem (1.1), (1.5) is oscillatory in G.

Proof. As in Theorem 2.1, without loss of generality, we assume that a nonoscillatory solution
u(x,t) of the problem (1.1), (1.5) satisfies u(x,t) > 0,u(x,t — px(t)) > 0 and u(x,t - o;) > 0 in
Q x [t,00), 11 > ty, k € I, j € Iy,. Define a generalized Riccati transformation

w(b) =5(t)r(t)[ L)

FU®) + y(t)] , t>t, (2.39)

where o(t) is given by (2.38). Then

. (8
=0 r(t) y(t)] ‘”(”[at) ®

)

(2.40)

@ (1) s—Zuy<t>w<t>+ﬁ<t>{ a(t) + (rHy(©) -p(t) [

pt)__

=0l W), t>h.

= —¢(t) - —<w(t) -

1
Ko

Using an elementary inequality

2

a b
— < —= —_ .
ax? + bx 2x +2a (2.41)
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for all a > 0 and for all b, x € R, we conclude from (2.40) that

pP(Ho() _

>
2 S (), t>Hh. (2.42)

¢(t) - <-w'(t) - 2

ZU(t)r(t)

Multiplying (2.42) by H (¢, s) and integrating from T < t, we obtain, for some f > 1 and for all
t>T >t

: — p*(s)o(s) 7 (s)
L H(t,s) <tp(s) - 20r(5) >d <H(,T)w(T) J‘ h(t,s)\/H(t, s)w(s)ds— ZU(s)r(s)
<H(t, T)w(T) + ‘u_ﬂ v(s )r(s)h2(t, s)ds

L (B-1)H(, S)—z
1) T 2B(s)r(s)

P‘ H(t,s) _
< po(s)r(s) w(s) +1/po(s)r(s)h(t, s)>

w(s)ds

2

(2.43)
Therefore, for all t > T > t;, we have
[ [H(t,sms) 0,97 - Wy risyie s)]
<H(,T)w(T) - L %—2( )ds (2.44)
S QR e
Following the same lines as in the proof of Theorem 2.1, we have
Jim sup f <H(t F(s) - H(t, )" (S)Z’S()s) M)y, s) ) ds

(2.45)

5]
<| |g(s)|ds+|w(t)] <
to

which contradicts the assumption (2.19).
This completes the proof. O
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Theorem 2.6. Let (2.19) holds. Assume that there exist functions f € Cl([ty,0);R) and ¢ €
C([to, o), R) such that, for all t > ty, any T > to, and for some p > 1,

t 2 -
lim sup ﬁ L [H(t, s) <¢(S) - %> ‘uﬂv(s r(s)h*(t,s) ]ds >¢(T)  (2.46)

t— o0

and (2.21) holds, where g (t), v(t) are defined as in Theorem 2.6 and ¢, (t) = max(¢(t),0), then every
solution u(x,t) of the problem (1.1), (1.5) is oscillatory in G.

Theorem 2.7. Let all assumptions of Theorem 2.6 be satisfied except that condition (2.46) be replaced
by

hm inf ——— H(t T J [ (t,s) <¢(s) - %) - @T_J(S)T(S)hz(t s)] ds>¢(T). (247)

Then every solution u(x,t) of the problem (1.1), (1.5) is oscillatory in G.

Remark 2.8. By introducing the parameter  in Theorem 2.3, we derive new oscillation
criteria of the problem (1.1), (1.5) which are simpler than that in Theorem A; furthermore,
modifications of the proofs through the refinement of the standard integral averaging method
allowed us to shorten significantly the proofs of Theorem 2.3. We can also derive a number
of oscillation criteria with the appropriate choice of the function H and p, here, we omit the
details.

3. Examples
Now, we consider these following examples.

Example 3.1. Consider the partial differential equation

of10 1 ou(x,t)
5 t6t< (x,t) + u(x, Jr))]+2costT

= Au(x,t) + t%Au(x,t - gyr) (3.1)
_<tg +tcos t+smt>f(u(x £)) t2f1(u(x t-a)), (x,t)€(0,a)x(0,00),

with the boundary condition

u(0,t) =uy(or,t) =0, t>0, (3.2)

where f(u) =u® +u, fi(u) =ue* +u.

Here, N=1,1=1,s=1, m=1, u=1,r(t) =1/t,p(t) =2cost, q(x,t) = q(t) = 2/ +
tcos?t + sint), qu(x,8) = 1/8, f(u) = f;(u) = u, a(h) =1, ai(t) = 1/, pi(b) = (3/2)7, 01 =
g, T1 =
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Let
1
y(t) = n +tcost, (3.3)
then
o(t) =1, wt) =t (3.4)
Letn =3,forany f>1,
lim sup — ft [(t —s)sl - pszl ds = lim sup — ft [(t —s)%s - ﬂs]ds - (3.5)
o0 p tz 1 s 5o p tz 1 . .

Therefore, Corollary 2.2 holds, then every solution u(x, t) of the problem (3.1), (3.2) oscillates
in (0,7r) x (0, 0).

Example 3.2. Consider the partial differential equation

0 1 . ou(x,t) 3 1 . ou(x,t)
(1 + 2)}3>(2+smt) o ] + ; (1 + 2t3>(2+smt‘)

ot

ot

=3Au(x,t) + (2 - cos t)Au(x, t- ;yr> -3 <<1 — 3+ 212 - 6t> sint + 12t>f(u(x, t))

— (2t +sint) fi(u(x, t — o)) —2fz<u<x,t - %)), (x,t) € (0,0r) x (0, 0)
(3.6)

with the boundary condition (3.2), where f(u) = ©° +u, fi(u) = usin’u, f(u) = u’cos’u.

Here N=1,s=1, m=2, u=1,r(t) = (1+1/28)(2+sint), p(t) = 3/t)(1+1/2t>)(2+
sint), g(t) = t2[(1 - £2 + 2t — 6t) sint + 12t], a(t) = 3, a1(t) = 2 — cost, qi(x,t) = 2 + sint,
G(x,t) =2,p1(t) = (3/2)xr, 00 =, 02 =T/ 2.

Let y(t) =0, then v(t) = t> and ¢ () = v(t)q(t) = (1 - 3 + 2t> — 6t) sin t + 12t.

Choose f = 2, n = 3, a straightforward computation yields

mis;lpt% I; [(t - s)2<<l — 5% +25% - 6s> sins + 123> - <253 + 1> (2 +sin s)]ds

(3.7)
=16 -T%cosT + T>(2cosT —6+3sinT) —4T sinT —3cos T = ¢(T).
Let ¢.(t) = max(¢(t),0). It is not difficult to see that
t 2 t 2
. ¢+(S) . ¢+(5)
1 ds>1 ———— " ds = co. 3.8
ol VAR R TP (77 R

By Corollary 2.4, we obtain that every solution of problem (3.6), (3.2) oscillates in (0, ) x
(0, 00).
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Note that in this example,

t
lim suptl2 4<s3 + % + (2 +sin s)>ds = oo, (3.9)

t— oo 1

so the condition (C;) would not have been satisfied with the same choices of v(f).
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