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New convergence properties of the proximal augmented Lagrangian method is established for
continuous nonconvex optimization problem with both equality and inequality constrains. In
particular, the multiplier sequences are not required to be bounded. Different convergence results
are discussed dependent on whether the iterative sequence {xk} generated by algorithm is
convergent or divergent. Furthermore, under certain convexity assumption, we show that every
accumulation point of {xk} is either a degenerate point or a KKT point of the primal problem.
Numerical experiments are presented finally.

1. Introduction

In this paper, we consider the following nonlinear programming problem:

min f(x)

s.t. gi(x) ≤ 0, i = 1, . . . , m;

hj(x) = 0, j = 1, . . . , l;

x ∈ Ω,

(P)

where f, gi : R
n → R for each i = 1, . . . , m and hj : R

n → R for each j = 1, . . . , l are all
continuously differentiable functions, Ω is a nonempty and closed set in R

n. Denoted by X
the feasible region and by X∗ the solution set.

Augmented Lagrangian algorithms are very popular tools for solving nonlinear
programming problems. At each outer iteration of these methods, a simpler optimization
problem is solved, for which efficient algorithms can be used, especially when the problems
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are large. The most famous augmented Lagrangian algorithm based on the Powell-Hestenes-
Rockafellar [1–3] formula has been successfully used for defining practical nonlinear
programming algorithms [4–7]. At each iteration, a minimization problem with simple
constraints is approximately solved whereas Lagrange multipliers and penalty parameters
are updated in the master routine. The advantage of the Augmented Lagrangian approach
over other methods is that the subproblems can be solved using algorithms that can deal
with a very large number of variables without making use of factorization of matrices of any
kind.

An indispensable assumption in the most existing global convergence analysis for
augmented Lagrangian methods is that the multiplier sequence generated by the algorithms
is bounded. This restrictive assumption confines applications of augmented Lagrangian
methods in many practical situation. The important work on this direction includes [8],
where global convergence of modified augmented Lagrangian methods for nonconvex
optimization with equality constraints was established; and Andreani et al. [4] and Birgin
et al. [9] investigated the augmented Lagrangian methods using safeguarding strategies for
nonconvex constrained problems. Recently, for inequality-constrained global optimization,
Luo et al. [10] established the convergence properties of the primal-dual method based on
four types of augmented Lagrangian functions without the boundedness assumption of the
multiplier sequence. More information can be found in [5, 11, 12].

In this paper, for the optimization problem (P) with both equality and inequality
constraints, we further study the convergence property of the proximal Lagrangian method
without requiring the boundedness of multiplier sequences. The main contribution of this
paper lies in the following three aspects. First, more general constraints are considered,
without restricting only inequality constraints as in [10, 13] and requiring boundedness of X
as in [9]. Second, an essential assumption on the global convergence properties given in [4–
7, 9, 10] is that the iterative sequence {xk} must be convergent in advance; here, we further
discuss the case when {xk} is divergent and develop a necessary and sufficient condition
for {f(xk)} converging to the optimal value of primal problem. Third, the definition of
degeneration in [9, 10] is extended from inequality constraint to both inequality and equality
constraints.

This paper is organized as follows. In Section 2, we propose the multiplier algorithm
and study its global convergence properties. Preliminary numerical results are reported in
Section 3. The conclusion is drawn in Section 4.

2. Multiplier Algorithms

The primal augmented Lagrangian function for (P) is

L
(
x, λ, μ, c

)
:= f(x) +

c

2

⎡

⎣
l∑

j=1

(
hj(x) +

μj

c

)2

+
m∑

i=1

max
{
0, gi(x) +

λi
c

}2
⎤

⎦, (2.1)

where (x, λ, μ, c) ∈ R
n × R

m × R
l × R++, and R++ denotes the all positive real scalars, that is,

R++ = {a ∈ R | a > 0}.
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Given (x, λ, μ, c), the augmented Lagrangian relaxation problem associated with the aug-
mented Lagrangian L is defined by

min L
(
x, λ, μ, c

)

s.t. x ∈ Ω.
(Lλ,μ,c)

Given ε ≥ 0, then the ε-optimal solution set of (Lλ,μ,c), denoted by S∗(λ, μ, c, ε), is defined as

{
x ∈ Ω | L(x, λ, μ, c) ≤ inf

x∈Ω
L
(
x, λ, μ, c

)
+ ε

}
. (2.2)

IfΩ is closed and bounded, then the global optimal solution of (Lλ,μ,c) exists. However,
if Ω is unbounded, then (Lλ,μ,c) maybe unsolvable. To overcome this difficultly, we assume
throughout this paper that f is bounded on Ω from below, that is,

f∗ := inf
x∈Ω

f(x) > −∞. (2.3)

This assumption is rathermild in optimization programming, because otherwise the objective
function f can be replaced by ef(x). It ensures that the ε-optimal solution set with ε > 0 always
exists, since L(x, λ, μ, c) is bounded from below by (2.1) and (2.3).

Recall that a vector x∗ is said to be a KKT point of (P) if there exist λ∗i ≥ 0 for each
i = 1, . . . , m and μ∗

j for each j = 1, . . . , l such that

0 ∈ ∇f(x) +
m∑

i=1
λi∇gi(x) +

l∑

j=1
μj∇hj(x) +NΩ(x∗), λ∗i gi(x

∗) = 0, ∀i = 1, . . . , m, (2.4)

whereNΩ(x∗) denotes the normal cone ofΩ at x∗. The collection set of all λ∗ and μ∗ satisfying
(2.4) is denoted by Λ(x∗).

The multiplier algorithm based on the primal augmented Lagrangian L is proposed
below. One of its main features is that the Lagrangianmultipliers associatedwith equality and
inequality constraints are not restricted to be bounded, whichmakes the algorithm applicable
for many problems in practice.

Algorithm 2.1 (Multiplier algorithm based on L).

Step 1. Select an initial point x0 ∈ R
n, λ0 ≥ 0, μ0 ∈ R, c0 > 0, and ε0 ≥ 0. Set k := 0.

Step 2. Compute

λk+1i = max
{
0, ckgi

(
xk
)
+ λki

}
, ∀i = 1, . . . , m, (2.5)

μk+1
j = μk

j + ckhj

(
xk
)
, ∀j = 1, . . . , l, (2.6)
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εk+1 =
εk

k + 1
, (2.7)

ck+1 ≥ (k + 1)max

⎧
⎨

⎩
1,

m∑

i=1

(
λk+1i

)2
,

l∑

j=1

(
μk+1
j

)2
⎫
⎬

⎭
. (2.8)

Step 3. Find xk+1 ∈ S∗(λk+1, μk+1, ck+1, εk+1);

Step 4. If xk+1 ∈ X and (λk+1, μk+1) ∈ Λ(xk+1), then STOP; otherwise, let k := k + 1 and go back
to Step 2.

The iterative formula for εk+1 given in (2.7) is just used to guarantee its convergence
to zero. In fact, in the practical numerical experiment, we can choose εk+1 = εk/ck to improve
the convergence of the algorithm. The following lemma gives the relationship between the
penalty parameter ck and the multipliers λk and μk.

Lemma 2.2. Let (λk, μk, ck) be given as in Algorithm 2.1, then the following terms

λk

ck
,
μk

ck
,

(
λk
)2

ck
,

(
μk
)2

ck
(2.9)

all approach to zero as k → ∞.

Proof. This follows immediately from (2.8).

For establishing the convergence property of Algorithm 2.1, we first consider the
perturbation analysis of (P). Given α ≥ 0, define the perturbation of feasible region as

X(α) =
{
x ∈ Ω | gi(x) ≤ α,

∣∣hj(x)
∣∣ ≤ α, i = 1, . . . , m, j = 1, . . . , l

}
, (2.10)

and the perturbation of level set as

L(α) =
{
x ∈ Ω | f(x) ≤ v(0) + α

}
. (2.11)

It is clear that X(0) coincides with the feasible set of (P). The corresponding perturbation
function is given as

v(α) = inf
{
f(x) | x ∈ X(α)

}
. (2.12)

The following result shows that the perturbation value function is upper semicontin-
uous at zero.

Lemma 2.3. The perturbation function v is upper semicontinuous at zero from right.

Proof. SinceX(0) ⊂ X(α) for any α ≥ 0, then v(α) ≤ v(0) by definition (2.12). This implies that
lim supα→ 0+ v(α) ≤ v(0).
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Lemma 2.4. Let (λk, μk, ck, εk) be given as in Algorithm 2.1. For any ε > 0, one has

S∗
(
λk, μk, ck, εk

)
⊆
{
x ∈ Ω | L

(
x, λk, μk, ck

)
≤ v(0) + ε

}
, (2.13)

whenever k is sufficiently large.

Proof. For any given ε, it follows from (2.7) and Lemma 2.4 that when k is large enough, we
have

1
2ck

m∑

i=1

(
λki
ck

)2

+
1
2ck

l∑

i=1

(
μk
i

ck

)2

+ εk ≤ ε. (2.14)

Therefore, for x ∈ S∗(λk, μk, ck, εk),

L
(
x, λk, μk, ck

)
≤ inf
{
L
(
x, λk, μk, ck

)
| x ∈ Ω

}
+ εk

≤ inf
{
L
(
x, λk, μk, ck

)
| x ∈ X(0)

}
+ εk

≤ inf
{
f(x) | x ∈ X(0)

}
+

1
2ck

m∑

i=1

(
λki
ck

)2

+
1
2ck

l∑

i=1

(
μk
i

ck

)2

+ εk

≤ v(0) + ε.

(2.15)

Lemma 2.5. Let (λk, μk, ck) be given as in Algorithm 2.1. For any ε > 0, one has

{
x ∈ Ω | L(x, λk, μk, ck

) ≤ v(0) + ε
} ⊆ X(ε). (2.16)

whenever k is sufficiently large.

Proof. We prove this result by the way of contradiction. Suppose that we can find an ε0 > 0
and an infinite subsequence K ⊆ {1, 2, . . .} such that

zk ∈ {x ∈ Ω | L(x, λk, μk, ck
) ≤ v(0) + ε

}
, ∀k ∈ K, (2.17)

but

zk /∈ X(ε0), ∀k ∈ K. (2.18)

It follows from (2.17) that

v(0) + ε ≥ L
(
zk, λk, μk, ck

)

= f
(
zk
)
+
ck
2

⎡

⎢
⎣

l∑

j=1

⎛

⎝hj

(
zk
)
+
μk
j

ck

⎞

⎠

2

+
m∑

i=1

max

{

0, gi
(
zk
)
+
λki
ck

}2
⎤

⎥
⎦.

(2.19)

Since zk /∈ X(ε0), it needs to consider the following two cases.
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Case 1. There exist an index j0 and an infinite subsequence K0 ⊆ K such that |hj0(z
k)| > ε0. It

then follows from (2.19) that

v(0) + ε ≥ f∗ +
ck
2

⎡

⎢
⎣

l∑

j=1

⎛

⎝hj

(
zk
)
+
μk
j

ck

⎞

⎠

2

+
m∑

i=1

max

{

0, gi
(
zk
)
+
λki
ck

}2
⎤

⎥
⎦

≥ f∗ +
ck
2

⎛

⎝hj0

(
zk
)
+
μk
j0

ck

⎞

⎠

2

.

(2.20)

Using Lemma 2.2 and the fact that |hj0(z
k)| ≥ ε0 gives us

⎛

⎝hj0

(
zk
)
+
μk
j0

ck

⎞

⎠

2

≥ 1
2
ε0, (2.21)

whenever k is sufficiently large. This, together with (2.20), yields v(0) = +∞ by taking k ∈ K0

approaching to ∞, which leads to a contradiction.

Case 2. There exist an index i0 and an infinite subsequence K0 ⊆ K such that gi0(z
k) > ε0. It

follows from (2.19) that

v(0) + ε ≥ f∗ +
ck
2

⎡

⎢
⎣

l∑

j=1

⎛

⎝hj

(
zk
)
+
μk
j

ck

⎞

⎠

2

+
m∑

i=1

max

{

0, gi
(
zk
)
+
λki
ck

}2
⎤

⎥
⎦

≥ f∗ +
ck
2

⎡

⎣
∑

i /= i0

max

{

0, gi
(
zk
)
+
λki
ck

}2

+max

{

0, gi0
(
zk
)
+
λki0
ck

}2⎤

⎦

≥ f∗ +
ck
2
max

{

0, gi0
(
zk
)
+
λki0
ck

}2

≥ f∗ +
ε0ck
4

,

(2.22)

where the last step is due to Lemma 2.2, since gi0(z
k) > ε0 and λki0/ck → 0. Taking limits in

the above inequality yields v(0) = +∞, which is a contradiction. This completes the proof.

Lemma 2.6. Let (λk, μk, ck) be given as in Algorithm 2.1. For any ε > 0, one has

{
x ∈ Ω | L

(
x, λk, μk, ck

)
≤ v(0) + ε

}
⊆ L(ε), ∀k = 1, 2, . . . . (2.23)
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Proof. For an arbitrarily x ∈ {x ∈ Ω | L(x, λk, μk, ck) ≤ v(0) + ε}, we have

f(x) = L
(
x, λk, μk, ck

)
− ck

2

⎡

⎢
⎣

l∑

j=1

⎛

⎝hj(x) +
μk
j

ck

⎞

⎠

2

+
m∑

i=1

max

{

0, gi(x) +
λki
ck

}2
⎤

⎥
⎦

≤ v(0) + ε.

(2.24)

The proof is complete.

With these preparation, the global convergence property of Algorithm 2.1 can be
given, which shows that if the algorithm terminates in finite steps, then we obtain a KKT
point of (P); otherwise, every limit point of {xk}would be the optimal solution of (P).

Theorem 2.7. Let {xk} be the iterative sequence generated by Algorithm 2.1. Then if {xk} is
terminated in finite steps, then one gets a KKT point of (P); otherwise, every limit point of {xk}
belongs to X∗.

Proof. According to the construction of Algorithm 2.1, the first part is clear. It remains to prove
the second part. Let ε > 0 be given. It follows from Lemmas 2.4–2.6 that when k is large
enough, we have

S∗
(
λk, μk, ck, εk

)
⊆
{
x ∈ Ω | L

(
x, λk, μk, ck

)
≤ v(0) + ε

}

⊆ X(ε) ∩ L(ε).
(2.25)

Thus,

xk ∈ X(ε) ∩ L(ε). (2.26)

Note that X(ε) and L(ε) are closed, due to the continuity of f , gi for all i = 1, . . . , m and hj

for all j = 1, . . . , l and the closeness of Ω. Taking the limit in (2.26) yields x∗ ∈ X(ε) ∩ L(ε),
which further shows that x∗ ∈ X(0) ∩ L(0), since ε > 0 is arbitrary, that is, x∗ ∈ X∗. The proof
is complete.

The foregoing result is applicable to the case when {xk} at least has an accumulation
point. However, a natural question arises: how does the algorithm perform as {xk} is
divergent? The following theorem gives an answer.

Theorem 2.8. Let {xk} be an iterative sequence generated by Algorithm 2.1. Then,

lim
k→∞

f
(
xk
)
= v(0) (2.27)

if and only if v(α) is lower semicontinuous at α = 0 from right.
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Proof. We first show the sufficiency. According to the proof of Theorem 2.7 (recall (2.26)), we
know that

v(ε) ≤ f
(
xk
)
≤ v(0) + ε, (2.28)

whenever k is sufficiently large. Since v(α) is lower semicontinuous at α = 0 from right, taking
the lower limitation in (2.28) yields

v(0) ≤ lim inf
ε→ 0+

v(ε) ≤ lim inf
k→∞

f
(
xk
)

≤ lim sup
k→∞

f
(
xk
)
≤ v(0),

(2.29)

that is,

lim
k→∞

f
(
xk
)
= v(0). (2.30)

We now show the necessity. Suppose on the contrary that v is not lower semicontinuous at
zero from right, then there exist δ0 > 0 and εj → 0+ (as j → ∞) such that

v
(
εj
) ≤ v(0) − δ0, ∀j = 1, 2, . . . , m. (2.31)

For any given k, since εj → 0 we can choose a subsequence jk satisfying

εjkck −→ 0 as k −→ ∞. (2.32)

In addition, let zk ∈ X(εjk) with f(zk) ≤ v(εjk) + δ0/2, which further implies f(zk) ≤ v(0) −
δ0/2 by (2.31). Therefore,

f
(
xk
)
= L
(
xk, λk, μk, ck

)
− ck

2

⎡

⎢
⎣

l∑

j=1

⎛

⎝hj

(
xk
)
+
μk
j

ck

⎞

⎠

2

+
m∑

i=1

max

{

0, gi
(
xk
)
+
λki
ck

}2
⎤

⎥
⎦

≤ inf
x∈Ω

L
(
x, λk, μk, ck

)
+ εk

≤ f
(
zk
)
+
ck
2

⎡

⎢
⎣

l∑

j=1

⎛

⎝hj

(
zk
)
+
μk
j

ck

⎞

⎠

2

+
m∑

i=1

max

{

0, gi
(
zk
)
+
λki
ck

}2
⎤

⎥
⎦ + εk

≤ v(0) − δ0
2

+
ck
2

⎡

⎢
⎣

l∑

j=1

⎛

⎝εjk +

∣∣∣μk
j

∣∣∣

ck

⎞

⎠

2

+
m∑

i=1

max

{

0, εjk +
λki
ck

}2
⎤

⎥
⎦ + εk,

(2.33)
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where the last step is due to the fact |hj(zk)| ≤ εjk and gi(zk) ≤ εjk since zk ∈ X(εjk). Taking
limits in both sides of (2.33) and using (2.7), (2.27), and Lemma 2.2, we get

v(0) = lim
k→∞

f
(
xk
)
≤ v(0) − δ0

2
, (2.34)

which leads to a contradiction. The proof is complete.

Note that in many practical cases, the set Ω typically stands for a more simple
constraint, for example, a box or a bounded polytope [7]. Hence, we conclude this paper
by considering the case of Ω is a bounded, closed, and convex subset of R

n. In this case,
the global optimal solution of the augmented Lagrangian relaxation problem always exists.
Hence, we choose ε0 = 0 in Step 1 of Algorithm 2.1, which in turn implies that εk = 0 for
all k by (2.7). First, however, we need to extend the definition of degenerate from inequality
constraint as in [10] to both inequality and equality constraints.

Definition 2.9. A point x∗ ∈ X is said to be degenerate if there exists λ∗ ∈ R
m
+ and μ∗ ∈ R

l such
that

∑

i∈I(x∗)

λ∗i +
l∑

j=1

∣∣∣μ∗
j

∣∣∣ > 0, PΩ

⎡

⎣x∗ −
l∑

j=1

μ∗
j∇hj(x∗) −

∑

i∈I(x∗)

λ∗i∇gi(x∗)

⎤

⎦ = x∗, (2.35)

where PΩ(x) denotes the projection of x onto Ω and I(x∗) = {i | gi(x∗) = 0, i = 1, . . . , m}.

Theorem 2.10. Suppose that Ω is a bounded, closed, and convex set of R
n. Let ε0 = 0 and {xk} be

the iterative sequence generated by Algorithm 2.1. Then, every accumulation point of {xk}, say x∗, is
either a degenerate or a KKT point of (P).

Proof. Noting that εk = 0 for all k by ε0 = 0 and (2.7), then {xk} is a global optimal solution of
L(x, λk, μk, ck) by Step 3 in Algorithm 2.1. Applying the well-known optimality condition of
optimization problem to the augmented Lagrangian relaxation problem (Lλ,μ,c) yields

−∇xL
(
x, λk, μk, ck

)
∈ NΩ

(
xk
)
, (2.36)

where NΩ(xk) is the normal cone of Ω at xk. This together with (2.5) and (2.6)means that

PΩ

⎡

⎣xk − ∇f
(
xk
)
−

l∑

j=1

μk+1
j ∇hj

(
xk
)
−

m∑

i=1

λk+1i ∇gi
(
xk
)
⎤

⎦ = xk, (2.37)

where we have used the basic property of normal cone of convex set. Let K be an infinite
subsequence in {1, 2, . . .} such that {xk}K → x∗ ∈ Ω. Consider now the following two cases.
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Case 1. Either {λk+1}K or {μk+1}K is unbounded. In this case, we must have

Tk :=
m∑

i=1

λk+1i +
l∑

j=1

∣
∣
∣μk+1

j

∣
∣
∣ −→ ∞, k −→ ∞, k ∈ K. (2.38)

Since 0 ≤ λk+1i /Tk ≤ 1 and 0 ≤ μk+1
i /Tk ≤ 1 are bounded, we can assume by passing a

subsequence if necessary that

λk+1i

Tk
−→ λ∗i ,

μk+1
j

Tk
−→ μ∗

j , i = 1, . . . , m, j = 1, . . . , l. (2.39)

Clearly, λ∗i and μ∗
j are not all zeros. On the other hand, since NΩ(x∗) is cone, then it follows

from (2.36) that

− 1
Tk

∇xL
(
x, λk, μk, ck

)
∈ NΩ

(
xk
)
, (2.40)

from which and using the basic property of normal cone of convex set, we further have

PΩ

⎡

⎣xk − 1
Tk

⎛

⎝∇f
(
xk
)
+

l∑

j=1

μk+1
j ∇hj

(
xk
)
+

m∑

i=1

λk+1i ∇gi
(
xk
)
⎞

⎠

⎤

⎦ = xk. (2.41)

Since xk → x∗ and Tk → ∞ as k ∈ K → ∞, we obtain from (2.39) and (2.41)

PΩ

⎡

⎣x∗ −
l∑

j=1

μ∗
j∇hj(x∗) −

m∑

i=1

λ∗i∇gi(x∗)

⎤

⎦ − x∗ = 0, (2.42)

where we have used the continuity of the projection operator.
If i /∈ I(x∗), then gi(x∗) < 0. Since ck → ∞, we have ckgi(xk) → −∞ as k ∈ K → ∞.

Using (2.5) and Lemma 2.2, we obtain

lim
k→∞,k∈K

λk+1i = lim
k→∞,k∈K

max

{

0, gi
(
xk
)
+
λki
ck

}

ck = 0, ∀i /∈ I(x∗), (2.43)

which, together with (2.39), implies that λ∗i = 0 for all i /∈ I(x∗). Therefore, we obtain from
(2.42) that

PΩ

⎡

⎣x∗ −
l∑

j=1

μ∗
j∇hj(x∗) −

∑

i∈I(x∗)

λ∗i∇gi(x∗)

⎤

⎦ − x∗ = 0. (2.44)

So x∗ is degenerate.
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Case 2. Both {λk+1}K and {μk+1}K are bounded. In this case, we can assume without loss of
generality that

lim
k→∞,k∈K

λki = λ∗i ≥ 0, lim
k→∞,k∈K

μk
i = μ∗

i . (2.45)

Taking limits in (2.37) gives rise to

PΩ

⎡

⎣x∗ − ∇f(x∗) −
l∑

j=1

μ∗
j∇hj(x∗) −

m∑

i=1

λ∗i∇gi(x∗)

⎤

⎦ = x∗, (2.46)

which is equivalent to

−∇f(x∗) −
l∑

j=1

μ∗
j∇hj(x∗) −

m∑

i=1

λ∗i∇gi(x∗) ∈ NΩ(x∗). (2.47)

We claim that x∗ is a feasible point. In fact, if gi(x∗) > 0 for some i, then ckgi(xk) → ∞
as k ∈ K1 → ∞. From (2.5), we must have λk+1i → ∞, contradicting the boundedness of
{λk+1i }k∈K. Note that (2.6) can be rewritten as

μk+1
j

ck
=

μk
j

ck
+ hj

(
xk
)
. (2.48)

Taking limits in both sides and using the boundedness of {μk+1
i }k∈K, we obtain that hj(x∗) = 0

for all j = 1, 2, . . . , l. Thus, x∗ is a feasible solution of (P) as claimed.
If i /∈ I(x∗), that is, gi(x∗) < 0, then following almost the same argument as in Case 1,

we can show that λ∗i = 0 (cf. (2.43)). Therefore,

gi(x∗) ≤ 0, λ∗i gi(x
∗) = 0, i = 1, . . . , m; hj(x∗) = 0, j = 1, 2, . . . , l. (2.49)

This together with (2.47) implies that x∗ is a KKT point of (P) and λ∗, μ∗ are the corresponding
Lagrangian multipliers.

3. Numerical Reports

To give some insight into the behavior of our proposed algorithm presented in this paper, we
solve the following nonlinar programming problems. The test was done at a PC of Pentium
4 with 2.8GHz CPU and 1.99GB memory, and the computer codes were written in MATLAB
7.0. Numerical results are reported in Tables 1–4, where k is the number of iterations, ck is
the penalty parameter, xk is iterative point found by the algorithm, and f(xk) is the objective
value.
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Table 1: Result of Example 3.1.

k εk ck xk f(xk)

1 1.0000 6.2500 (0.2424, 0.2424, 0.4661) 0.3348
3 0.1667 40.0541 (0.2299, 0.2299, 0.4438) 0.3027

Table 2: Result of Example 3.2.

k εk ck xk f(xk)

1 1 6.2500 (0.1643, 0.1643, 1.0000) 0.1581
3 1.667 42.6030 (0.1350, 0.1350, 1.0000) 0.1076

Example 3.1 (see [14]). It holds that

min 0.5(x1 + x2)2 + 50(x2 − x1)2 + x2
3 + |x3 − sin(x1 + x2)|

s.t. (x1 − 1)2 + (x2 − 1)2 + (x3 − 1)2 − 1.5 ≤ 0.
(3.1)

Example 3.2 (see [14]). Consider

min 0.5(x1 + x2)2 + 50(x2 − x1)2 + sin2(x1 + x2)

s.t. (x1 − 1)2 + (x2 − 1)2 + (x3 − 1)2 − 1.5 ≤ 0.
(3.2)

Example 3.3. It holds that

min 1000 − x2
1 − 2x2

2 − x2
3 − x1x2 − x1x3

s.t. x2
1 + 2x2

2 + x2
3 − 25 = 0.

(3.3)

Example 3.4. Consider

min 1000 − x2
1 − 2x2

2 − x2
3 − x1x2 − x1x3

s.t. 8x1 + 14x2 + 7x3 − 56 = 0

− xi ≤ 0, i = 1, 2, 3.

(3.4)

4. Conclusions

Augmented Lagrangian methods are useful tools for solving many practical nonconvex opti-
mization problems. In this paper, new convergence property of proximal augmented Lagran-
gian algorithm is established without requiring the boundedness of multiplier sequences. It
is proved that if the algorithm terminates in finite steps, then we obtain a KKT point of the
primal problem; otherwise, the iterative sequence {xk} generalized by algorithm converges to
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Table 3: Result of Example 3.3.

k εk ck xk f(xk)

1 1 576 (3.1094, 3.5073, −1.4777) 957.2349
2 0.5000 1.9679e + 008 (2.9094, 3.606, −1.8787) 956.9680

Table 4: Result of Example 3.4.

k εk ck xk f(xk)

1 1 3025 (0.7101, 2.8042, 1.5490) 978.2781
2 0.5000 8.4469e + 007 (0.7208, 2.8092, 1.5579) 978.1236

optimal solution. Even if {xk} is divergent, we also present a necessary and sufficient condi-
tion for the convergence of {f(xk)} to the optimal value. Moreover, under suitable assump-
tions, we show that every accumulation point of the iterative sequence generated by the
algorithm is either a degenerate or is a KKT point of the primal problem. As our future work,
one of the interesting and important topics is whether these nice properties could be extended
to more general cone programming, for example, nonlinear semidefinite programming or
second-order cone programming.
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