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This paper is devoted to a stochastic retarded lattice dynamical system with additive white noise.
We extend the method of tail estimates to stochastic retarded lattice dynamical systems and prove
the existence of a compact global random attractor within the set of tempered random bounded
sets.

1. Introduction

Lattice dynamical systems (LDSs) arise naturally in a wide variety of applications in science
and engineering where the spatial structure has a discrete character. Among such examples
are brain science [1], chemical reaction [2], material science [3], electrical engineering [4],
laser systems [5], pattern recognition [6], complex network [7], and many others. On the
other hand, LDSs also appear as spatial discretizations of partial differential equations on
unbounded domains.

There are many works concerning deterministic LDSs. For example, the traveling
wave solutions were studied in [8, 9], the chaotic properties of solutions were examined by
[6, 10], the long-time behavior of LDSs was investigated by [11–17]. In particular, Bates et
al. [11] established the first result on the existence of a global attractor for LDSs. Wang [13],
Zhou and Shi [14] used the idea of tail estimates on solutions and obtained, respectively, some
sufficient and necessary conditions for the existence of a global attractor for autonomous
LDSs. Later, the method of tail estimates is extended to nonautonomous LDSs [15–17].

It is noted that an evolutionary system in reality is usually affected by external
perturbations which in many cases are of great uncertainty or random influence. These
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random effects are not only introduced to compensate for the defects in some deterministic
models, but also are often rather intrinsic phenomena. Therefore, it is of prime importance
to take into account these random effects in some models, and this has led to stochastic
differential equations. Random attractors for stochastic partial differential equations were
first introduced by Crauel and Flandoli [18], Flandoli andSchmalfuss [19], with notable
developments given in [20–25] and others. Bates et al. [26] initiated the study of random
attractors for stochastic LDSs. Since then, many works have been done for the existence of
random attractors for stochastic LDSs, see, for example, [27–34] and the references therein.
Similarly to deterministic LDSs, the method of tail estimates also plays a key role in the study
of the existence of random attractors for stochastic LDSs.

On the other hand, in the natural world, the current rate of change of the state in
an evolutionary system always depends on the historical status of the system. Then, it is
more reasonable to describe the evolutionary systems by functional differential equations.
Many papers are devoted to the study of the asymptotic behavior of deterministic functional
differential equations, see, for example, [35–41] and the references therein. Especially, Zhao
and Zhou [40, 41] considered the asymptotic behavior of some deterministic retarded LDSs
and extended the method of tail estimates to deterministic retarded LDSs. More recently, Yan
et al. [42, 43] discussed the asymptotic behavior of some stochastic retarded LDSs with global
Lipschitz nonlinearities.

Consider the Hilbert space

�2 =

{
u = (ui)i∈Z

: ui ∈ R,
∑
i∈Z

|ui|2 <∞
}
, (1.1)

whose inner product and norm are given by

(u, v) =
∑
i∈Z

uivi, ‖u‖2 =
∑
i∈Z

u2i , (1.2)

for all u = (ui)i∈Z
, v = (vi)i∈Z

∈ �2. For ν > 0, let C := C([−ν, 0]; �2) denote the Banach
space of all continuous functions ξ : [−ν, 0] → �2 endowed with the supremum norm ‖ξ‖C =
sups∈[−ν,0]‖ξ(s)‖. For any real numbers a ≤ b, t ∈ [a, b] and any continuous function u :
[a − ν, b] → �2, ut denotes the element of C given by ut(s) = u(t + s) for s ∈ [−ν, 0].

In this paper, we investigate the long time behavior of the following stochastic retarded
LDS:

dui(t) =
(
(ui−1 − 2ui + ui+1) − λiui + fi

(
uti
)
+ gi
)
dt + aidwi(t), t > 0, i ∈ Z, (1.3)

with initial data

ui(t) = u0i (t), t ∈ [−ν, 0], i ∈ Z, (1.4)

where u = (ui)i∈Z
∈ �2, (λi)i∈Z

is a bounded positive constant sequence, f = (fi)i∈Z
: C → �2

is a nonlinear mapping satisfying local Lipschitz condition, g = (gi)i∈Z
∈ �2, a = (ai)i∈Z

∈ �2,
and {wi : i ∈ Z} are independent two-sided real-valued Wiener processes on a probability
space which will be specified later.
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It is worth mentioning that in the absence of the white noise, the existence of a global
attractor for (1.3)-(1.4) was established in [40]. The main contribution of this paper is to
extend the method of tail estimates to stochastic retarded LDSs and prove the existence
of a random attractor for the infinite dimensional random dynamical system generated by
stochastic retarded LDS (1.3)-(1.4). It is clear that our method can be used for a variety of
other stochastic retarded LDSs, as it was for the nonretarded case.

The paper is organized as follows. In the next section, we recall some fundamental
results on the existence of a pullback random attractor for random dynamical systems. In
Section 3, we establish a necessary and sufficient condition for the relative compactness of
sequences in C([−ν, 0]; �2). In Section 4, we define a continuous random dynamical system
for stochastic retarded LDS (1.3)-(1.4). The existence of the random attractor for (1.3)-(1.4) is
given in Section 5.

2. Preliminaries

In this section, we recall some basic concepts related to random attractors for random
dynamical systems. The reader is referred to [18–21, 26, 44, 45] for more details.

Let (X, ‖ · ‖X) be a separable Banach space with Borel σ-algebra B(X) and (Ω,F,P) be
a probability space.

Definition 2.1. (Ω,F,P, (ϑt)t∈R
) is called a metric dynamical system if ϑ : R × Ω → Ω is

(B(R) ⊗ F,F)-measurable, ϑ0 is the identity on Ω, ϑs+t = ϑt ◦ ϑs for all s, t ∈ R, and ϑtP = P

for all t ∈ R.

Definition 2.2. A set A ⊂ Ω is called invariant with respect to (ϑt)t∈R
, if for all t ∈ R, it holds

ϑ−1
t A = A. (2.1)

Definition 2.3. A continuous random dynamical system onX over a metric dynamical system
(Ω,F,P, (ϑt)t∈R

) is a mapping

ϕ : R
+ ×Ω ×X −→ X, (t, ω, x) −→ ϕ(t, ω, x), (2.2)

which is (B(R+) ⊗ F ⊗ B(X),B(X))-measurable, and for all ω ∈ Ω,

(i) ϕ(t, ω, ·) : X → X is continuous for all t ∈ R
+;

(ii) ϕ(0, ω, ·) is the identity on X;

(iii) ϕ(t + s,ω, ·) = ϕ(t, ϑsω, ·) ◦ ϕ(s,ω, ·) for all s, t ∈ R
+.

Definition 2.4. A random set D is a multivalued mapping D : Ω → 2X \ ∅ such that for every
x ∈ X, the mapping ω → d(x,D(ω)) is measurable, where d(x, B) is the distance between
the element x and the set B ⊂ X. It is said that the random set is bounded (resp., closed or
compact) if D(ω) is bounded (resp., closed or compact) for P-a.e. ω ∈ Ω.
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Definition 2.5. A random variable r : Ω → (0,∞) is called tempered with respect to (ϑt)t∈R
, if

for P-a.e. ω ∈ Ω

lim
t→∞

e−βtr(ϑ−tω) = 0 ∀β > 0. (2.3)

A random set D is called tempered if D(ω) is contained in a ball with center zero and
tempered radius r(ω) for all ω ∈ Ω.

Remark 2.6. If r > 0 is tempered, then for any τ ∈ R, β > 0 and P-a.e. ω ∈ Ω

lim
t→∞

e−βtr(ϑ−t+τω) = e−βτ · lim
t→∞

e−β(t−τ)r(ϑ−t+τω) = 0. (2.4)

Therefore, for any τ ∈ R, r(ϑτ ·) is also tempered. Moreover, if for P-a.e. ω ∈ Ω, r(ϑtω) is
continuous in t, then for any ν > 0, supσ∈[−ν,0]r(ϑσ ·) is measurable and for all β > 0 and P-a.e.
ω ∈ Ω

lim
t→∞

e−βt sup
σ∈[−ν,0]

r(ϑ−t+σω) ≤ lim
t→∞

e(β/2)(ν−t) · sup
s∈(−∞,0]

{
e(β/2)sr(ϑsω)

}
= 0. (2.5)

Hence, for any ν > 0, supσ∈[−ν,0]r(ϑσ ·) is also tempered.

Remark 2.7. If r > 0 is tempered, then for any α > 0 and P-a.e. ω ∈ Ω

R(ω) =
∫0

−∞
eαsr(ϑsω)ds <∞. (2.6)

Moreover, R is tempered, and if for P-a.e. ω ∈ Ω, r(ϑtω) is continuous in t, then R(ϑtω) is
also continuous in t for such ω.

Hereafter, we always assume that ϕ is a continuous random dynamical system over
(Ω,F,P, (ϑt)t∈R

), and D is a collection of random subsets of X.

Definition 2.8. A random set K is called a random absorbing set in D if for every B ∈ D and
P-a.e. ω ∈ Ω, there exists tB(ω) > 0 such that

ϕ(t, ϑ−tω, B(ϑ−tω)) ⊆ K(ω) ∀t ≥ tB(ω). (2.7)

Definition 2.9. A random set A is called a D-random attractor (D-pullback attractor) for ϕ if
the following hold:

(i) A is a random compact set;

(ii) A is strictly invariant, that is, for P-a.e. ω ∈ Ω and all t ≥ 0,

ϕ(t, ω,A(ω)) = A(ϑtω); (2.8)
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(iii) A attracts all sets in D, that is, for all B ∈ D and P-a.e. ω ∈ Ω,

lim
t→∞

d
(
ϕ(t, ϑ−tω, B(ϑ−tω)),A(ω)

)
= 0, (2.9)

where d is the Hausdorff semimetric given by d(E, F) = supx∈Einfy∈F‖x − y‖X for
any E ⊆ X and F ⊆ X.

Definition 2.10. ϕ is said to be D-pullback asymptotically compact in X if for all B ∈ D and
P-a.e.ω ∈ Ω, {ϕ(tn, ϑ−tnω, xn)}∞n=1 has a convergent subsequence inX whenever tn → ∞, and
xn ∈ B(ϑ−tnω).

The following existence result on a random attractor for a continuous random
dynamical system can be found in [19, 26]. First, recall that a collection D of random subsets
of X is called inclusion closed if whenever E is an arbitrary random set, and F is in D with
E(ω) ⊂ F(ω) for all ω ∈ Ω, then E must belong to D.

Proposition 2.11. LetD be an inclusion-closed collection of random subsets ofX and ϕ a continuous
random dynamical system on X over (Ω,F,P, (ϑt)t∈R

). Suppose that K ∈ D is a closed random
absorbing set for ϕ in D and ϕ is D-pullback asymptotically compact in X. Then ϕ has a unique
D-random attractorA which is given by

A(ω) =
⋂
τ≥0

⋃
t≥τ
ϕ(t, ϑ−tω,K(ϑ−t)). (2.10)

In this paper, we will take D as the collection of all tempered random subsets of C and
prove the stochastic retarded LDS has a D-random attractor.

3. Compactness Criterion in C([−ν, 0]; �2)
In this section, we provide a necessary and sufficient condition for the relative compactness
of sequences in C([−ν, 0]; �2), which will be used to establish the asymptotic compactness of
the retarded LDS.

Lemma 3.1. Let u ∈ C([−ν, 0]; �2). Then for every ε > 0, there exists N(ε) > 0 such that for all
k ≥N(ε),

sup
s∈[−ν,0]

∑
|i|≥k

|ui(s)|2 < ε. (3.1)

Proof. For every ε > 0, by virtue of the uniform continuity of u, there exist −ν = s0 < s1 < s2 <
· · · < sp = 0 such that

∥∥u(s) − u(sj)∥∥ < √
ε

2
, for s ∈ [sj−1, sj], j = 1, 2, . . . , p. (3.2)
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Since for each sj , u(sj) ∈ �2, there existsNj(ε) > 0 such that for all k ≥Nj(ε),

∑
|i|≥k

∣∣ui(sj)∣∣2 < ε

4
. (3.3)

Take N(ε) = max1≤j≤pNj(ε). Then for each s ∈ [−ν, 0], there exists j ∈ {1, 2, . . . , p} such that
s ∈ [sj−1, sj]. Therefore, we get from (3.2) and (3.3) that for all k ≥N(ε),

∑
|i|≥k

|ui(s)|2 ≤ 2
∑
|i|≥k

∣∣ui(sj)∣∣2 + 2
∑
|i|≥k

∣∣ui(s) − ui(sj)∣∣2
≤ 2
∑
|i|≥k

∣∣ui(sj)∣∣2 + 2
∥∥u(s) − u(sj)∥∥2 < ε, (3.4)

which completes the proof.

Theorem 3.2. Let S ⊂ C([−ν, 0]; �2). Then S is relative compact in C([−ν, 0]; �2) if and only if the
following conditions are satisfied:

(i) S is bounded in C([−ν, 0]; �2);
(ii) S is equicontinuous;

(iii) limk→∞supu=(ui)i∈Z
∈Ssups∈[−ν,0]

∑
|i|≥k |ui(s)|2 = 0.

Proof. The proof is divided into two steps. We first show the necessity of the conditions and
then prove the sufficiency.

(1) Assume that S is relative compact in C([−ν, 0]; �2). Then we want to show
conditions (i), (ii), and (iii) hold. Clearly, in this case, by the Ascoli-Arzelà theorem, S must
be bounded and equicontinuous. So we only need to prove condition (iii).

Given ε > 0, since S is relative compact, there exists a finite subset E of S such that the
balls of radii ε/2 centered at E form a finite covering of S, that is, for each u ∈ S, there exists
v ∈ E such that

sup
s∈[−ν,0]

‖u(s) − v(s)‖ < ε

2
. (3.5)

By Lemma 3.1, there exists K∗(ε) > 0 such that for all v ∈ E,

sup
s∈[−ν,0]

∑
|i|≥K∗(ε)

|vi(s)|2 < ε2

4
. (3.6)

By (3.5) and (3.6), we find that for each u ∈ S, there exists v ∈ E such that

sup
s∈[−ν,0]

∑
|i|≥K∗(ε)

|ui(s)|2 ≤ 2 sup
s∈[−ν,0]

∑
|i|≥K∗(ε)

|ui(s) − vi(s)|2

+ 2 sup
s∈[−ν,0]

∑
|i|≥K∗(ε)

|vi(s)|2 < ε2.
(3.7)



Abstract and Applied Analysis 7

Therefore, for all k ≥ K∗(ε), we have

sup
u=(ui)i∈Z

∈S
sup

s∈[−ν,0]

∑
|i|≥k

|ui(s)|2 ≤ ε2, (3.8)

which implies condition (iii).
(2) Assume that conditions (i), (ii), and (iii) are valid. We want to prove that S is

relative compact in C([−ν, 0]; �2). That is, given ε > 0, we want to show that S has a finite
covering of balls of radii ε. By condition (iii), we find that there exists K(ε) > 0 such that for
all u = (ui)i∈Z

∈ S,

sup
s∈[−ν,0]

∑
|i|≥K(ε)

|ui(s)|2 < ε2

4
. (3.9)

Consider the set S|K = {u|K = (ui)|i|≤K(ε) : u = (ui)i∈Z
∈ S} in C([−ν, 0];R2K(ε)+1).

By conditions (i) and (ii), we know that S|K is bounded and equicontinuous in
C([−ν, 0];R2K(ε)+1). Then, by the Ascoli-Arzelà theorem, we obtain that S|K is relative
compact in C([−ν, 0];R2K(ε)+1) and hence there exists a finite subset H of S|K such that the
balls of radii ε/2 centered atH form a finite covering of S|K, that is, for each u|K ∈ S|K, there
exists v|K ∈ H such that

sup
s∈[−ν,0]

∑
|i|≤K(ε)

|ui(s) − vi(s)|2 < ε2

4
. (3.10)

Now for each v|K = (vi)|i|≤K(ε) ∈ H, we choose ṽ = (ṽi)i∈Z
such that ṽi = vi for |i| ≤ K(ε)

and ṽi = 0 for |i| > K(ε). Then by (3.9) and (3.10), we find that for each u ∈ S, there exists
ṽ ∈ H = {ṽ : v|K ∈ H} such that

sup
s∈[−ν,0]

‖u(s) − ṽ(s)‖2 ≤ sup
s∈[−ν,0]

∑
|i|≤K(ε)

|ui(s) − vi(s)|2 + sup
s∈[−ν,0]

∑
|i|>K(ε)

|ui(s)|2 < ε2, (3.11)

which implies that the set S has a finite covering of balls with radii ε. The proof is complete.

The next result is a variant of Theorem 3.2 which shows that condition (iii) in
Theorem 3.2 has an equivalent form which is easier to verify for asymptotic compactness
of dynamical systems associated with retarded LDSs.

Theorem 3.3. Let {un}∞n=1 = {(uni )i∈Z
}∞n=1 ⊂ C([−ν, 0]; �2). Then {un}∞n=1 is relative compact in

C([−ν, 0]; �2) if and only if the following conditions are satisfied:

(i) {un}∞n=1 is bounded in C([−ν, 0]; �2);
(ii) {un}∞n=1 is equicontinuous;
(iii) limk→∞lim supn→∞sups∈[−ν,0]

∑
|i|≥k |uni (s)|2 = 0.
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Proof. If {un}∞n=1 is relative compact in C([−ν, 0]; �2), then it follows from Theorem 3.2 that the
above conditions (i), (ii), and (iii) are satisfied. So, to complete the proof, we only need to
show that the above conditions (i), (ii), and (iii) imply the conditions in Theorem 3.2. Given
ε > 0, it follows from condition (iii) that there exists K1(ε) > 0 such that

lim sup
n→∞

sup
s∈[−ν,0]

∑
|i|≥K1(ε)

∣∣uni (s)∣∣2 < ε2

2
, (3.12)

which implies that there existsN(ε) > 0 such that

sup
s∈[−ν,0]

∑
|i|≥K1(ε)

∣∣uni (s)∣∣2 < ε2, ∀n > N(ε). (3.13)

By Lemma 3.1, we find that there exists K2(ε) > 0 such that

sup
s∈[−ν,0]

∑
|i|≥K2(ε)

∣∣uni (s)∣∣2 < ε2, ∀1 ≤ n ≤N(ε). (3.14)

Take K(ε) = max{K1(ε), K2(ε)}. It follows from (3.13) and (3.14) that

sup
s∈[−ν,0]

∑
|i|≥K(ε)

∣∣uni (s)∣∣2 < ε2, ∀n ≥ 1, (3.15)

which implies that

sup
{un}∞n=1

sup
s∈[−ν,0]

∑
|i|≥k

∣∣uni (s)∣∣2 ≤ ε2, ∀k ≥ K(ε). (3.16)

Therefore,

lim
k→∞

sup
n∈N

sup
s∈[−ν,0]

∑
|i|≥k

∣∣uni (s)∣∣2 = 0, (3.17)

which together with conditions (i) and (ii) shows that the conditions in Theorem 3.2 are
satisfied with S = {un}∞n=1. The proof is complete.

4. Stochastic Retarded Lattice Differential Equations

In this section, we show that there is a continuous random dynamical system generated by
stochastic retarded LDS (1.3)-(1.4).



Abstract and Applied Analysis 9

For convenience, we now formulate (1.3)-(1.4) as a stochastic functional differential
equation in �2. Define the linear operatorsA, B, B∗, λ from �2 to �2 as follows. For u = (ui)i∈Z

∈
�2,

(Au)i = −ui−1 + 2ui − ui+1, (λu)i = λiui,

(Bu)i = ui+1 − ui, (B∗u)i = ui−1 − ui,
(4.1)

for each i ∈ Z. Then A = BB∗ = B∗B and (B∗u, v) = (u, Bv) for all u, v ∈ �2. Therefore,
(Au, u) ≥ 0 for all u ∈ �2. Let ei ∈ �2 denote the element having 1 at position i and all the
other components 0. Then

w(t) =
∑
i∈Z

aiwi(t)ei with (ai)i∈Z
∈ �2, (4.2)

is an �2-valued two-sided Wiener process with a symmetric nonnegative finite trace
covariance operator Q such that Qei = aiei. For ξ ∈ C, let f(ξ) = (fi(ξi))i∈Z

. Then stochastic
retarded LDS (1.3)-(1.4) can be rewritten as a stochastic functional equation in �2

du =
[−(A + λ)u + f

(
ut
)
+ g
]
dt + dw, t > 0, (4.3)

with the initial data

u(t) = u0(t), t ∈ [−ν, 0]. (4.4)

In the sequel, we consider the probability space (Ω,F,P)where

Ω =
{
ω ∈ C

(
R, �2

)
: ω(0) = 0

}
, (4.5)

F is the Borel σ-algebra induced by the compact-open topology ofΩ, and P the corresponding
Wiener measure on (Ω,F)with respect to the covariance operator Q. Let

ϑtω(·) = ω(· + t) −ω(t), t ∈ R. (4.6)

Then (Ω,F,P, (ϑt)t∈R
) is an ergodic metric dynamical system. Since the above probability

space is canonical, we have

w(t, ω) = ω(t), w(t, ϑsω) = w(t + s,ω) −w(s,ω). (4.7)

By Proposition A.1 in [26], there exists a {ϑt}t∈R
-invariant set Ω̃ ∈ F of full P-measure such

that

lim
t→±∞

‖ω(t)‖
t

= 0 ∀ω ∈ Ω̃. (4.8)
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Let F be the P-completion of F and let

Ft =
∨
s≤t

Ft
s, t ∈ R, (4.9)

with

Ft
s = σ{w(τ2) −w(τ1) : s ≤ τ1 ≤ τ2 ≤ t} ∨N, (4.10)

where σ{w(τ2) −w(τ1) : s ≤ τ1 ≤ τ2 ≤ t} is the smallest σ-algebra generated by the random
variable w(τ2) −w(τ1) for all τ1, τ2 such that s ≤ τ1 ≤ τ2 ≤ t and N is the collection of P-null
sets of F. Note that

ϑ−1
τ Ft

s = Ft+τ
s+τ , (4.11)

so (Ω,F,P, (ϑt)t∈R
, (Ft

s)s≤t) is a filtered metric dynamical system.
Note that problem (4.3)-(4.4) is interpreted as an integral equation as follows:

u(t) = u0(0) +
∫ t
0

(−(A + λ)u + f(us) + g
)
ds +w(t), t > 0,

u(t) = u0(t), t ∈ [−ν, 0].
(4.12)

P-a.s. for any u0 ∈ C. By the theory in [46], we deal with (4.12) on the complete probability
space (Ω,F,P). For λ and f , we make the following assumptions.

(A1) There exist positive constants λl and λu such that

0 < λl ≤ λi ≤ λu <∞, i ∈ Z. (4.13)

(A2) f(0) = 0.

(A3) For any r > 0, there exists a constant l(r) > 0 such that

∥∥f(ξ) − f(η)∥∥ ≤ l(r)∥∥ξ − η∥∥C, (4.14)

for all ξ, η ∈ C([−ν, 0]; �2) with ‖ξ‖C, ‖η‖C ≤ r.
(A4) There exist positive constants α0 and cf such that

∫ t
0
eαs
∣∣fi(usi )∣∣2ds ≤ c2f ∫ t

−ν
eαs|ui(s)|2ds, (4.15)

for all α ∈ (0, α0), t > 0, u ∈ C([−ν, t]; �2), i ∈ Z.

(A5) λl > cf .
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We now associate a continuous random dynamical systemwith the stochastic retarded
lattice differential equations over (Ω,F,P, (ϑt)t∈R

). To this end, we introduce an auxiliary
Ornstein-Uhlenbeck process on (Ω,F,P, (ϑt)t∈R

) and transform the stochastic retarded lattice
differential equations into a random one. Let

z(t, ω) =

⎧⎪⎨⎪⎩
∫ t
−∞

(A + λ)e−(A+λ)(t−s)(w(t, ω) −w(s,ω))ds, ω ∈ Ω̃,

0, ω /∈ Ω̃,
(4.16)

where e−(A+λ)t is the uniformly continuous semigroup on �2 generated by bounded linear
operator −A − λ. Then by (4.8), (4.16) is well defined. The process z(t), t ∈ R is a stationary,
Gaussian process. Moreover, the random variable ‖z(0, ω)‖ is tempered and for each ω ∈ Ω,
the mapping t → z(t, ω) is continuous. Furthermore, by Lemma 5.13 in [46], we find that for
all t ∈ R and P-a.s.,

z(t) =
∫ t
−∞

e−(A+λ)(t−s)dw(s). (4.17)

Noticing that

∫ t
−∞

e−(A+λ)(t−s)dw(s) = e−(A+λ)tz(0) +
∫ t
0
e−(A+λ)(t−s)dw(s), (4.18)

and using the Itô formula, we get from (4.17) that for all t > 0 and P-a.s.,

z(t) = z(0) −
∫ t
0
(A + λ)z(s)ds +w(t). (4.19)

Setting v(t) = u(t)−z(t) for t ≥ −ν in (4.12), then by (4.19), we obtain a deterministic equation,
P-a.s.

v(t) = v0(0) +
∫ t
0

(−(A + λ)v + f(vs + zs) + g
)
ds, t > 0,

v(t) = v0(t), t ∈ [−ν, 0],
(4.20)

which is equivalent to the functional differential equation

dv

dt
= −(A + λ)v + f

(
vt + zt

)
+ g, t > 0, (4.21)
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with initial condition

v(t) = v0(t), t ∈ [−ν, 0]. (4.22)

Here v0(t) = u0(t) − z0(t, ω), t ∈ [−ν, 0].
Problem (4.21)-(4.22) is a deterministic functional differential equation with random

coefficients, which can be solved pathwise. We now establish the following result for problem
(4.21)-(4.22).

Theorem 4.1. Let T > 0 and ω ∈ Ω be fixed. Then the following properties hold.

(1) For each v0 ∈ C, problem (4.21)-(4.22) has a unique solution v(·, ω, v0) ∈ C([−ν, T]; �2).
(2) Let v1(·, ω, v0

1) and v2(·, ω, v0
2) be the solutions of problem (4.21)-(4.22) for the initial data

v0
1 and v

0
2 , respectively. Then there exists a constant c(T) > 0 such that for all t ∈ [0, T]

∥∥∥vt1(·, ω, v0
1) − vt2(·, ω, v0

2)
∥∥∥
C
≤
∥∥∥v0

1 − v0
2

∥∥∥
C
ec(T)t. (4.23)

Proof. (1) Denote

F(t, ξ, ω) = −Aξ(0) − λξ(0) + f(ξ + zt(·, ω)) + g, (4.24)

for all t ≥ 0, ξ ∈ C and ω ∈ Ω. Then by (A1)–(A3), we have that

‖F(t, ξ, ω) − F(t, ξ, ω)‖ ≤ [4 + λu + lf(r)]∥∥ξ − η∥∥C, (4.25)

for any ξ, η ∈ C with ‖ξ‖C‖ ≤ r, ‖η‖C‖ ≤ r. Therefore, F satisfies local Lipschitz condition and
maps the bounded sets of C into the bounded sets of �2. Then by using a standard argument,
one can show that for each v0 ∈ C, there exists a Tmax ≤ ∞ such that problem (4.21)-(4.22) has
a unique solution v on [0, Tmax). Moreover, if Tmax <∞ then

lim sup
t↑Tmax

∥∥vt∥∥C = ∞. (4.26)

We prove now that this local solution is a global one. Let T ∈ (0, Tmax). By (A5), we can choose
β > 0 small enough such that 2λl > 2cf + β. Taking the inner product of (4.21)with v in �2, we
get

1
2
d

dt
‖v‖2 + (Av, v) + (λv, v) =

(
f
(
vt + zt

)
, v
)
+
(
g, v
)
. (4.27)

Clearly,

(Av, v) = (Bv, Bv) ≥ 0, (λv, v) =
∑
i∈Z

λiv
2
i ≥ λl‖v‖2. (4.28)
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Using the Young inequality, we find that

(
f
(
vt + zt

)
, v
) ≤ ∥∥f(vt + zt)∥∥‖v‖ ≤ cf

2
‖v‖2 + 1

2cf

∥∥f(vt + zt)∥∥2,
(
g, v
) ≤ ∥∥g∥∥‖v‖ ≤ β

2
‖v‖2 + 1

2β
∥∥g∥∥2. (4.29)

Then it follows from (4.27), (4.28), (4.29) that

d

dt
‖v‖2 ≤ −

(
2λl − cf − β

)
‖v‖2 + 1

cf

∥∥f(vt + zt(ϑ·ω))
∥∥2 + 1

β

∥∥g∥∥2. (4.30)

Choose α ∈ (0, α0) small enough such that 2λl > 2cf + α + β. Then by (4.30), we obtain

d

dt

(
eαt‖v‖2

)
≤ −
(
2λl − cf − α − β

)
eαt‖v‖2 + eαt

cf

∥∥f(vt + zt)∥∥2 + eαt

β

∥∥g∥∥2. (4.31)

Now, we can also choose γ > 0 small enough such that 2λl > (2 + γ)cf + α + β. Integrating
(4.31) over [0, t] (t ∈ [0, T]) leads to

eαt‖v(t)‖2 ≤ ‖v(0)‖2 −
(
2λl − cf − α − β

)∫ t
0
eαs‖v(s)‖2ds

+
1
cf

∫ t
0
eαs
∥∥f(vs + zs)∥∥2ds + ∥∥g∥∥2

β

∫ t
0
eαsds.

(4.32)

Using the Young inequality and (A4), we find that

1
cf

∫ t
0
eαs
∥∥f(vs + zs)∥∥2ds ≤ cf

∫ t
−ν
eαs‖v(s) + z(s)‖2ds

≤ cf

∫ t
0
eαs
[(
1 + γ

)‖v(s)‖2 + (1 + γ−1)‖z(s)‖2]ds
+ cf

∫0

−ν
eαs‖v(s) + z(s)‖2ds.

(4.33)



14 Abstract and Applied Analysis

Then by (4.32) and (4.33), we obtain

eαt‖v(t)‖2 ≤ −
(
2λl − (2 + γ)cf − α − β

)∫ t
0
eαs‖v(s)‖2ds + ‖v(0)‖2

+

∥∥g∥∥2
αβ

eαt + cf

∫0

−ν
eαs‖v(s) + z(s)‖2ds + c1

∫ t
0
eαs‖z(ϑsω)‖2ds

≤ (1 + 2νcf
)∥∥∥v0

∥∥∥2
C
+ 2νcf

∥∥∥z0∥∥∥2
C
+ c1

∫ t
0
eαs‖z(s)‖2ds +

∥∥g∥∥2
αβ

eαt,

(4.34)

where c1 = cf(1 + γ−1). Consequently,

‖v(t)‖2 ≤
[(
1 + 2νcf

)∥∥∥v0
∥∥∥2
C
+ 2νcf

∥∥∥z0∥∥∥2
C

]
e−αt + c1

∫ t
0
eα(s−t)‖z(s)‖2ds +

∥∥g∥∥2
αβ

. (4.35)

Hence, for fixed σ ∈ [−ν, 0], we get that for t ∈ (−σ, T],

‖v(t + σ)‖2 ≤
[(
1 + 2νcf

)∥∥∥v0
∥∥∥2
C
+ 2νcf

∥∥∥z0∥∥∥2
C

]
e−α(t+σ) + c1

∫ t+σ
0

eα(s−t−σ)‖z(s)‖2ds +
∥∥g∥∥2
αβ

≤
[(
1 + 2νcf

)∥∥∥v0
∥∥∥2
C
+ 2νcf

∥∥∥z0∥∥∥2
C

]
eα(ν−t) + c1eαν

∫ t
0
eα(s−t)‖z(s)‖2ds +

∥∥g∥∥2
αβ

,

(4.36)

and for t ∈ [0,−σ],

‖v(t + σ)‖2 ≤
∥∥∥v0
∥∥∥2
C
≤
[(
1 + 2νcf

)∥∥∥v0
∥∥∥2
C
+ 2νcf

∥∥∥z0∥∥∥2
C

]
eα(ν−t). (4.37)

In view of (4.36) and (4.37), we find that for all t ∈ [0, T],

∥∥vt∥∥2C ≤
[(
1 + 2νcf

)∥∥∥v0
∥∥∥2
C
+ 2νcf

∥∥∥z0∥∥∥2
C

]
eα(ν−t) + c1eαν

∫ t
0
eα(s−t)‖z(s)‖2ds +

∥∥g∥∥2
αβ

. (4.38)

Therefore, for all t ∈ [0, T],

∥∥vt∥∥2C ≤
[(
1 + 2νcf

)∥∥∥v0
∥∥∥2
C
+ 2νcf

∥∥∥z0∥∥∥2
C

]
eαν + c1eαν

∫T
0
‖z(s)‖2ds +

∥∥g∥∥2
αβ

, (4.39)

which, together with (4.26), implies that Tmax = ∞. This proves the property (1).
(2) Let ṽ(t, ω) = v1(t, ω, v0

1) − v1(t, ω, v0
2). By (4.38), there exists a constant r(T) > 0

such that

∥∥vt1∥∥C ≤ r(T), ∥∥vt2∥∥C ≤ r(T). (4.40)
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Then from (4.20) and (4.25), we have that for t ∈ [0, T]

‖ṽ(t)‖ ≤ ‖ṽ(0)‖ + [4 + λu + lf(r(T))] ∫ t
0
‖ṽs‖Cds. (4.41)

Hence, for fixed σ ∈ [−ν, 0], we get that for t ∈ (−σ, T],

‖ṽ(t + σ)‖ ≤ ‖ṽ(0)‖ + [4 + λu + lf(r(T))] ∫ t+σ
0

‖ṽs‖Cds

≤
∥∥∥ṽ0
∥∥∥
C
+
[
4 + λu + lf(r(T))

] ∫ t
0
‖ṽs‖Cds,

(4.42)

and for t ∈ [0,−σ],

‖ṽ(t + σ)‖ ≤
∥∥∥ṽ0
∥∥∥
C
. (4.43)

In view of (4.42) and (4.43), we find that for all t ∈ [0, T],

∥∥ṽt∥∥C ≤
∥∥∥ṽ0
∥∥∥
C
+
[
4 + λu + lf(r(T))

] ∫ t
0
‖ṽs‖Cds. (4.44)

The Gronwall inequality implies that for all t ∈ [0, T],

∥∥ṽt∥∥C ≤
∥∥∥ṽ0
∥∥∥
C
e[4+λ

u+lf (r(T))]t. (4.45)

This proves the property (2). The proof is complete.

Conversely, if for each ω ∈ Ω, v(t, ω, v0) is a solution of problem (4.21)-(4.22) with
v0(·) = u0(·) − z0(·, ω), then the process

u
(
t, ω, u0

)
= v
(
t, ω, v0

)
+ z(t, ω) (4.46)

is a solution of problem (4.3)-(4.4). And if u0 is a C-valued F0-measurable random variable,
then u(t, ω, u0) is an Ft-adapted process.

Theorem 4.2. Problem (4.21)-(4.22) generates a continuous random dynamical system φ over
(Ω,F,P, (ϑ)t∈R

), where

φ
(
t, ω, v0

)
= vt
(
·, ω, v0

)
, for t ≥ 0, ω ∈ Ω, v0 ∈ C. (4.47)
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Moreover, if one defines ψ by

ψ
(
t, ω, u0

)
= ut
(
·, ω, u0

)
, for t ≥ 0, ω ∈ Ω, u0 ∈ C, (4.48)

then ψ is another continuous random dynamical system associated to problem (4.3)-(4.4).

Proof. From property (2) of Theorem 4.1, it follows that φ(·, ω, ·) : [0,∞) × C → C is
continuous for all ω ∈ Ω. By (4.20), we have that for s, t ≥ 0 and σ ∈ [−ν, 0],

φ
(
t, ϑsω, φ

(
s,ω, v0

))
(σ) = φ

(
s,ω, v0

)
(0) +

∫ t+σ
0

F
(
τ, φ
(
τ, ϑsω, φ

(
s,ω, v0

))
, ϑsω

)
dτ.

(4.49)

Then again by (4.20) and noticing that

F(t, ξ, ϑsω) = F(t + s, ξ, ω), ∀s, t ≥ 0, ξ ∈ C, (4.50)

we get that

φ
(
t, ϑsω, φ

(
s,ω, v0

))
(σ) = v0(0) +

∫s
0
F
(
τ, φ
(
τ,ω, v0

)
, ω
)
dτ

+
∫ t+s+σ
s

F
(
τ, φ
(
τ − s, ϑsω, φ

(
s,ω, v0

))
, ω
)
dτ.

(4.51)

For each ω ∈ Ω consider

Φ
(
τ,ω, v0

)
=

{
φ
(
τ,ω, v0), if 0 ≤ τ ≤ s,

φ
(
τ − s, ϑsω, φ

(
s,ω, v0)), if s < τ ≤ t + s. (4.52)

Then for τ = t + s, we have

Φ
(
t + s,ω, v0

)
= φ
(
t, ϑsω, φ

(
s,ω, v0

))
for s, t ≥ 0. (4.53)

It follows from (4.51) that

Φ
(
t + s,ω, v0

)
(σ) = v0(0) +

∫ t+s+σ
0

F
(
τ,Φ
(
τ,ω, v0

)
, ω
)
dτ, (4.54)

for all σ ∈ [−ν, 0]. By the uniqueness of the solution of (4.20), we find that

Φ
(
t + s,ω, v0

)
= φ
(
t + s,ω, v0

)
, (4.55)
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while (4.53) implies

φ
(
t + s,ω, v0

)
= φ
(
t, ϑsω, φ

(
s,ω, v0

))
for s, t ≥ 0. (4.56)

Hence, φ is a continuous random dynamical system.
As for ψ, noticing that

ψ
(
t, ω, u0

)
= φ
(
t, ω, u0 − z0(ω)

)
+ zt(ω), for t ≥ 0, ω ∈ Ω and u0 ∈ C, (4.57)

we get from (4.56) that for s, t ≥ 0,

ψ
(
t, ϑsω, ψ

(
s,ω, u0

))
= φ
(
t, ϑsω, φ

(
s,ω, u0 − z0(ω)

))
+ zt(ϑsω)

= φ
(
t + s,ω, u0 − z0(ω)

)
+ zt+s(ω)

= ψ
(
t + s,ω, u0

)
.

(4.58)

Therefore, ψ is also a continuous random dynamical system. Furthermore, φ and ψ are
conjugated random dynamical systems, that is

ψ(t, ω, T(ω, ξ)) = T
(
ϑtω, φ(t, ω, ξ)

)
, for any ξ ∈ C, (4.59)

where for every ω ∈ Ω, T(ω, ξ) = ξ + z0(ω) is a homeomorphism of C. The proof is complete.

5. Existence of Random Attractors

In this section, we prove the existence of a D-random attractor for the random dynamical
system ψ associated with (4.3)-(4.4). We first establish the existence of a D-random attractor
for its conjugated random dynamical system φ, then the existence of aD-random attractor for
ψ follows from the conjugation relation between φ and ψ. To this end, we will derive uniform
estimates on the solutions of problem (4.21)-(4.22)when t → ∞with the purpose of proving
the existence of a bounded random absorbing set and the asymptotic compactness for φ.

From now on, we always assume that D is the collection of all tempered subsets of C
with respect to (Ω,F,P, (ϑt)t∈R

). The next lemma shows that φ has a random absorbing set in
D.

Lemma 5.1. There exists K ∈ D such that K is a random absorbing set for φ in D, that is, for any
B ∈ D and P-a.e. ω ∈ Ω, there exists TB(ω) > 0 such that

φ(t, ϑ−tω, B(ϑ−tω)) ⊆ K(ω) ∀t ≥ TB(ω). (5.1)
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Proof. Replacing ω by ϑ−tω in (4.38), we get that for all t ≥ 0,

∥∥∥vt(ϑ−tω, v0(ϑ−tω))
∥∥∥2
C
≤
[(
1 + 2νcf

)∥∥∥v0(ϑ−tω)
∥∥∥2
C
+ 2νcf

∥∥∥z0(ϑ−tω)
∥∥∥2
C

]
eα(ν−t)

+ c1eαν
∫ t
0
eα(s−t)‖z(s, ϑ−tω))‖2ds +

∥∥g∥∥2
αβ

≤
[(
1 + 2νcf

)∥∥∥v0(ϑ−tω)
∥∥∥2
C
+ 2νcf

∥∥∥z0(ϑ−tω)
∥∥∥2
C

]
eα(ν−t)

+ c1eαν
∫0

−∞
eαs‖z(0, ϑsω))‖2ds +

∥∥g∥∥2
αβ

.

(5.2)

By assumption, B ∈ D is tempered. On the other hand, by Remark 2.6, ‖z0(ω)‖2C is also
tempered. Therefore, if v0(ϑ−tω) ∈ B(ϑ−tω), then there exists TB(ω) > 0 such that for all
t ≥ TB(ω),

[(
1 + 2νcf

)∥∥∥v0(ϑ−tω)
∥∥∥2
C
+ 2νcf

∥∥∥z0(ϑ−tω)
∥∥∥2
C

]
eα(ν−t) ≤ 1 + r(ω), (5.3)

where

r(ω) =
∫0

−∞
eαs‖z(0, ϑsω)‖2ds (5.4)

is tempered by Remark 2.7. Then it follows from (5.2) and (5.3) that for all t ≥ TB(ω),

∥∥∥vt(ϑ−tω, v0(ϑ−tω))
∥∥∥2
C

≤ (c1eαν + 1)r(ω) +

∥∥g∥∥2
αβ

+ 1. (5.5)

Given ω ∈ Ω, denote by

K(ω) =
{
ξ ∈ C : ‖ξ‖2C ≤ r1(ω)

}
, (5.6)

where

r1(ω) = (c1eαν + 1)r(ω) +

∥∥g∥∥2
αβ

+ 1 (5.7)

is tempered. ThenK ∈ D. Further, (5.5) indicates thatK is a random absorbing set for φ in D,
which completes the proof.
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Lemma 5.2. Let B ∈ D and v0(ω) ∈ B(ω). Then for every ε > 0 and P-a.e. ω ∈ Ω, there exist
T ∗ = T ∗(B,ω, ε) > 0 and N∗ = N∗(ω, ε) > 0 such that the solution v(t, ω, v0(ω)) of problem
(4.21)-(4.22) satisfies, for all t ≥ T ∗,

sup
s∈[−ν,0]

∑
|i|≥N∗

∣∣∣vti(s, ϑ−tω, u0(ϑ−tω)
)∣∣∣2 ≤ ε. (5.8)

Proof. Let ρ be a smooth function defined on R
+ such that 0 ≤ ρ(s) ≤ 1 for all s ≥ 0, and

ρ(s) =

{
0, 0 ≤ s ≤ 1,
1, s ≥ 2.

(5.9)

Then there exists a positive deterministic constant c2 such that |ρ′(s)| ≤ c2 for all s ≥ 0. Taking
the inner product of (4.21) with x = (ρ(|i|/k)vi) in �2, we obtain that

1
2
d

dt

∑
i∈Z

ρ

( |i|
k

)
|vi|2 + (Av, x) + (λv, x) =

(
f
(
vt + zt

)
, x
)
+
(
g, x
)
. (5.10)

We now estimate terms in (5.10) as follows. First, we get from (A1) that

(λv, x) =
∑
i∈Z

λiρ

( |i|
k

)
v2
i ≥ λl

∑
i∈Z

ρ

( |i|
k

)
|vi|2. (5.11)

Secondly, by the property of the cutoff function ρ, we estimate

(Av, x) = (Bv, Bx)

=
∑
i∈Z

(vi+1 − vi)
[
ρ

( |i + 1|
k

)
vi+1 − ρ

( |i|
k

)
vi

]

=
∑
i∈Z

(vi+1 − vi)
[(

ρ

( |i + 1|
k

)
− ρ
( |i|
k

))
vi+1 + ρ

( |i|
k

)
(vi+1 − vi)

]

=
∑
i∈Z

[
ρ

( |i + 1|
k

)
− ρ
( |i|
k

)]
(vi+1 − vi)vi+1 + ρ

( |i|
k

)
(vi+1 − vi)2

≥
∑
i∈Z

[
ρ

( |i + 1|
k

)
− ρ
( |i|
k

)]
(vi+1 − vi)vi+1

≥ −
∑
i∈Z

∣∣ρ′(ξi)∣∣
k

|vi+1 − vi||vi+1|

≥ − c2
k

∑
i∈Z

(
|vi+1|2 + |vi||vi+1|

)
≥ −2c2

k
‖v‖2.

(5.12)
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Thirdly, using the Young inequality and (A3), we find that

(
f
(
vt + zt

)
, x
)
=
∑
i∈Z

ρ

( |i|
k

)
f
(
vti + z

t
i(ϑ·ω)

)
≤ cf

2

∑
i∈Z

ρ

( |i|
k

)
|vi|2 + 1

2cf

∑
i∈Z

ρ

( |i|
k

)
|f(vti + zti(ϑ·ω)

∣∣2. (5.13)

Finally, using the Young inequality again, we obtain that

(
g, x
)
=
∑
i∈Z

ρ

( |i|
k

)
givi ≤

β

2

∑
i∈Z

ρ

( |i|
k

)
v2
i +

1
2β

∑
i∈Z

ρ

( |i|
k

)
g2
i . (5.14)

Taking into account (5.10), (5.11), (5.12), (5.13), and (5.14), we obtain that

d

dt

∑
i∈Z

ρ

( |i|
k

)
|vi|2 ≤ −

(
2λl − cf − β

)∑
i∈Z

ρ

( |i|
k

)
|vi|2

+
1
cf

∑
i∈Z

ρ

( |i|
k

)∣∣f(vti + zti)∣∣2
+
1
β

∑
i∈Z

ρ

( |i|
k

)
g2
i +

4c2
k

‖v‖2,

(5.15)

which implies

d

dt

(
eαt
∑
i∈Z

ρ

( |i|
k

)
|vi|2
)

≤ −
(
2λl − cf − α − β

)
eαt
∑
i∈Z

ρ

( |i|
k

)
|vi|2

+
1
cf
eαt
∑
i∈Z

ρ

( |i|
k

)∣∣f(vti + zti)∣∣2
+
1
β
eαt
∑
i∈Z

ρ

( |i|
k

)
g2
i +

4c2
k
eαt‖v‖2.

(5.16)
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Using the Young inequality and (A4), we get that

1
cf

∫ t
0
eαs
∑
i∈Z

ρ

( |i|
k

)∣∣f(vsi + zsi )∣∣2ds
≤ cf

∫ t
−ν
eαs
∑
i∈Z

ρ

( |i|
k

)
|vi(s) + zi(s)|2ds

≤ cf
∫ t
0
eαs
∑
i∈Z

ρ

( |i|
k

)[(
1 + γ

)|vi(s)|2 + (1 + γ−1)|zi(s)|2]ds
+ cf

∫0

−ν
eαs
∑
i∈Z

ρ

( |i|
k

)
|vi(s) + zi(s)|2ds.

(5.17)

Integrating (5.16) over [0, t] (t ≥ 0) leads to

eαt
∑
i∈Z

ρ

( |i|
k

)
|vi(t)|2 −

∑
i∈Z

ρ

( |i|
k

)
|vi(0)|2

≤ −
(
2λl − cf − α − β

)∫ t
0
eαs
∑
i∈Z

ρ

( |i|
k

)
|vi(s)|2ds

+
1
cf

∫ t
0
eαs
∑
i∈Z

ρ

( |i|
k

)
|f(vsi + zsi ∣∣2ds

+
1
β

∫ t
0
eαs
∑
i∈Z

ρ

( |i|
k

)
g2
i ds +

4c2
k

∫ t
0
eαs‖v(s)‖2ds.

(5.18)

It follows from (5.17) and (5.18) that

eαt
∑
i∈Z

ρ

( |i|
k

)
|vi(t)|2 −

∑
i∈Z

ρ

( |i|
k

)
|vi(0)|2

≤ −
(
2λl − (2 + γ)cf − α − β

)∫ t
0
eαs
∑
i∈Z

ρ

( |i|
k

)
|vi(s)|2ds

+ cf

∫0

−ν
eαs
∑
i∈Z

ρ

( |i|
k

)
|vi(s) + zi(s)|2ds + eαt

αβ

∑
i∈Z

ρ

( |i|
k

)
g2
i

+ c1

∫ t
0
eαs
∑

|i|>k−1
|zi(s)|2ds + 4c2

k

∫ t
0
eαs‖v(s)‖2ds

≤ cf
∫0

−ν
eαs
∑
i∈Z

ρ

( |i|
k

)
|vi(s) + zi(s)|2ds + eαt

αβ

∑
i∈Z

ρ

( |i|
k

)
g2
i

+ c1

∫ t
0
eαs
∑

|i|>k−1
|zi(s)|2ds + 4c2

k

∫ t
0
eαs‖v(s)‖2ds,

(5.19)
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which implies

∑
i∈Z

ρ

( |i|
k

)
|vi(t)|2 ≤

[(
1 + 2νcf

)∥∥∥v0
∥∥∥2
C
+ 2νcf

∥∥∥z0∥∥∥2
C

]
e−αt +

1
αβ

∑
i∈Z

ρ

( |i|
k

)
g2
i

+ c1

∫ t
0
eα(s−t)

∑
|i|>k−1

|zi(s)|2ds + 4c2
k

∫ t
0
eα(s−t)‖v(s)‖2ds.

(5.20)

If we take t ≥ ν, we have that, for all σ ∈ [−ν, 0],

∑
i∈Z

ρ

( |i|
k

)
|vi(t + σ)|2

≤
[(
1 + 2νcf

)∥∥∥v0
∥∥∥2
C
+ 2νcf

∥∥∥z0∥∥∥2
C

]
e−α(t+σ) +

1
αβ

∑
i∈Z

ρ

( |i|
k

)
g2
i

+ c1

∫ t+σ
0

eα(s−t−σ)
∑

|i|>k−1
|zi(s)|2ds + 4c2

k

∫ t+σ
0

eα(s−t−σ)‖v(s)‖2ds

≤
[(
1 + 2νcf

)∥∥∥v0
∥∥∥2
C
+ 2νcf

∥∥∥z0∥∥∥2
C

]
eα(ν−t) +

1
αβ

∑
i∈Z

ρ

( |i|
k

)
g2
i

+ c1eαν
∫ t
0
eα(s−t)

∑
|i|>k−1

|zi(s)|2ds + 4c2eαν

k

∫ t
0
eα(s−t)‖v(s)‖2ds,

(5.21)

whence for all t ≥ ν,

sup
σ∈[−ν,0]

∑
i∈Z

ρ

( |i|
k

)∣∣vti(σ)∣∣2 ≤ [(1 + 2νcf
)∥∥∥v0

∥∥∥2
C
+ 2νcf

∥∥∥z0∥∥∥2
C

]
eα(ν−t)

+
1
αβ

∑
i∈Z

ρ

( |i|
k

)
g2
i + c1e

αν

∫ t
0
eα(s−t)

∑
|i|>k−1

|zi(s)|2ds

+
4c2eαν

k

∫ t
0
eα(s−t)

∥∥∥v(s,ω, v0(ω))
∥∥∥2ds.

(5.22)
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Replacing ω by ϑ−tω, we find that

sup
σ∈[−ν,0]

∑
i∈Z

ρ

( |i|
k

)∣∣∣vti(σ, ϑ−tω, v0(ϑ−tω)
)∣∣∣2

≤
[(
1 + 2νcf

)∥∥∥v0(ϑ−tω)
∥∥∥2
C
+ 2νcf

∥∥∥z0(ϑ−tω)
∥∥∥2
C

]
eα(ν−t)

+
1
αβ

∑
i∈Z

ρ

( |i|
k

)
g2
i + c1e

αν

∫ t
0
eα(s−t)

∑
|i|>k−1

|zi(s, ϑ−tω)|2ds

+
4c2eαν

k

∫ t
0
eα(s−t)

∥∥∥v(s, ϑ−tω, v0(ϑ−tω))
∥∥∥2ds.

(5.23)

We now estimate terms in (5.23) as follows. Since B ∈ D is tempered set, and ‖z0(ω)‖2C is
tempered function, if v0(ϑ−tω) ∈ B(ϑ−tω), then for every ε > 0, there exists T1 = T1(B,ω, ε) > 0
such that for all t ≥ T1,

[(
1 + 2νcf

)∥∥∥v0(ϑ−tω)
∥∥∥2
C
+ 2νcf

∥∥∥z0(ϑ−tω)
∥∥∥2
C

]
eα(ν−t) ≤ ε

4
. (5.24)

Secondly, since g ∈ �2, there existsN1 =N1(ω, ε) > 0 such that, for all k ≥N1,

1
αβ

∑
i∈Z

ρ

( |i|
k

)
g2
i ≤ 1

αβ

∑
|i|>k

ρ

( |i|
k

)
g2
i ≤ ε

4
. (5.25)

Thirdly, note that

∫0

−∞
eα(s)‖z(0, ϑsω)‖2ds <∞. (5.26)

Then by the Lebesgue theorem of dominated convergence, there exists N2 = N2(ω, ε) > 0
such that for all k ≥N2,

∫0

−∞
eαs
∑

|i|>k−1
|zi(0, ϑsω)|2ds ≤ ε

4c1eαν
. (5.27)

Then it follows from (5.27) that for all t ≥ 0 and k ≥N2,

c1e
αν

∫ t
0
eα(s−t)

∑
|i|>k−1

|zi(s, ϑ−tω)|2ds ≤ c1eαν
∫0

−∞
eαs
∑

|i|>k−1
|zi(ϑsω)|2ds ≤ ε

4
. (5.28)
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Next, we get from (4.35) that

4c2eαν

k

∫ t
0
eα(s−t)

∥∥∥v(s, ϑ−tω, v0(ϑ−tω)
)∥∥∥2ds

≤ 4c2
∥∥g∥∥2eαν
kα2β

+
4c1c2eαν

k

∫ t
0

∫ s
0
eα(τ−t)‖z(τ, ϑ−tω)‖2dτds

+
4c2eαν

k

[(
1 + 2νcf

)∥∥∥v0(ϑ−tω)
∥∥∥2
C
+ 2νcf

∥∥∥z0(ϑ−tω)
∥∥∥2
C

]
te−αt.

(5.29)

For the integral on the right side of (5.29), we have that for all t ≥ 0,

∫ t
0

∫ s
0
eα(τ−t)‖z(τ, ϑ−tω)‖2dτds =

∫ t
0
se−αs‖z(0, ϑ−sω)‖2ds

≤
∫∞

0
se−αs‖z(0, ϑ−sω)‖2ds <∞.

(5.30)

Since B ∈ D is tempered set, and ‖z0(ω)‖2C is tempered function, there exists T3 = T3(B,ω, ε) >
0 such that, for all t ≥ T3 and k ∈ N,

4c2eαν

k

[(
1 + 2νcf

)∥∥∥v0(ϑ−tω)
∥∥∥2
C
+ 2νcf

∥∥∥z0(ϑ−tω)
∥∥∥2
C

]
te−αt ≤ ε

8
. (5.31)

At the same time, there existsN3 =N3(ω, ε) > 0 such that, for all k ≥N3,

4c2
∥∥g∥∥2eαν
kα2β

+
4c1c2eαν

k

∫∞

0
se−αs‖z(0, ϑ−sω)‖2ds ≤ ε

8
. (5.32)

It follows from (5.29), (5.30), (5.31), and (5.32) that, for all t ≥ T3(ω, ε) and k ≥N3(ω, ε),

4c2eαν

k

∫ t
0
eα(s−t)

∥∥∥v(s, ϑ−tω, v0(ϑ−tω)
)∥∥∥2ds ≤ ε

4
. (5.33)

Let T4 = T4(B,ω, ε) = max{T1, T2, T3}, N4 = N4(ω, ε) = max{N1,N2,N3}. Then it follows
from (5.23), (5.24), (5.25), (5.28), and (5.33) that, for all t ≥ T4 and k ≥N4,

sup
σ∈[−ν,0]

∑
|i|≥2k

∣∣∣vti(σ, ϑ−tω, v0(ϑ−tω)
)∣∣∣2

< sup
σ∈[−ν,0]

∑
i∈Z

ρ

( |i|
k

)∣∣∣vti(σ, ϑ−tω, v0(ϑ−tω)
)∣∣∣2 ≤ ε. (5.34)

The proof is complete.
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Lemma 5.3. The random dynamical system φ is D-pullback asymptotically compact in C, that is, for
P-a.e. ω ∈ Ω, the sequence {φ(tn, ϑ−tnω, v

0
n(ϑ−tnω))}∞n=1 has a convergent subsequence in C provided

tn → ∞, B ∈ D and v0
n(ϑ−tnω) ∈ B(ϑ−tnω).

Proof. By (4.21) and Lemma 5.1, we find that, for every t ≥ TB(ω) + ν, and σ1, σ2 ∈ [−ν, 0],

∥∥∥φ(t, ϑ−tω, v0(ϑ−tω)
)
(σ1) − φ

(
t, ϑ−tω, v0(ϑ−tω)

)
(σ2)
∥∥∥

=
∥∥∥v(t + σ1, ϑ−tω, v0(ϑ−tω)

)
− v
(
t + σ2, ϑ−tω, v0(ϑ−tω)

)∥∥∥
≤
∥∥∥v′
(
t + ξ, ϑ−tω, v0(ϑ−tω)

)∥∥∥|σ1 − σ2| ≤ r2(ω)|σ1 − σ2|,
(5.35)

where

r2(ω) = 4 + λu + lf

(
sup

σ∈[−ν,0]

{√
r1(ϑσω) + ‖z(0, ϑσω)‖

})
+
∥∥g∥∥, (5.36)

and ξ is between σ1 and σ2.
By Lemma 5.1, (5.35), and Lemma 5.2, {φ(tn, ϑ−tnω, v

0
n(ϑ−tnω))}∞n=1 satisfies conditions

(i)–(iii) in Theorem 3.3. Therefore, {φ(tn, ϑ−tnω, v
0
n(ϑ−tnω))}∞n=1 is relative compact in C and

hence has a convergent subsequence in C.

We are now in a position to present our main result about the existence of aD-random
attractor for ψ in C.

Theorem 5.4. The random dynamical system ψ has a unique D-random attractor in C.

Proof. Notice that φ has a closed absorbing set K in D by Lemma 5.1 and is D-pullback
asymptotically compact in C by Lemma 5.3. Hence, the existence of a unique D-random
attractor {A1(ω)}ω∈Ω for φ follows from Proposition 2.11 immediately.

Since ψ and φ are conjugated by the random homeomorphism T(ω, ξ) = ξ+z0(ω), and
z0(ω) ∈ C is tempered, then by Proposition 1.8.3 in [45], ψ has a unique D-random attractor
{A2(ω)}ω∈Ω in C which is given by

A2(ω) =
{
ξ(ω) + z0(ω) : ξ(ω) ∈ A1(ω)

}
. (5.37)

The proof is complete.
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