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This paper surveys recent advances on univalent logharmonic mappings defined on a simply
or multiply connected domain. Topics discussed include mapping theorems, logharmonic
automorphisms, univalent logharmonic extensions onto the unit disc or the annulus, univalent
logharmonic exterior mappings, and univalent logharmonic ring mappings. Logharmonic
polynomials are also discussed, alongwith several important subclasses of logharmonicmappings.

1. Introduction

LetD be a domain in the complex plane C. Denote byH(D) (resp., byM(D)) the linear space
of all analytic (resp., meromorphic) functions in D, and let B(D) be the set of all functions
a ∈ H(D) satisfying |a(z)| < 1, z ∈ D. A nonconstant function f is logharmonic in D if f is
the solution of the nonlinear elliptic differential equation

fz = a
f

f
fz, (1.1)

a ∈ B(D). The function a is called the second dilatation of f . In contrast to the linear
space H(D) consisting of analytic functions, translations in the image do not preserve
logharmonicity, and the inverse of a logharmonic function is not necessarily logharmonic. If
f1 and f2 are two logharmonic functions with respect to a ∈ B(D), then f1 · f2 is logharmonic
with respect to the same a. If, in addition, 0 /∈ f2(D), then f1/f2 is also logharmonic.
The composition f ◦ φ of a logharmonic mapping f with a conformal premapping φ is
also logharmonic with respect to a ◦ φ. However, the composition φ ◦ f of a conformal
postmapping φ with a logharmonic mapping f is in general not logharmonic. If f is a
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logharmonic mapping in D, then f is a nonconstant locally quasiregular mapping, and,
therefore, it is continuous, open, and light. It follows that f can be represented as a
composition of two functions f = A ◦ χ, where χ is a locally quasiconformal homeomorphism
in D and A ∈ H(χ(D)). As an immediate consequence, the maximum principle, the identity
principle, and the argument principle all still hold for logharmonic mappings.

The study of logharmonic mappings was initiated in the main by Abdulhadi, Bshouty,
and Hengartner in the last century, and the basic theory of logharmonic mappings was
developed in [1–8].

A local representation for logharmonic mappings was given by Abdulhadi and
Bshouty in [1]. In particular, they obtained the following result.

Theorem 1.1. Let f be a logharmonic mapping inD with respect to a ∈ B(D). Suppose that f(z0) =
0 andB(z0, ρ)\{z0} ⊂ D\Z(f), whereB(z0, ρ) = {z : |z− z0| < ρ} andZ(f) = {z ∈ D : f(z) = 0}.
Then f admits the representation

f(z) = (z − z0)|z − z0|2βnh(z)g(z), z ∈ B(z0, ρ
)
, (1.2)

where n ∈ N, β = na(z0)(1 + a(z0))/(1 − |a(z0)|2) and, therefore, Re(β) > −n/2. The functions h
and g are inH(B(z0, ρ)), with h(z0)/= 0 and g(z0) = 1.

As a direct consequence of Theorem 1.1, we have the following global representation
for logharmonic mappings.

Corollary 1.2. LetD be a simply connected domain in C and f a logharmonic mapping inD. If f has
exactly p zeros {zk}pk=1 in D (counting multiplicities), then f admits a global representation given
by

f(z) =

[
p∏

k=1

(z − zk)|z − zk|2βk
]

h(z)g(z), (1.3)

where βk = a(zk)(1 + a(zk))/(1 − |a(zk)|2) and, therefore, Re(βk) > −1/2. The functions h and g
are inH(D), and 0 /∈ h · g(D).

For the converse, Abdulhadi and Hengartner [2] proved the following theorem.

Theorem 1.3. Suppose that f(z) = h(z)g(z) is defined in a domainD, where h and g are inH(D),
such that f(D) does not lie on a logarithmic spiral. Then either f = g or f is a solution of

fz(z) = a
f(z)
f(z)

fz(z), a ∈M(D), |a|/= 1. (1.4)

Remark 1.4. The converse of Theorem 1.3 does not hold. Indeed, consider the partial dif-
ferential equation fz = (1/3)(f/f)fz. Then f1(z) = z6z2 and f2(z) = z|z| are solutions of
this equation. The function f1 can be written in the form hg while f2 could not.
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Remark 1.5. The function gw(z) = f(z) −w, w ∈ C, cannot be written in the form hg unless
w = 0 or f is a constant. However, it is a solution of the second Beltrami equation

(
∂gw(z)
∂z

)
= μw

(
z, gw

)∂gw(z)
∂z

, (1.5)

where

μw
(
z, gw

)
= a(z)

gw(z) +w
gw(z) +w

. (1.6)

Hence, |μw| ≡ |a| in D and is independent of w.

Corollary 1.6. The image f(D) of a nonconstant function f(z) = h(z)g(z) lies on a logarithmic
spiral if and only if f is a solution of (1.1) with |a| ≡ 1.

In the theory of quasiconformal mappings, it is proved that, for any measurable
function μ with |μ| < 1, the solution of Beltrami equation fz = μfz can be factorized in the
form f = ψ ◦ F, where F is a univalent quasiconformal mapping and ψ is an analytic function
(see [9]). For sense-preserving harmonic mappings, the answer is negative. In [10], Duren
and Hengartner gave a necessary and sufficient condition on sense-preserving harmonic
mappings f for the existence of such a factorization. Moreover, for logharmonic mappings,
such a factorization need not exist. For example, the function f(z) = z2/|1 − z|4 is a sense-
preserving logharmonic mapping with respect to a(z) = z, and f has no decomposition of
the desired form (see [11]). The following factorization theorem was proved in [11].

Theorem 1.7. Let f be a nonconstant logharmonic mapping defined in a domain D ⊂ C, and let a
be its second dilatation function. Then f can be factorized in the form f = F ◦ ϕ, for some analytic
function ϕ and some univalent logharmonic mapping F if and only if

(a) |a(z)|/= 1 in D,

(b) f(z1) = f(z2) implies a(z1) = a(z2).

Under these conditions, the representation is unique up to a conformal mapping; any
other representation f = F1 ◦ ϕ1 has the form F1 = F ◦ ψ−1 and ϕ1 = ψ ◦ ϕ for some conformal
mapping defined in ϕ(D).

Consider now the logharmonic mapping f(z) = ze1/ze−1/z. The point z = 0 is an
isolated singularity of f , and f is continuous at this point. However, f does not admit a
logharmonic-continuation to C. A further restriction is needed.

Theorem 1.8 (see [2] (logharmonic-continuation across an isolated singularity)). Let Dr be
the point disc Dr = {z : 0 < |z| < r}, and let f = hg defined in Dr be a logharmonic mapping with
respect to a ∈ B(D) satisfying limz→ 0f(z) = 0. Then f admits a logharmonic-continuation across
the origin and has the representation

f(z) = zn0zm0h0(z)g0(z), (1.7)
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where n0 and m0 are nonnegative integers, 0 ≤ m0 < n0, and h0 and g0 are analytic functions on
|z| < r satisfying h0(0)g0(0)/= 0.

Liouville’s theorem does not hold for entire logharmonic functions. The function
f(z) = exp(z) exp(−z) is a nonconstant bounded logharmonic in C. Its dilatation is a(z) ≡ −1.
However, the following modified version of Liouville’s theorem was given in [2].

Theorem 1.9 (modified Liouville’s theorem). Let f = hg be a bounded logharmonic function in
C. Then either the image f(C) is a circle centered at the origin with dilatation function a(z) ≡ −1 or
f is a constant.

Let f(z) = h(z)g(z) be a logharmonic mapping defined in a domainD with respect to
a ∈ B(D) satisfying |a(z)|/≡ 1. Let

(1) SG(D) = {z ∈ D : |a(z)| > 1},
(2) SL(D) = {z ∈ D : |a(z)| < 1},
(3) SE(D) = {z ∈ D : |a(z)| = 1},
(4) NZ(f −w,D) be the cardinality of Z(f −w,D), that is, the number of zeros of f −w

in D, multiplicity is not counted,

(5) VZ(f −w,G) be the number of zeros of f −w in SG(D), multiplicity counted.

The following argument principle for logharmonic mappings in D is shown in [2].

Theorem 1.10 (generalized argument principle for logharmonic mappings). LetD be a Jordan
domain, and let f = hg be a logharmonic mapping defined in the closure D with respect to a ∈ B(D)
satisfying |a(z)|/≡ 1. Fix w ∈ C such that Z(f −w,D) ∩ (∂D ∪ SE(D)) is empty. Then

VZ
(
f −w,SL(D)

) − VZ(f −w,SG(D)
)
=

1
2π

∮

∂D

d arg
(
f −w)

. (1.8)

As a consequence of the argument principle, the following result is obtained.

Theorem 1.11. Let fn be a sequence of logharmonic mappings defined in U with respect to a given
an ∈ B(U), where U is the unit disc. Suppose that an converges locally uniformly to a ∈ B(U) and
that fn converges locally uniformly to a logharmonic mapping f with respect to a. If w0 /∈ fn(U) for
all n ∈ N, then w0 /∈ f(U).

In Section 2, a survey is given on univalent logharmonic mappings defined in a simply
connected domain D of C. Section 3 deals with univalent logharmonic mappings defined on
multiply connected domains, while Section 4 considers logharmonic polynomials. The final
section of the survey discusses several important subclasses of logharmonic mappings.

2. Univalent Logharmonic Mappings in a Simply Connected Domain

2.1. Motivation

LetΩ be a domain in the complex planeC, and let S be a nonparametric minimal surface lying
over Ω. Then S can be represented by a function s = G(u, v), w = u + iv ∈ Ω, and there is a
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univalent orientation-preserving harmonic mapping w = F(z) from an appropriate domain
D of C onto Ωwhich determines S in the following sense. The mapping F is a solution of the
system of linear elliptic partial differential equation

Fz = AFz, (2.1)

where A ∈ H(D). Since F is orientation preserving, it follows that |A(z)| < 1 in D. The
function A is the second dilatation of F. The value (1 + |A(z)|)/(1 − |A(z)|) is the quotient of
the maximum value and the minimum value of the differential |dF(z)|when dz varies on the
unit circle (see, e.g., [12, 13]). The representation of the minimal surface S is given by three
real-valued harmonic functions (see, e.g., [13, 14]),

u(z) = Re(F(z)), v(z) = Im(F(z)), s(z) = Im
∫z √

AFz dz. (2.2)

Since (sz)
2 = −FzFz = −A(Fz)

2 inD, it follows that
√
A belongs toH(D). In particular,

each zero ofA is of even order. Since the Riemannian metric of S is ds2 = |Fz|2(1+ |A|)2|dz|2, it
follows that x = Re(z) and y = Im(z) are isothermal parameters for S. Moreover, the exterior
unit normal vector 
n(z) = (n1(z), n2(z), n3(z)), n3(z) ≥ 0, to the minimal surface S (known as
the Gauss mapping) depends only on the second dilatation function A of F. More precisely,


n =
(
2 Im

(√
A
)
, 2Re

(√
A
)
,
1 −A
1 +A

)
. (2.3)

The inverse of the stereographic projection of the Gauss mapping 
n, i/
√
A(z), is called the

Weierstrass parameter.
The following question arises: What are the domains D? If ϕ is univalent and analytic

and if F is univalent and harmonic, then the composition F ◦ ϕ (whenever well defined)
is a univalent harmonic mapping but ϕ ◦ F need not be harmonic. Hence, if F represents a
minimal surface overΩ (in the sense of relation (2.2)), then F(ϕ) represents the sameminimal
surface but in other isothermal parameters.

Suppose that Ω is a proper simply connected domain in C. Then, we may choose for
D any proper simply connected domain in C. In particular, D = U or D = Ω are appropriate
choices.

Consider now the left half-planeD = {z : Re(z) < 0}, and let F be a univalent harmonic
and orientation-preserving map defined in D satisfying the relation

F(z + αi) = F(z) + β ∀z ∈ D, (2.4)

where α and β are real constants. Applying the transformation (2π/β)F(2α/2π), it may be
assumed without loss of generality that α = β = 2π , that is,

F(z + 2πi) = F(z) + 2πi ∀z ∈ D. (2.5)

Whenever limx→−∞ Re(F(z)) = c for some c ∈ [−∞,∞), we will write Re(F(−∞)) = c.
Similarly, A(−∞) = c means that limx→−∞A(z) = c.
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Let UHP denote the class of all univalent harmonic orientation-preserving mappings
defined on the left half-plane D = {z : Re(z) < 0} satisfying

F(z + 2πi) = F(z) + 2πi ∀z ∈ D,
Re(F(−∞)) = −∞.

(2.6)

It follows that the second dilatation function A is periodic, that is, A(z + 2πi) = A(z) + 2πi in
D, and therefore the Gauss map is also periodic. Observe that A(−∞) exists. Furthermore, it
was shown in [6] that mappings in the class UHP admit the representation

F(z) = z + βx +H(z) +G(z), (2.7)

where

(a) H and G are inH(D) such that

(i) G(−∞) = 0 andH(−∞) exists and finite in C,
(ii) H(z + 2πi) = H(z) and G(z + 2πi) = G(z) for all z ∈ D;

(b)

∣∣∣∣∣
G′(z) + β

1 + β +H ′(z)

∣∣∣∣∣
< 1 on D,

β =
A(−∞)(1 −A(−∞))

1 − |A(−∞)|2
, and hence Re

(
β
)
> −1.

(2.8)

Define

f(z) = eF(log(z)), z ∈ U. (2.9)

Then f is a univalent logharmonic mapping inU with respect to a(z) = A(log(z)) and hence
a ∈ B(U). Observe that the family of all univalent logharmonic and orientation-preserving
mappings f defined in U satisfying f(0) = 0 is isomorphic to the class UHP. It was shown
in [4, 7] that it is easier to work with logharmonic mappings even if the differential equation
becomes nonlinear.

2.2. Univalent Logharmonic Mappings

Let D be a simply connected domain in C, D/=C, and suppose that f is a univalent
logharmonic mapping defined in D. If 0 /∈ f(D), then log(f(z)) is a univalent and harmonic
mapping in D. This mapping has been extensively studied in [15–18]. If f(0) = 0 and f is a
univalent logharmonic mapping defined in D, then the representation (1.2) of f becomes

f(z) = z|z|2βh(z)g(z), (2.10)
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for every z ∈ U, where

(a) β = a(0)(1 + a(0))/(1 − |a(0)|2), and so Re(β) > −1/2,
(b) h and g are inH(U) satisfying g(0) = 1 and 0 /∈ h · g(U).

It follows that f is locally quasiconformal. The analogue of Caratheodory’s Kernel
Theorem might fail for univalent logharmonic mappings. Indeed, each function

fr(z) =
z

(1 − z)2
exp

(
−2r

(
Re

∫z

0

(1 + z)
(1 + rz)(1 − z)dz

))
, 0 < r < 1, (2.11)

which is univalent and logharmonic with respect to ar(z) = −rz, satisfies the normalization
fr(0) = 0, (fr)z(0) = 1, and maps the unit disc U onto the slit domain C \ (−∞,−pr). The tip
pr of the omitted slit varies monotonically from −1/4 to −1 as r varies from 0 to 1. The limit
function limr→ 1fr(z) = f1(z) = (z(1 − z))/(1 − z) is univalent and logharmonic and maps U
onto U. It has the boundary value f(eit) = −1 for 0 < |t| ≤ π , and the cluster set of f1 at the
point 1 is the unit circle.

Let D be a simply connected domain in C and z0 ∈ D. The following characterization
theorem was proved in [1].

Theorem 2.1. Let f be a univalent mapping defined in D such that f(z0) = 0. Then f is of the form
hg if and only if f is a logharmonic mapping with respect to a ∈ B(D) satisfying a(z0) = m/(1+m),
m ∈ N ∪ {0}.

Univalent logharmonic mappings have the following properties.

Theorem 2.2 (see [1]). Let D be a simply connected domain in C and f a univalent logharmonic
mapping defined in D with respect to a ∈ B(D).

(a) Then fz(z)/= 0 for all z ∈ D whenever f(z)/= 0.

(b) If f(z0) = 0, then limz→ z0(z − z0)fz(z)/f(z) exists and is in C \ {0}. Therefore, (z −
z0)fz(z)/f(z) is a nonvanishing function inH(D).

(c) Let α be a complex number such that Re(α) > −1/2. Then F = f |f |2α is a univalent
logharmonic mapping with respect to

a∗ =
1 + α
1 + α

a + (α/(1 + α))
1 + a(α/(1 + α))

∈ B(D). (2.12)

There are few logharmonic mappings that are univalent on the whole complex plane
C. Indeed, Abdulhadi and Bshouty [1] showed the following.

Theorem 2.3. A function f is a univalent logharmonic mapping defined in C with respect to a ∈ U
if and only if

f(z) = const · (z − z0)|z − z0|2β, β =
a(1 + a)
(
1 − |a|2

) , z0 ∈ C. (2.13)
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Now let D be a simply connected proper domain in C and f a univalent logharmonic
function in D with respect to a ∈ B(D). Denote by ϕ a conformal mapping from the unit disc
U onto D. Then f ◦ ϕ is univalent logharmonic in U with respect to a∗ = a ◦ ϕ ∈ B(U).
Therefore, we may assume that D = U and f(0) = 0.

Analogous to the analytic case, we denote

SLh =
{
f(z) = z|z|2βhg : f is a univalent logharmonic mapping defined in U

with h(0) = g(0) = 1
}
.

(2.14)

Now 12β = 1, and SLh is not compact with respect to the topology of normal convergence.
Indeed, the sequence fn(z) = z|z|(1−n)/n is in SLh, and it converges uniformly to f(z) = z|z|−1
not in SLh. Our next result deals with the subclass S0

Lh of SLh defined by S0
Lh = {f ∈ SLh :

a(0) = 0 (resp., β = 0)}. The following result was proved in [1].

Theorem 2.4. S0
Lh

is compact in the topology of normal (locally uniform) convergence.

Remark 2.5. In contrast to univalent harmonic mappings, SLh is not a normal family. Indeed,

fn(z) =
z

(1 − z)2

∣∣∣∣∣
z

(1 − z)2

∣∣∣∣∣

2n

(2.15)

is not locally uniformly bounded for n sufficiently large.

The following interesting distortion theorem is due to Abdulhadi and Bshouty [1], and
it was used in the proof of the mapping theorem.

Theorem 2.6. If f ∈ S0
Lh, then |f(z)| ≥ |z|/4(1 + |z|)2. In particular, the disc {w : |w| < 1/16} is

in f(U).

2.3. Mapping Theorem

We look for an analogue of the Riemann Mapping Theorem. LetΩ/=C be a simply connected
domain in C, and let a ∈ B(U) be given. Fix z0 ∈ U and w0 ∈ Ω. We are interested in the
existence of a univalent logharmonic function f from U into Ω with respect to the given
function a and normalized by f(z0) = w0 and fz(z0) > 0. If |a| ≤ k < 1 for all z ∈ U, then the
univalent logharmonic mappings are quasiconformal, and therefore the problem is solvable.

Suppose that we want to find a univalent logharmonic mapping f with a(z) = −z,
normalized by f(0) = 0 and fz(0) > 0 such that f maps U onto Ω = C \ (−∞,−1]. Assume
that such a function exists. Then, using Theorem 5.1 (α = 0), it follows that f must be of the
form

f = const · z(1 − z)
(1 − z) . (2.16)

Observe that f is univalent inU, but mapsU onto a disc, and not onto a slit domain. In other
words, there is no univalent logharmonic mapping defined in U with respect to a(z) = −z
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satisfying f(0) = 0, fz(0) > 0, and f(U) = Ω. However, the following mapping theorem was
proved in [1].

Theorem 2.7. Let Ω be a bounded simply connected domain in C containing the origin, and whose
boundary is locally connected. Let a ∈ B(U) be given. Then there is a univalent logharmonic function
defined inU with the following properties.

(i) f is a solution of (1.1).

(ii) f(U) ⊂ Ω, normalized at the origin by f(z) = cz|z|2β(1 + o(1)), where β = a(0)(1 +
a(0))/(1 − |a(0)|2) and c > 0.

(iii) limz→ eitf(z) = f̂(eit) exists and is in ∂Ω for each t ∈ ∂U \ E, where E is a countable set.

(iv) For each eit0 ∈ ∂U, f∗(eit0) = ess limt↑t0 f̂(e
it) and f∗(eit0) = ess limt↓t0 f̂(e

it) exist and
are in ∂Ω.

(v) For eit0 ∈ E, the cluster set of f at eit0 lies on a helix joining the point f∗(eit0) to the point
f∗(eit0).

Remark 2.8. In the case where ‖a‖ = supz∈U|a(z)| < 1, properties (ii) and (iii) imply that
f(U) = Ω.

Remark 2.9. If eit0 ∈ E and f∗(eit0) = f∗(eit0), then the cluster set at eit0 is a circle. Suppose
that A = f∗(eit0)/= f∗(eit0) = B, then there are infinitely many helices joining A and B. But the
cluster set of f at eit0 lies on one of them. For example, the cluster set of

f(z) = z
(1 − z)
(1 − z) exp

(
−2 arg 1 − iz

1 − z
)

(2.17)

at z = 1 lies on the helix, γ(τ) = exp[−τ + i(π/2 + τ)] joining the points f∗(1) = −e−π/2
and f∗(1) = −e3π/2, where the cluster set of f at z = −i is the straight line segment from
f∗(−i) = −e−π/2 and f∗(−i) = −e3π/2.

The uniqueness of the mapping theorem was proved in [6] for the special case Ω is a
strictly starlike and bounded domain; that is, every ray starting at the origin intersects ∂Ω at
exactly one point.

Theorem 2.10 (uniqueness in the mapping theorem). Let a ∈ B(U) be given such that ‖a‖ =
supz∈U|a(z)| < 1. Let Ω be a strictly starlike and bounded domain. Then there exists a unique
univalent logharmonic function f(z) = z|z|2βh(z)g(z) with respect to a such that f(U) = Ω and
h(0) > 0.

2.4. Logharmonic Automorphisms

We consider univalent logharmonic mappings from U onto U. With no loss of generality,
it is assumed that f(0) = 0 and h(0) > 0. Otherwise, we consider an appropriate Möbius
transformation of the preimage. Let AUTLh(U) denote the class of such mappings. The
following two theorems established in [8] characterize completely mappings in AUTLh(U).
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Theorem 2.11. Let h and g be two nonvanishing analytic functions in U. Then f(z) =
z|z|2βh(z)g(z) is in AUTLh(U) satisfying h(0) > 0 and g(0) = 1 if and only if g = 1/h, Re(β) >
−1/2, and Re(zh′(z))/h(z) > −1/2 inU.

We now associate to each f(z) = z|z|2βh(z)/h(z) in AUTLh(U) with the mapping
ϕ(z) = z(h(z))2 ∈ S∗.

Theorem 2.12. (a) For each ϕ ∈ S∗ and for each β, Re(β) > −1/2, there is one and only one f ∈
AUTLh(U) such that f(z)/(ϕ(z)|z|2β) > 0 for every z ∈ U and h(0) = 1.

(b) For each a ∈ B(U), there is a unique solution of (1.1) which is in AUTLh(U).

Remark 2.13. Part (a) of Theorem 2.12 is quite surprising. Indeed, consider ϕ(z) = z/(1 − z)2
and β = 0. Then arg(f(eit)) = arg(ϕ(eit)) = ±π , almost everywhere; however, f(U) = U. To
be more precise, the corresponding mapping is f(z) = z(1 − z)/(1 − z) satisfying f(eit) = −1
for all 0 < |t| ≤ π , where the cluster set of f at the point 1 is the unit circle.

2.5. Univalent Logharmonic Mappings Extensions onto the Unit Disc

In 1926 Kneser [19] obtained the following result.

Theorem 2.14. Let Ω be a bounded simply connected Jordan domain, and let f∗ be an orientation-
preserving homeomorphism from the unit disc circle ∂U onto ∂Ω. Then, if f(U) = Ω, the solution of
the Dirichlet problem (the Poisson integral) is univalent on the unit discU.

Since f(U) always contains Ω and lies in the convex hull of Ω, Kneser used
Theorem 2.14 to obtain the following solution to a problem posed by Rado in [20].

Theorem 2.15. Let f∗ be a homeomorphism from ∂U onto ∂Ω, whereΩ is a bounded convex domain.
Then the Dirichlet solution f is univalent onU.

In 1945, Choquet [21] independently gave another proof of Theorem 2.15, and he
pointed out that it holds whenever Ω is not a convex domain.

We will use the following definition.

Definition 2.16. Let D be the unit disc U or the annulus A(r, 1), r ∈ (0, 1), and suppose that
f∗ is a continuous function defined on ∂D. One says that f is a logharmonic solution of the
Dirichlet problem if

(a) f is a solution of the form (1.1),

(b) f is continuous in D,

(c) f |∂D ≡ f∗.

The next two theorems proved in [6] deal with the solutions of the Dirichlet problem
for logharmonic mappings of the form (2.10).

Theorem 2.17. Let f∗ be a nonvanishing continuous complex-valued function defined on ∂U. Then
there exist h and g analytic inU which are independent of β, such that

f(z) = z|z|2βh(z)g(z) , Re
(
β
)
> −1

2
(2.18)
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is a logharmonic solution of the Dirichlet problem (i.e., f(eit) ≡ f∗(eit)). Furthermore, if g(0) = 1,
then h and g are uniquely determined.

Theorem 2.18. Let f∗ be an orientation-preserving homeomorphism from ∂U onto ∂U,
that is, f(eit) = eiλ(t), where λ is continuous and strictly monotonically increasing on [0, 2π).
Furthermore, suppose that λ(2π) = λ(0) + 2π . Then, for a given β with Re(β) > −1/2, the
logharmonic solution of the Dirichlet problem which is of the form f(z) = z|z|2βh(z)/h(z) is
univalent inU.

2.6. Boundary Behavior

Let f be a univalent logharmonic mapping in the unit disc U with respect to a ∈ B(U). If
|a(z)| ≤ k < 1 for all z ∈ U, then f is a quasiconformal map, and its boundary behavior is the
same as for conformal mappings. However, if |a| approaches one as z tends to the boundary,
then the boundary behavior of f is quite different. It may happen that the boundary values
are constant on an interval of ∂U, or that there are jumps as the following example shows.

Example 2.19. The function f(z) = z(1−z)/(1−z) is a univalent logharmonic mapping in the
unit disc U with respect to a(z) = −z, such that f(U) = U. It follows that f(eit) = −1 for all
0 < |t| ≤ π and that the cluster set of f at the point 1 is the unit circle.

The following theorem was stated in [1].

Theorem 2.20. Let Ω be a simply connected domain of C whose boundary ∂Ω is locally connected,
and a ∈ B(U). Let f be a univalent logharmonic mapping from U onto Ω satisfying f(0) = 0. Then
the nonrestricted limit f∗(eit) of f at eit exists on ∂U \ E, where E is a countable set. If eit ∈ E, then
f∗ jumps at eit, and the cluster set at eit is a subinterval of a logarithmic spiral.

The next theorem [22] shows that the boundary values of f depend strongly on the
values of a(eit).

Theorem 2.21. Let Ω be a simply connected domain of C whose boundary ∂Ω is locally connected
and a ∈ B(U). Suppose that the function a has an analytic extension across an open subinterval
I = {eit : σ < t < σ + 2π} of the unit circle ∂U, such that |a(z)| ≡ 1 in I. Let f be a univalent
logharmonic mapping with respect to a which maps U onto Ω and satisfies f(0) = 0. Then the
following relations hold in I.

(a) Let σ < t < σ + 2π and arg(f(z)) be a continuous function on the set Y := |z : 1/2 <
|z| < 1, σ < arg(z) < τ}. If σ < t < t + h < τ , then

log
(
f∗
(
ei(t+h)

))
− a(ei(t+h)) log(f∗(ei(t+h)

)) − log
(
f∗
(
eit
))

+ a(eit) log
(
f∗(eit)

)
+
∫ t+h

t

log
(
f∗(eiφ

))
da

(
eiφ

) ≡ 0.
(2.19)

(b) If f∗ is continuous at eit, then

lim
t↓0

Im
√
a(eit)

f∗(ei(t+h)
)
/f∗(ei(t−h)

) − 1
h

= 0. (2.20)



12 Abstract and Applied Analysis

(c) If f∗ jumps at eit, which must and can happen only when f∗(I) lies on a segment of a log-
arithmic spiral, for q ∈ f∗(I), then

arg

(

log
f∗(ei(t+0)

)

q

)

= −1
2
arg

(
a
(
eit
))

mod π. (2.21)

(d) If f∗ is not constant on a subinterval of I, then the right limit

lim
t↓0

arg

(
f∗(ei(t+h)

)

f∗(ei(t−h)
) − 1

)

= −1
2
arg

(
a
(
eit
))

mod π (2.22)

exists everywhere on I.

2.7. A Constructive Method

In this section, a method is introduced for constructing univalent logharmonic mappings
from the unit disc onto a strictly starlike domain Ω, which has been successfully applied to
conformal mappings (see, e.g., [23–25]), as well as for univalent harmonic mappings (see,
e.g., [26, 27]).

Let Ω be a strictly starlike domain of C. Then ∂Ω can be expressed in the parametric
form

w(t) = R(t)eit, 0 ≤ t ≤ 2π, (2.23)

where R is a positive continuous function on [0, 2π]. The following notations will be used:

∥∥f
∥∥
∞ = sup

{∣∣f(z)
∣∣; z ∈ U}

,

‖Ω‖∞ = sup{|w|;w ∈ Ω},
d(∂Ω) = distance from the origin to ∂Ω.

(2.24)

For all w ∈ C, define

λΩ(w) =

⎧
⎨

⎩

|w|
R(t)

, 0/=w = |w|eit,
0, w = 0.

(2.25)

Then

λΩ(w) < 1 ⇐⇒ w ∈ Ω,

λΩ(w) = 1 ⇐⇒ w ∈ ∂Ω,
λΩ(w) > 1 ⇐⇒ w ∈ C \Ω,
λΩ(w) = 0 ⇐⇒ w = 0.

(2.26)
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For any complex-valued function f inU, define

μΩ
(
f
)
= sup

{
λΩ(w) : w ∈ f(U)

}
. (2.27)

The following properties are due to Bshouty et al. [26].

Lemma 2.22. (a) μΩ(f) ≤ 1 ⇔ f(U) ⊂ Ω,
(b) μΩ(tf) = tμΩ(f) for all t ≥ 0,
(c) μΩ(f) ≤ ‖f‖∞/d(∂Ω),
(d) ‖f‖∞ ≤ μΩ(f)‖Ω‖∞,
(e) μΩ(f1 + f2) ≤ (μΩ(f1) + μΩ(f2))(‖f‖∞/d(∂Ω)).

The next lemma shows that μΩ is lower semicontinuous with respect to the point-wise
convergence; this was proved in [28].

Lemma 2.23. Let Ω be a strictly starlike domain of C, and let fn be a sequence of mappings from U
into C which converges pointwise to f . Then limn→∞ inf(μΩ(fn)) ≥ μΩ(f). Strict inequality can
hold even in the case of locally uniform convergence.

Let Ω be a fixed strictly starlike domain of C, and let a ∈ H(U), a(0) = 0, |a| ≤ k < 1
be a given (second) dilatation function. Denote by N the set of all logharmonic mappings
f(z) = zh(z)g(z)with respect to the given dilatation functionwhich are normalized by g(0) =
h(0) = 1. Observe that β = 0 since it is assumed that a(0) = 0. Hengartner and Nadeau [27]
solved the following optimization problem.

Theorem 2.24. Let Ω be a strictly starlike domain of C, and let a ∈ H(U), a(0) = 0, |a| ≤ k < 1
be given. Denote by F(z) = zH(z)G(z) the univalent logharmonic mapping satisfying F(U) =
Ω, G(0) = 1, and H(0) > 0. Then there exists a unique f∗ ∈ N such that μΩ(f∗) ≤ μΩ(f) for all
f ∈N and f∗ = F/H(0).

Theorem 2.24 allows us to solve the following mathematical program:

minM, λ
(
f(z)

) ≤M ∀z ∈ U, ∀f ∈N. (2.28)

For f ∈N, f(z) = zh(z)g(z), where h(z) = exp(
∑∞

k=1 akz
k) and

g(z) = exp

(∫z

0

a(s)
s

ds +
∞∑

k=1

kak

∫z

0
a(s)sk−1ds

)

. (2.29)

Furthermore, each f ∈N is an open mapping. Denote by Vn the set of all mappings f ∈N of
the form

f(z) = z exp

(∫z

0

a(s)
s

ds +
∞∑

k=1

[

akz
k + kak

∫z

0
a(s)sk−1ds

])

(2.30)
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and by f∗
n any solution of the optimization problem

min
{
μΩ

(
f
)
; f ∈ Vn

}
. (2.31)

As a consequence of Theorem 2.24, Hengartner and Rostand [28] obtained the fol-
lowing result.

Theorem 2.25. Let a be a polynomial such that ‖a‖∞ ≤ k < 1 inU. Then the sequence f∗
n of solutions

of

minμΩ
(
f
)
, f ∈ Vn, (2.32)

converges locally uniformly to the univalent solution f∗ of

minμΩ
(
f
)
, f ∈N. (2.33)

The question remains how big could n be. It follows from Theorem 5.24 that |an| ≤
2 + n−1 and |bn| ≤ 2 − n−1. Suppose that Ω is a Jordan domain whose boundary ∂Ω
is rectifiable and piecewise smooth. Hengartner and Nadeau [27] obtained the following
additional estimate for the coefficients.

Theorem 2.26. Let

F(z) = z|z|2β exp
( ∞∑

k=1

akz
k +

∞∑

k=1

bkzk

)

(2.34)

be a univalent logharmonic mapping fromU onto Ω, and let L be the length of F(|z| = r), 0 < r < 1.
Then

|an| ≤ limr→ 1 infL(r)
2πd(∂Ω)n

,

|bn| ≤ limr→ 1 infL(r)
2πd(∂Ω)n

.

(2.35)

Equality holds for the case Ω = U and f(z) = z(1 − z)/(1 − z).

3. Univalent Logharmonic Mappings on Multiply Connected Domains

3.1. Univalent Logharmonic Exterior Mappings

This section considers univalent logharmonic and orientation-preserving mappings f de-
fined on the exterior of the unit disc U, Δ = {z : |z| > 1}, satisfying f(∞) = ∞. These
mappings are called univalent logharmonic exterior mappings. If f does not vanish on Δ,
then Ψ(z) = 1/f(1/z) is a univalent logharmonic mapping defined in U normalized by
Ψ(0) = 0. Moreover, F(ζ) = log f(eζ) is a univalent harmonic mapping defined on the right
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half-plane {ζ : Re(ζ) > 0} satisfying the relation F(ζ + 2πi) = F(ζ) + 2πi and F is a solution of
the linear elliptic partial differential equation

Fζ = AFζ, (3.1)

where the second dilatation function A(ζ) = a(eζ), a ∈ B(Δ), satisfies A(ζ + 2πi) = A(ζ) on
{ζ : Re(ζ) > 0}. Such mappings were studied in [9, 29–32]. Several authors have also studied
harmonic mappings between Riemannian manifolds, and an excellent survey has been given
in [33–37].

The next result proved in [4] is a global representation of univalent logharmonic
exterior mappings.

Theorem 3.1. Let f be a univalent logharmonic mapping defined on the exterior Δ of the closed unit
discU such that f(∞) = ∞. Suppose that f(p) = 0 for some p ∈ Δ, or if f does not vanish, let p = 1.
Then there are two complex numbers β and γ , Re(β) > −1/2, Re(γ) > −1/2, and two nonvanishing
analytic functions h and g on Δ ∪ {∞} such that g(∞) = 1, and f is of the form

f(z) = z|z|2β
(
z − p
1 − pz

)∣∣∣∣
z − p
1 − pz

∣∣∣∣

2γ

h(z)g(z) (3.2)

for all z ∈ Δ.

Remark 3.2. Observe that not each function of the form (3.2) is univalent. Indeed, the function

f(z) = z|z|2 z − 4
1 − 4z

(3.3)

is not a univalent logharmonic mapping on Δ, but it can be written in the form (3.2) by
putting β = 1, γ = 0, p = 4, h(z) = 1/g(z) = (4z − 1)/(4z).

Let f be a univalent logharmonic exterior mapping defined on the exterior Δ of the
closed unit disc U such that f(∞) = ∞. Applying an appropriate rotation to the preimage,
we may assume that p ≥ 1.

Definition 3.3. The class
∑

Lh consists of all univalent logharmonic mappings defined on Δ
which are of the form (3.2), where p ≥ 1, Re(β) > −1/2, Re(γ) > −1/2, and h and g are
analytic nonvanishing functions on Δ ∪ {∞}, normalized by g(∞) = 1 and |h(∞)| = 1.

Let f be a univalent logharmonic mapping in Δ with f(∞) = ∞. Then there is a real
number α and a positive constant A such that Af(e−αz) belongs to

∑
Lh. If f does not vanish

on Δ, then the set of omitted values is a continuum. In other words, there is no univalent
logharmonic mapping f defined onΔ satisfying f(∞) = ∞ and f(Δ) = C\{0}. Note that 0 is
an exceptional point, since, for each w0 ∈ C \ {0}, there are univalent logharmonic mappings
f such that f(Δ) = C \ {w0}. Assume that p > 1, let f ∈ ∑

Lh, and let w0 be an omitted value
of f . Applying a rotation to the image f(Δ), we may assume that w0 = 1, and we restrict
ourselves to the subclass

∑∗
Lh = {f ∈ ∑

Lh, p > 1, w0 = 1 /∈ f(Δ)}.
In the next theorem, Abdulhadi and Hengartner [4] gave a complete characterization

of all mappings in the class
∑∗

Lh .
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Theorem 3.4. A mapping f belongs to
∑∗

Lh and f(Δ) = C \ {1} if and only if f is of the form

f(z) = z|z|2β
(
z − p
1 − pz

)∣∣
∣
∣
z − p
1 − pz

∣
∣
∣
∣

2γ

, p > 1, (3.4)

where β and γ satisfy the inequality

∣
∣
∣
∣
∣
∣
∣

β
(
1 + γ

) − γ
(
1 + β

)

1 + γ + γ
− 1
p2 − 1

∣
∣
∣
∣
∣
∣
∣
≤ p

p2 − 1
. (3.5)

3.2. Univalent Logharmonic Ring Mappings

In this section we investigate the family Ar of all univalent logharmonic mappings f which
map an annulus A(r, 1) = {z : r < |z| < 1}, 0 < r < 1, onto an annulus A(R, 1) for some
R ∈ [0, 1) satisfying the condition

1
2π

∫

|z|=ρ
d arg f

(
ρeit

)
= 1 (3.6)

for all ρ ∈ (r, 1). The last condition says that the outer boundary corresponds to the outer
boundary. We call an element f ∈ Ar a univalent logharmonic ring mapping.

If a ≡ 0, then R = r and f(z) = eiαz, α ∈ R, are the only mappings in Ar . In the case
of univalent harmonic mappings from A(r, 1) onto A(R, 1), it may be possible that R = 0; for
example, f(z) = (1 − r2)−1(z − (r2/z)) has this property. However, Nitsche [38] has shown
that there is an R0(r) < 1 such that there is no univalent harmonic mapping fromA(r, 1) onto
A(R, 1) whenever R0 < R < 1.

There is no univalent logharmonic mappings fromA(r, 1), 0 < r < 1, ontoA(0, 1). This
is a direct consequence of Theorem 3.5. But, on the other hand, for R there is neither a positive
lower bound nor a uniform upper bound strictly less than one. Indeed, f(z) = z|z|2β, Re(β) >
−1/2, is univalent on A(r, 1), and its image is A(r1+2Re(β), 1).

Unlike the case of univalent harmonic mappings, univalent logharmonic mappings
need not have a continuous extension onto the closure ofA(r, 1). Indeed, f(z) = z(z−1)/(z−
1) is a univalent logharmonic ring mapping from A(1/2, 1) onto itself whose cluster sets on
the outer boundary are C(f, eit) = {−1}, if z = eit, 0 < t < 2π , and C(f, 1) = {w : |w| = 1}.

Let S∗(r, 1) be the set of all univalent analytic functions ϕ onA(r, 1)with the properties

(i) p(z) = zϕ′(z)/ϕ(z) ∈ H(A(r, 1)),

(ii) Re(p(z)) > 0 on A(r, 1).

Theorems 3.5 and 3.6 [5] give a complete characterization of univalent logharmonic
mappings in Ar .

Theorem 3.5. A function f belongs to Ar if and only if

f(z) = z|z|2β h(z)
h(z)

, (3.7)
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where

(a) h ∈ H(A(r, 1)) and 0 /∈ h(A(r, 1)),

(b) Re(zh′(z)/h(z)) > −1/2 on A(r, 1),

(c) (1/2π)
∫
|z|=ρ d arg f(ρe

it) = 0, r < ρ < 1,

(d) Re(β) > −1/2.

In particular, functions belonging to Ar map concentric circles onto concentric circles.

Theorem 3.6. A function f is in Ar if and only if it is of the form

f(z) =

(
ϕ(z)
∣
∣ϕ(z)

∣
∣ |z|

2γ

)

, (3.8)

where Re(ϕ) > 0 and ϕ ∈ S∗(r, 1).

Next we fix the second dilatation function a ∈ H(A(r, 1)), |a(z)| < 1 for all z ∈ A(r, 1).
The following existence and uniqueness theorem was established in [5].

Theorem 3.7. For a given a ∈ H(A(r, 1)), |a(z)| < 1 for all z ∈ A(r, 1), and, for a given z0 ∈
A(r, 1), there exists one and only one univalent solution f of (1.1) in Ar such that f(z0) > 0.

Remark 3.8. Theorem 3.7 is not true for univalent harmonic ring mappings (see [32, Theorem
7.3].)

3.3. Univalent Logharmonic Mappings Extensions onto the Annulus

The next two theorems proved in [6] deal with the solution of the Dirichlet problem for ring
domains.

Theorem 3.9. Let f∗ be a nonvanishing continuous function defined on the boundary ∂A(r, 1) of the
annulusA(r, 1). Then there exists, for each β, Re(β) > −1/2, a unique mapping f of the form (2.10),
which is continuous on the closure of A(r, 1) and satisfies f = f∗ on ∂A(r, 1).

Theorem 3.10. Let f∗(eit) = eiλ(t) and f∗(reit) = Reiμ(t), 0 < R < 1, be a given continuous function
on ∂A(r, 1), 0 < r < 1, satisfying

(a) dλ(t) ≥ 0 and dμ(t) ≥ 0 on [0, 2π],

(b)
∫2π
0 dλ(t) =

∫2π
0 dμ(t) = 2π .

Then the logharmonic solution of the Dirichlet problem with respect to f∗and A(r, 1) is a
univalent mapping from A(r, 1) onto A(R, 1).

4. Logharmonic Polynomials

Denote by pn an analytic polynomial of degree n. A logharmonic polynomial is a function
of the form f = pnpm. In contrast to the analytic case, there are nonconstant logharmonic
polynomials which are not p-valent for every p > 0. For example, the function f(z) = zz
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is a logharmonic polynomial in C with respect to a = −1. Moreover, the function f(z) =
(z − 1)(z + 1) is a logharmonic polynomial in C with respect to a(z) = (z + 1)/(z − 1). This
polynomial is two-valent and omits the half-plane Re(w) < −1. On the other hand, they
inherit the property limz→∞f(z) = ∞ of analytic polynomials. This follows from the fact that
|f | = |pnpm| = |pnpm|. However, the converse is not true; there are logharmonic functions f =
hg defined inC which are not logharmonic polynomials and have the property limz→∞f(z) =
∞. The function f(z) = zeze−z is such an example. Note that there are harmonic polynomials
pn(z) + pm(z) which do not satisfy limz→∞f(z) = ∞. However, if it is assumed that a(∞)
exists and |a(∞)|/= 1, then the following result [2] is deduced.

Theorem 4.1. Let f = hg be a logharmonic function in C such that limz→∞f(z) = ∞. If
limz→∞a(z) = a(∞) exists and if |a(∞)|/= 1, then f is a polynomial.

Denote byNZ(f −w,D) the cardinality of Z(f −w,D), that is, the number of zeros of
f −w inD, multiplicity not counted. The polynomial f(z) = |z|2 has the property thatNZ(f −
1, C) = ∞. On the other hand, using Theorem 2.3, it follows that a univalent logharmonic
mapping in C is necessarily a polynomial which is either of the form f(z) = const · (z −
a)(z − a)m or of its conjugate, where const/= 0, a ∈ C, andm = 0, 1, 2, . . .. There are functions
of the form f = hg which are not polynomials but have the property that NZ(f − w, C) is
finite and uniformly bounded for all w ∈ C. For example, the function f(z) = zezez −w has
at most two zeros for all fixed w ∈ C. The following result was shown in [2].

Theorem 4.2. Let f = hg be a logharmonic function in C such that NZ(f − w,G) is finite for at
least two different values of w, limz→∞a(z) = a(∞) exists with |a(∞)|/= 1, then f is a polynomial.

An upper bound on the number of w-points of a logharmonic polynomial can be
readily obtained by using Bezout’s theorem [39].

Theorem 4.3 (see [39]). Let p(x, y) and q(x, y) be polynomials in the real variables x and y with
real coefficients. If deg(p) = n and deg(q) = m, then either p and q have at most nm common zeros
or they have infinitely many zeros.

Wilmshurst [40] has shown that Bezout’s theorem gives a sharp upper bound for the
number of zeros of a harmonic polynomial and hence for polyanalytic polynomials (see, e.g.,
[41, 42]). However, this is not true for logharmonic polynomials.

Let f = pnpm be a logharmonic polynomial of degree n + m. Then f(z) − w =∑n
k=0

∑m
j=0 akjz

kzj . The functions P(z) = Re(f(z)) and Q(z) = Im(f(z)) are real-valued
polynomials in x and y and are of degree n + m. Applying Bezout’s theorem, we conclude
with the following estimate.

Theorem 4.4. Let f = pnpm be a logharmonic polynomial defined in C. Then either f − w has
infinitely many zeros or f −w has at most (n +m)2 zeros for all w ∈ C.

The bound is not the best possible. Indeed, a quadratic polynomial is of the form f(z) =
p2(z), f(z) = p2(z), or f(z) = a(z+b)(z + c). In all three cases, f−w has either infinitely many
zeros or it has at most two.

Observe that the logharmonic polynomial f(z) = (z − 1)/(z + 1) is 2-valent and omits
the half-plane Re(w) < −1 and that |a|/≡ 1. However, the situation changes if |a(∞)|/= 1 and
we have the following result [2].
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Theorem 4.5. Let f = pnpm be a logharmonic polynomial defined in C, and suppose that n > m.
Fix w ∈ C such that Z(f − w, C) ∩ (∂D ∪ SE(D)) is empty. Then the number of zeros VZ(f −
w,SE(C)) of f −w, and hence also the valency V (f,C) of f in C, is at least n −m. The bound is best
possible.

The following result is an immediate consequence of Theorem 4.5.

Corollary 4.6. Let f = pnpm be a logharmonic polynomial defined in C, and suppose that n > m.
Then

(i) f(C) = C,

(ii) for almost all w ∈ C, the function f −w has at least n −m disjoint zeros.

The next result characterizes polynomials of finite valency [2].

Theorem 4.7. Let f = pnpm be a logharmonic polynomial defined in C, such that pn /≡ const · pm.
Then the cardinalityNZ(f −w,C) of the zero set Z(f −w,C) is finite (hence, by Bezout’s theorem,
uniformly bounded) for all w ∈ C.

Remark 4.8. If pn ≡ const · pm, then the image lies on a straight line.

5. Subclasses of Logharmonic Mappings

5.1. Spirallike Logharmonic Mappings

Let Ω be a simply connected domain if C contains the origin. We say that Ω is α-spi-
rallike, −π/2 < α < π/2, if w ∈ Ω implies that w exp(−teiα) ∈ Ω for all t ≥ 0. If α = 0, the
domain Ω is called starlike (with respect to the origin). We will use the following notations.

(a) Sα
Lh

is the set of all univalent logharmonic mappings f in U satisfying f(0) = 0,
h(0) = g(0) = 1, and f(U) is an α-spirallike domain.

(b) Sα = {f ∈ Sα
Lh

and f ∈ H(U)}.
(c) S∗

Lh = S0
Lh and S

∗ = S0, for which f(U) is starlike (with respect to the origin).

To each f(z) = z|z|2βh(z)g(z) ∈ Sα
Lh
, we associate the analytic function ψ(z) =

zh(z)/g(z)e
iα

, ψ(0) = 0. Abdulhadi and Hengartner [8] gave a representation theorem for
mappings in the class SαLh.

Theorem 5.1. (a) If f ∈ Sα
Lh
, then ψ ∈ Sα.

(b) For any given ψ ∈ Sα and a ∈ B(U), there are h and g inH(U) uniquely determined such
that

(i) 0 /∈ h · g(U), h(0) = g(0) = 1,

(ii) ψ(z) = zh(z)/g(z)e
iα

,

(iii) f(z) = z|z|2βh(z)g(z) is a solution of (1.1) in Sα
Lh
, where β = (a(0)(1+a(0)))/(1−

|a(0)|2).
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Remark 5.2. Theorem 5.1 has no equivalence for the class of all convex univalent logharmonic
mappings. Indeed, ψ(z) = z is a convex mapping, a(z) = z4 ∈ B(U), but f(z) = z/|1 − z4|1/2
is not a convex mapping.

Remark 5.3. Theorem 5.1 asserts that the class SαLh, α fixed in (−π/2, π/2), is isomorphic to
Sα × B(U).

The following result is an immediate consequence of Theorem 5.1.

Corollary 5.4. If f ∈ SαLh, then f(rz)/r ∈ SαLh for all r ∈ (0, 1). In other words, level sets inherit
the property of being α-spirallike.

The next result is an integral representation for f ∈ Sα
Lh

[8].

Theorem 5.5. A function f ∈ SαLh if and only if there are two probability measures μ and ν on the
Borel sets of ∂U and an a(0) ∈ U such that

f(z) = z|z|2β · exp
{∫

∂U×∂U
K(z, ζ, ξ;a(0))dμ(ζ)dν(ξ)

}
, (5.1)

where

β =
a(0)(1 + a(0))

1 − |a(0)|2
,

K(z, ζ, ξ;a(0)) = −2 cos(α) · eiα · log(1 − ζz) + 2eiα Re
{
eiα log(1 − ζz)} + T(z, ζ, ξ;a(0)),

T(z, ζ, ξ;a(0)) = 2eiα Re
eiα(1 + a(0))

(
1 − a(0)e−2iα

)
ζ + e−iα

(
1 + a(0)

)(
1 − a(0)e2iα)ξ

(ζ − ξ)|1 − a(0)e2iα|2

× log
1 − ξz
1 − ζz ,

(5.2)

if |ζ| = |ξ| = 1, ζ /= ξ, and

T(z, ζ, ζ;a(0)) = 4 cos(α) · eiα · Re ζz

(1 − ζz)
1 − |a(0)|2

|1 − a(0)e2iα|2
. (5.3)

Observe that Sα
Lh

is not compact, but Theorem 5.5 can be used to solve extremal
problems over the class of mappings in Sα

Lh
with a given a(0) = 0.

We have seen in Corollary 5.4 that if f is a univalent logharmonicmapping inU, f(0) =
0, and if f(U) is starlike, then f(|z| < r) is starlike (with respect to the origin) for all r ∈ (0, 1).
The next result proved in [8] shows that this property may fail whenever f(0)/= 0.

Theorem 5.6. For each z0 ∈ U \ {0}, there are univalent logharmonic mappings f such that f(z0) =
0, f(U) is starlike (with respect to the origin), but no level set f(|z| < r), |z0| = ρ < r < 1, is
starlike.
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5.2. Close-to-Starlike Logharmonic Mappings

5.2.1. Logharmonic Mappings with Positive Real Part

Let PLh be the set of all logharmonic mappings R in U which are of the form R = HG, where
H and G are inH(U),H(0) = G(0) = 1, such that Re(R(z)) > 0 for all z ∈ U. In particular, the
set P of all analytic functions p inU with p(0) = 1 and Re(p(z)) > 0 inU is a subset of PLh.

The next result [43] describes the connection between PLh and P .

Theorem 5.7. A function R = HG ∈ PLh if and only if p = H/G ∈ P .
As a consequence of Theorem 5.7, it follows that R admits the representation

R(z) = p(z) exp 2Re
∫z

0

a(s)
1 − a(s)

p′(s)
p(s)

ds, (5.4)

where a ∈ B(U) and p is an analytic function with positive real part normalized by p(0) = 1.

The following result [43] is a distortion theorem for the class PLh.

Theorem 5.8. Let R(z) = H(z)G(z) ∈ PLh, and suppose that a(0) = 0. Then for z ∈ U

(i) exp(−2|z|/(1 − |z|)) ≤ |R(z)| ≤ exp(2|z|/(1 − |z|)),
(ii) |Rz(z)| ≤ (2/(1 − |z|)(1 − z|2)) exp(2|z|/(1 − |z|)),
(iii) |Rz(z)| ≤ (2|z|/(1 − |z|)(1 − |z|2)) exp(2|z|/(1 − |z|)).

Equality occurs for the right inequalities if R is a function of the form R0(ζz), |ζ| = 1, where

R0(z) =
1 + z
1 − z

∣∣∣∣
1 + z
1 − z

∣∣∣∣ exp
(
Re

2z
1 − z

)
, (5.5)

and equality occurs for the left inequalities if R is of the form

1
R0(ζz)

, |ζ| = 1. (5.6)

5.2.2. Close-to-Starlike Logharmonic Mappings

Let F(z) = z|z|2βhg be a logharmonic mapping. The function F is close to starlike if F is a
product between a starlike logharmonic mapping f(z) = z|z|2βh∗g∗ ∈ S∗

Lh which is a solution
of (1.1) with respect to a ∈ B(U) and a logharmonic mapping with positive real part R ∈ PLh
with the same second dilatation function a.

The geometric interpretation for a close-to-starlike logharmonic mappings is that the
radius vector of the image of |z| = r < 1 never turns back by an amount more than π .

Denote by CSTLh the set of all close-to-starlike logharmonic mappings. It contains in
particular the set CST of all analytic close-to-starlike functions which was introduced by
Reade [44] in 1955. Also, the set S∗

Lh of all starlike univalent logharmonic mappings is a subset
of CSTLh (take R(z) ≡ 1 in the product). Furthermore, if F(z) = z|z|2βhg is a logharmonic
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mapping with respect to a ∈ B(U) satisfying h(0) = g(0) = 1 and ReF(z)/z|z|2β > 0, then F
is a close-to-starlike logharmonic mapping, where

f(z) = z|z|2β
∣
∣∣
∣exp

(∫z

0

a(s)/s
1 − a(s)ds

)∣∣∣
∣

2

. (5.7)

On the other hand, a mapping F ∈ CSTLh need not necessarily be univalent. For example,
take F(z) = z(1 + z), where z ∈ S∗ and 1 + z ∈ P .

Our next result is a representation theorem for the class CSTLh proved in [43].

Theorem 5.9. (a) Let F = z|z|2βhg be in CSTLh. Then ψ = zh/g ∈ CST.

(b) Given any ψ ∈ CST and a ∈ B(U), there are h and g inH(U) uniquely determined such
that

(i) 0 /∈ h · g(U), h(0) = g(0) = 1,
(ii) ψ(z) = zh/g,
(iii) F = z|z|2βhg is in CSTLh which is a solution of (1.1) with respect to the given a.

Corollary 5.10. F ∈ CSTLh if and only if F(rz)/r ∈ CSTLh for all r ∈ (0, 1).

In the next result the radius of univalence and the radius of starlikeness are determined
for those mappings in the set CSTLh [43].

Theorem 5.11. Let F = z|z|2βhg ∈ CSTLh. Then F maps the disc |z| < R, R ≤ 2−√3, onto a starlike
domain. The upper bound is best possible for all a ∈ B(U).

Combining Theorems 5.8 and 5.11 with α = 0, we obtain the following distortion
theorem for the class CSTLh.

Theorem 5.12. Let F = zhg ∈ CSTLh. Then, for every z ∈ U,

(a) |z| exp(−2|z|/(1 − |z|) − 4|z|/(1 + |z|)) ≤ |F(z)| ≤ |z| exp(6|z|/(1 − |z|)),
(b) |Fz(z)| ≤ ((|z|2 + 4|z| + 1)/(1 − |z|)2(1 + |z|)) exp(6|z|/(1 − |z|)),
(c) |Fz(z)| ≤ (|z|(|z|2 + 4|z| + 1)/(1 − |z|)2(1 + |z|)) exp(6|z|/(1 − |z|)).
Equality holds for the right inequalities if F is a function of the form

Fη,ζ(z) =
z
(
1 − ηz)

(
1 − ηz)

1 + ζz
1 − ζz

∣∣∣∣
1 − ζz
1 + ζz

∣∣∣∣ exp
(
Re

[
4ηz

1 − ηz +
2ζz

1 − ζz
])

, (5.8)

where |η| = |ζ| = 1, and for the left inequalities if F is a function of the form

Fη,ζ(z) =
z
(
1 − ηz)

(
1 − ηz)

1 + ζz
1 − ζz

∣∣∣∣
1 − ζz
1 + ζz

∣∣∣∣ exp
(
Re

[
4ηz

1 − ηz − 2ζz
1 − ζz

])
, (5.9)

where |η| = |ζ| = 1.
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5.3. Typically Real Logharmonic Mappings

A logharmonic mapping f is said to be typically real if and only if f is real whenever z is real
and if f is normalized by f(0) = 0 and h(0)g(0) = 1, or equivalently by f(0) = 0 and h(0) =
g(0) = 1. Denote by TLh the class of all orientation-preserving typically real logharmonic
mappings. Since f is orientation preserving and univalent on the interval (−1, 1), it follows
that f is of the form (2.10). Furthermore, if f ∈ TLh, then β (and hence, also a(0)) has to be
real and yields the relation

Im z Im f(z) > 0, ∀ z ∈ U \ R. (5.10)

The class TLh is a compact convex set with respect to the topology of locally uniform
convergence, and it contains, in particular, the set T of all analytic typically real functions.

5.3.1. Basic Properties of Mappings from TLh

The following representation theorem for typically real logharmonic mappings was proved
in [45].

Theorem 5.13. (a) If f(z) = z|z|2βh(z)g(z) is in TLh, then φ = zh/g ∈ T .

(b) Given φ ∈ T and a ∈ B(U) such that β ∈ R and a(0) ∈ R, there are uniquely determined
mappings h and g inH(U) such that

(i) 0 /∈ h · g(U), h(0) = g(0) = 1,
(ii) φ(z) = zh/g,
(iii) F = z|z|2βhg is in TLh which is a solution of (1.1) with respect to the given a.

As a consequence of Theorem 5.13, it follows that

f(z) = zh(z)g(z) = φ(z)
∣∣g(z)

∣∣2, (5.11)

where

g(z) = exp
∫z

0

a(s)φ′(s)
(1 − a(s))φ(s)ds,

zh(z) = φ(z)g(z).
(5.12)

Denote by T0
Lh the subclass of TLh (β = 0) consisting of all mappings F from TLh for

which φ = zh/g = z/(1 − z2). Then F is of the form

F(z) =
z

1 − z2 exp 2Re
∫z

0

a(s)
(
1 + s2

)

s(1 − a(s))(1 − s2)ds. (5.13)

The next theorem links the class TLh with the class PLh.
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Theorem 5.14 (see [45]). Let f(z) = zh(z)g(z) ∈ TLh with respect to a ∈ B(U), and a(0) = 0.
Then there exist an R ∈ PLh and an F ∈ T0

Lh
, such that both functions are logharmonic with respect to

the same a and

f(z) = F(z)R(z). (5.14)

The next result is a distortion theorem for the class T0
Lh
.

Theorem 5.15 (see [45]). Let F(z) = zh(z)g(z) ∈ T0
Lh
. Then, for z ∈ U,

(a) |F(z)| ≤ |z| exp(2|z|/(1 − |z|)),
(b) |Fz(z)| ≤ ((1 + |z|2)/(1 − |z|2)(1 − |z|)) exp(2|z|/(1 − |z|)),
(c) |Fz(z)| ≤ (|z|(1 + |z|2)/(1 − |z|2)(1 − |z|)) exp(2|z|/(1 − |z|)).
Equality holds if and only if F is of the form ηF0(ηz), |η| = 1, where

F0(z) =
z

1 − z2
∣∣∣1 − z2

∣∣∣ exp
(
Re

(
2z

1 − z
))

. (5.15)

Combining Theorems 5.8, 5.14, and 5.15, the following distortion theorem is obtained
for the class TLh.

Theorem 5.16. Let f(z) = zh(z)g(z) ∈ TLh. Then, for z ∈ U,

(a) |f(z)| ≤ |z| exp(4|z|/(1 − |z|)),
(b) |fz(z)| ≤ ((1 + |z|)/(1 − |z|2)) exp(4|z|/(1 − |z|)),
(c) |fz(z)| ≤ (|z|(1 + |z|)/(1 − |z|2)) exp(4|z|/(1 − |z|)).
Equality holds if f is of the form ηf0(ηz), |η| = 1, where

f0(z) =
z(1 − z)
1 − z exp

(
Re

(
4z

1 − z
))

. (5.16)

Remark 5.17. The function f0 given in (5.16) plays the role of the Koebe mapping in the set of
logharmonic mappings (see, e.g., [1, 6]).

The next result gives the radius of univalence and the radius of starlikeness for the
mappings in the set TLh [45].

Theorem 5.18 (see [45]). Let f(z) = z|z|2βh(z)g(z) ∈ TLh. Then f maps the disc {z : |z| < R0},
where R0 = (1 +

√
5 −

√
2 + 2

√
5)/2, onto a starlike domain. The upper bound is the best possible for

all a ∈ B(U).

5.3.2. Univalent Mappings in TLh

Nowwe consider univalent mappings in TLh. For analytic typically real functions, it is known
that if t(z) = z +

∑∞
n=2 anz

n is univalent in the unit disc U, then t belongs to T if and only if
the image t(U) is a domain symmetric with respect to the real axis.



Abstract and Applied Analysis 25

One might consider a similar problem in TLh. Let f(z) = z|z|2βh(z)g(z) be a univalent
logharmonic mapping in the unit disc U, and h(0) = g(0) = 1, β > −1/2. Observe that β
(and hence a(0)) is real. Is it true that f belongs to TLh if and only if the image of f(U) is a
symmetric domain with respect to the real axis?

The answer is negative in both directions. Indeed, the function

f(z) = z
(
1 +

iz

8

)(
1 − iz

8

)
(5.17)

is a normalized univalent logharmonic typically real mapping, but f(U) is not symmetric
with respect to the real axis. On the other hand, the function f(z) = z(1 + iz)/(1 − iz) is a
univalent logharmonic mapping from U onto U, and f(U) is symmetric with respect to the
real axis, but f is not typically real (for more details, see [45]).

Additional conditions on a and on the image domainΩ = f(U) are needed in order to
get an affirmative answer to the question posed above.

Theorem 5.19 (see [45]). Letf(z) = z|z|2βh(z)g(z) be a univalent (orientation-preserving) lo-
gharmonic mapping in the unit disc U and normalized by f(0) = 0, h(0) = g(0) = 1. Suppose that
the second dilatation function a has real coefficients, that is, a(z) ≡ a(z). (Observe that the condition
a(0) real or equivalently β real is automatically satisfied.)

(a) If f is typically real, then f(U) is symmetric with respect to the real axis.

(b) If |a| ≤ k < 1 inU and f(U) is a strictly starlike Jordan domain symmetric with respect to
the real axis, then f is typically real.

5.4. Starlike Logharmonic Mappings of Order α

Let f = z|z|2βhg be a univalent logharmonic mapping. We say that f is starlike logharmonic
mapping of order α if

∂ arg f
(
reiθ

)

∂θ
= Re

zfz − zfz
f

> α, 0 ≤ α < 1, (5.18)

for all z ∈ U. Denote by STLh(α) the set of all starlike logharmonic mappings of order α. If
α = 0, we get the class of starlike logharmonic mappings. Also, let ST(α) = {f ∈ STLh(α) and
f ∈ H(U)}.

In this section, we obtain two representation theorems [46] for functions in STLh(α). In
the first, we establish the connection between the classes STLh(α) and ST(α). The second is an
integral representation theorem.

Theorem 5.20. Let f(z) = zh(z)g(z) be a logharmonic mapping in U, 0 /∈ hg(U). Then f ∈
STLh(α) if and only if ϕ(z) = zh(z)/g(z) ∈ ST(α).
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Theorem 5.21. A function f = zhg ∈ STLh(α) with a(0) = 0 if and only if there are two probability
measures μ and ν such that

f(z) = z exp
(∫

∂U×∂U
K(z, ζ, ξ)dμ(ζ)dν(ξ)

)
, (5.19)

where

K(z, ζ, ξ) = (1 − α) log
(

1 + ζz
1 − ζz

)

+ T(z, ζ, ξ),

T(z, ζ, ξ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−2(1 − α) Im
(
ζ + ξ
ζ − ξ

)
arg

(
1 − ξz
1 − ζz

)
− 2α log|1 − ξz|, if |ζ| = |ξ| = 1, ζ /= ξ,

(1 − α)Re
(

4ζz
1 − ζz

)
− 2α log|1 − ζz|, if |ζ| = |ξ| = 1, ζ = ξ.

(5.20)

Remark 5.22. Theorem 5.21 can be used to solve extremal problems for the class STLh(α)with
a(0) = 0. For example, see Theorem 5.23.

The following is a distortion theorem for the class STLh(α)with a(0) = 0.

Theorem 5.23 (see [46]). Let f = zh(z)g(z) ∈ STLh(α) with a(0) = 0. Then, for z ∈ U,

|z|
(1 + |z|)2α

exp
(
(1 − α) −4|z|

1 + |z|
)

≤ ∣∣f(z)
∣∣ ≤ |z|

(1 − |z|)2α
exp

(
(1 − α) 4|z|

1 − |z|
)
. (5.21)

Equalities occur if and only if f(z) = ζf0(ζz), |ζ| = 1, where

f0(z) = z
(
1 − z
1 − z

)
1

(1 − z)2α
exp

(
(1 − α)Re 4z

1 − z
)
. (5.22)

The next result gives sharp coefficient estimates for functions h and g in the starlike
logharmonic mapping f = zh(z)g(z).

Theorem 5.24 (see [6]). Let f = zh(z)g(z) ∈ STLh(0) with a(0) = 0, and put

h(z) = exp

( ∞∑

k=1

akz
k

)

, g(z) = exp

( ∞∑

k=1

bkz
k

)

. (5.23)

Then

|an| ≤ 2 +
1
n
, |bn| ≤ 2 − 1

n
(5.24)
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for all n ≥ 1. Equality holds for the mapping

f(z) = z
1 − zeiα
1 − zeiα exp

(
4zeiα

1 − zeiα
)

, α ∈ (0, 2π). (5.25)

5.5. Functions with Logharmonic Laplacian

We consider the class of all continuous complex-valued functions F = u + iv in a domain
D ⊆ C such that the Laplacian of F is logharmonic. Note that log(ΔF) is harmonic in D if it
satisfies the Laplace equation Δ(log(ΔF)) = 0, where

Δ = 4
∂2

∂z∂z
. (5.26)

In any simply connected domain D, we can write

F = r2L +H, z = reiθ, (5.27)

where L is logharmonic andH is harmonic in D. It is known that L andH can be expressed
as

L = h1g1,

H = h2 + g2,
(5.28)

where h1, g1, h2, and g2 are analytic in D. Denote by LLh(U) the set of all functions of the
form (5.27) which are defined in the unit discU.

Note that the composition L ◦ φ of a logharmonic function Lwith an analytic function
φ is logharmonic and, also, the composition H ◦ φ of a harmonic function H with analytic
function φ is harmonic, while this is not true for the function F. Also, if F1(z) = r2L1(z) and
F2(z) = r2L2(z) are in LLh(U), where L1 and L2 are logharmonic with respect to the same a,
then Fα1F

β

2 , α + β = 1, is also in LLh(U).
Denote the Jacobian ofW by JW . Then

JW = |Wz|2 − |Wz|2. (5.29)

Also let

λW = |Wz| − |Wz|,
ΛW = |Wz| + |Wz|.

(5.30)

Then JW = λWΛW .
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5.5.1. The Univalence of Functions with Logharmonic Laplacian

First a lower bound for the area of the range of F(z) = r2L(z) is established, where L is a
starlike univalent logharmonic mapping.

Theorem 5.25 (see [47]). Let F(z) = r2L(z), where L = hg is starlike univalent logharmonic inU,
with g(0) = 1 and h′(0) = 1. Let A(r, F) denote the area of F(Ur), where Ur = {z : |z| < r}, for
r < 1. Then

A(r, F) ≥ 2π

[

−2r + r2 − 2r3

3
+
r4

2
− r5

5
+
r6

6
− r8

8
+ 2 ln(1 + r)

]

. (5.31)

Equality holds if and only if L0(z) = r2z(1 + z/2)/(1 + z/2) or one of its rotations.

Definition 5.26. Let L be logharmonic function in U. A complex-valued function of the form
F(z) = r2L(z) is starlike in U if it is orientation preserving, F(0) = 0, F(z)/= 0 when z/= 0
and the curve F(reit) is starlike with respect to the origin for each 0 < r < 1. In other words,
∂ argF(reit)/∂t = Re((zFz − zFz)/F) > 0.

Remark 5.27. Note that starlike functions are univalent inU.

The following theorem links starlike functions in LLh(U) with the class of starlike
analytic functions.

Theorem 5.28 (see [48]). Let F(z) = r2L(z), where L(z) = h(z)g(z), be a logharmonic function
in U with respect to a, where a ∈ B(U) with a(0) = 0. Then F is starlike univalent in U if and only
if ψ(z) = h(z)/g(z) is starlike univalent function inU.

Corollary 5.29. The function r2L(z) is starlike for all conformal starlike functions L.

A characterization of the logharmonic Laplacian solutions of the Dirichlet problem in
the unit discU is given in [48].

Theorem 5.30. Let F∗ be an orientation-preserving homeomorphism from ∂U onto ∂U, that is,
F∗(eit) = eiλ(t), where λ is continuous and strictly monotonically increasing on [0, 2π]. Furthermore,
suppose that λ(2π) = λ(0)+2π . Then F(z) = z|z|2h(z)/h(z) is a univalent solution of the Dirichlet
problem inU.

For the general case F(z) = r2L(z)+H(z), a sufficient condition is obtained that makes
F locally univalent.

Theorem 5.31 (see [48]). Let F(z) = r2h1(z)g1(z) +h2(z) +g2(z) be in the class LLh(U). Suppose
that ψ(z) = h1(z)/g1(z) is starlike univalent inU, and |g ′

2(z)| < |h′2(z)| for z ∈ U. If

Re
[
g ′
2
(
r2h1g1

)
z

]
< Re

[
h′2
(
r2h1g1

)
z

]
, (5.32)

then JF(z) > 0 for z/= 0, and F is locally univalent.
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5.5.2. Landau’s Theorem for Functions with Logharmonic Laplacian

Lewy’s famous theorem [49] states that a harmonic function W is locally univalent in D
(univalent in some neighborhood of each point in D) if and only if its Jacobian does not
vanish in D.

The classical Landau Theorem states that if f is analytic in the unit discU with f(0) =
0, f ′(0) = 1, and |f(z)| < M for z ∈ U, then f is univalent in the discUρ0 = {z : |z| < ρ0}with

ρ0 =
1

M +
√
M2 − 1

, (5.33)

and f(Uρ0) contains a discUR0 withR0 =Mρ20. This result is sharp, with the extremal function
f(z) =Mz(1 −Mz)/(M − z) (see [19]).

Chen et al. [50] obtained a version of Landau’s Theorem for bounded harmonic
mappings of the unit disc. Unfortunately their result is not sharp. Better estimates were given
in [51] and later in [52].

Specifically, it was shown in [52] that if f is harmonic in the unit disc U with f(0) =
0, Jf(0) = 1, and |f(z)| < M for z ∈ U, then f is univalent in the discUρ1 = {z : |z| < ρ1}with

ρ1 = 1 − 2
√
2M√

π + 8M2
, (5.34)

and f(Uρ1) contains a disc UR1 with R1 = π/4M − 2M(ρ21/(1 − ρ1)). This result is the best
known, but not sharp.

The following Schwarz lemma for harmonic mappings is due to Grigoryan [52].

Lemma 5.32 (Schwarz lemma). Let f be a harmonic mapping of the unit discU with f(0) = 0 and
f(U) ⊂ U. Then

∣∣f(z)
∣∣ ≤ 4

π
arctan|z| ≤ 4

π
|z|,

Λf(0) ≤ 4
π
.

(5.35)

Recently Mao et al. [53] established the Schwarz lemma for logharmonic mappings,
through which two versions of Landau’s theorem for these mappings were obtained.

The next theorem gives Landau’s theorem for functions with logharmonic Laplacian
of the form F = r2L(z).

Theorem 5.33 (see [47]). Let L be logharmonic inU such that L(0) = 0, JL(0) = 1, and |L(z)| < M
for z ∈ U. Then there is a constant 0 < ρ2 < 1 such that F = r2L is univalent in the disc |z| < ρ2, ρ2
is the solution of the equation 1 = 2ρ2M/(1−ρ22)− 2Mρ2/(1−ρ22)2, and f(Uρ2) contains a discUR2

with R2 = ρ22 − 2Mρ42/(1 − ρ22). This result is not sharp.

Finally we give a Landau theorem for functions of logharmonic Laplacian of the form
F = r2L +K.
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Theorem 5.34 (see [47]). Let F = r2L + K, z = reiθ be in LLh(U), where L is logharmonic and
K is harmonic in the unit disc U, such that L(0) = K(0) = 0, JF(0) = 1, and |L| and |K| are both
bounded byM. Then there is a constant 0 < ρ3 < 1 such that F is univalent in |z| < ρ3. Specifically
ρ3 satisfies

π

4M
− 2ρ3M − 2M

⎛

⎝ ρ33
(
1 − ρ23

)2 +
1

(
1 − ρ3

)2 − 1

⎞

⎠ = 0, (5.36)

and F(Uρ3) contains a discUR3 , where

R3 =
π

4M
ρ3 − ρ23M

1
1 − ρ23

− 2M
ρ23

1 − ρ3 . (5.37)

Acknowledgments

The work of the second author was supported in part by a research university grant from
Universiti Sains Malaysia. The authors are thankful to the referees for their useful comments.

References

[1] Z. Abdulhadi and D. Bshouty, “Univalent functions in H · H(D),” Transactions of the American
Mathematical Society, vol. 305, no. 2, pp. 841–849, 1988.

[2] Z. Abdulhadi and W. Hengartner, “Polynomials in HH,” Complex Variables. Theory and Application,
vol. 46, no. 2, pp. 89–107, 2001.

[3] Z. Abdulhadi and W. Hengartner, “Canonical point mappings in HH,” Bulletin of the Australian
Mathematical Society, vol. 56, no. 2, pp. 239–242, 1997.

[4] Z. Abdulhadi and W. Hengartner, “One pointed univalent logharmonic mappings,” Journal of
Mathematical Analysis and Applications, vol. 203, no. 2, pp. 333–351, 1996.

[5] Z. Abdulhadi, W. Hengartner, and J. Szynal, “Univalent logharmonic ring mappings,” Proceedings of
the American Mathematical Society, vol. 119, no. 3, pp. 735–745, 1993.

[6] Z. Abdulhadi and W. Hengartner, “Univalent logharmonic extensions onto the unit disk or onto an
annulus,” in Current Topics in Analytic Function Theory, pp. 1–12, World Scientific Publishing, River
Edge, NJ, USA, 1992.

[7] Z. Abdulhadi andW. Hengartner, “Univalent harmonic mappings on the left half-plane with periodic
dilatations,” in Univalent Functions, Fractional Calculus, and Their Applications (Kōriyama, 1988), Ellis
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