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Let E be an arbitrary uniformly smooth real Banach space, let D be a nonempty closed convex
subset of E, and let T : D — D be a uniformly generalized Lipschitz generalized asymptotically
@-strongly pseudocontractive mapping with g € F(T) #0. Let {a,}, {b,}, {cn}, {dn} be four real
sequences in [0, 1] and satisfy the conditions: (i) a, + ¢, < 1, b, +d,, < 1; (ii) a,, by, dy — 0 as
n — oo and ¢, = o(a,); (iii) X a, = oo. For some xo, z9 € D, let {u,}, {v,}, {w,} be any bounded
sequences in D, and let {x,}, {z,} be the modified Ishikawa and Mann iterative sequences with
errors, respectively. Then the convergence of {x,} is equivalent to that of {z,}.

1. Introduction and Preliminary
Let E be a real Banach space and let E* be its dual space. The normalized duality mapping
J : E — 2F is defined by
* 2 2
Jeo)={feE: (x f)=IxI” = If|*}, vxeE, (1.1)

where (-, -) denotes the generalized duality pairing. It is well known that

(i) if E is a smooth Banach space, then the mapping J is single-valued;
(ii) J(ax) = aJ(x) forall x € E and a € }R;

(iii) if E is a uniformly smooth Banach space, then the mapping J is uniformly
continuous on any bounded subset of E. Throughout this paper, we denote that
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j is the single-valued normalized duality mapping, D is a nonempty closed convex
subsetof E,T: D — D is a mapping, and T is the unit mapping I.

In 1972, Goebel and Kirk [1] introduced the class of asymptotically nonexpansive mappings
as follows.

Definition 1.1. A mapping T is said to be asymptotically nonexpansive if for each x,y € D

IT"x =Ty < kallx -y

. V¥n>0, (1.2)

where {k,} C [1,+00) with lim,,_, .k, = 1.
Schu [2], in 1991, gave the definition of asymptotically pseudocontractive mappings
and proved the correlation results.

Definition 1.2. The mapping T is called asymptotically pseudocontractive with the sequence
{kn} C [1,+00) if and only if lim, ..k, = 1, and for all # € N and all x,y € D, there exists
j(x—y) € J(x - y) such that

(T =T, j(x = y)) < kallx = y - (1.9

It is easy to find that every asymptotically nonexpansive mapping is asymptotically
pseudocontractive. However, the converse is not true in general. See example of [3].

Recently, Colao [4] combined the proof ideas of the papers of Chang [5] and C. E.
Chidume and C. O. Chidume [6] and then showed the equivalent theorem results of the
convergence between Mann and Ishikawa iterations with errors for generalized strongly
asymptotically ¢-pseudocontractive mapping with bounded range. In fact, he proved the
following theorem.

Theorem 1.3. Let X be a uniformly smooth Banach space, and let T : X — X be generalized strongly
asymptotically ¢-pseudocontractive mapping with fixed point x* and bounded range. Let {x,} and
{2} be the sequences defined by (1.4) and (1.5), respectively,

Yn = (1 —PBu— 6n)xn + ﬂnT”xn +6,v,, n>0,
(1.4)
Xne1 = (1= an = yn) X + 0uT" Y + Yy, n >0,

Znat = (1= 0y = Yn) Zn + 0, T2 + Yywn, n >0, (1.5)

Where {an}/ {Yn}/ {ﬁn}/ {6n} C [O, 1] satisfy
(H1) limy, o, = lim, oo, = limy, .6, = 0 and y,, = o(ay,),
(Hz) Z;O:lan = oo,

and the sequences {uy}, {vn}, {w,} are bounded in X, then for any initial point zg,xo € X, the
following two assertions are equivalent.

(1) The modified Ishikawa iteration sequence with errors (1.4) converges to x*;

(2) The modified Mann iteration sequence with errors (1.5) converges to x*.
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The aim of this paper is to prove the equivalence of convergent results of above Ishikawa
and Mann iterations with errors for generalized asymptotically ®-strongly pseudocontractive
mappings without bounded range assumptions in uniformly smooth real Banach spaces. For
this, we need the following concepts and lemmas.

Definition 1.4 (see [4]). The mapping T is called generalized asymptotically ®-strongly
pseudocontractive if

(T =Ty, j(x - y)) < kallx —yIP -0 (lx-l)), n>0, (16

where j(x —y) € J(x - y), {kn} C [1,+00) is converging to one and @ : [0,+o0) — [0,+c0) is
strictly increasing continuous function with ®(0) = 0.

Definition 1.5 (see [4]). For arbitrary given xo € D, modified Ishikawa iterative process with
errors {x, } - defined by

Yn = (1 - bn - dn)xn + bnTnxn + dnwn/ n>0,
(1.7)
Xns1 = (1= ap —cn)xn + anTnyn +Cnn, m20,

where {v,}, {w,} are any bounded sequences in D; {a,}, {b,}, {c,}, {dn} are four real
sequences in [0,1] and satisty a, + ¢, < 1,b, +d, < 1, foralln > 0.If b, = d, = 0, we
define modified Mann iterative process with errors {z,} by

Zp1 = (1 —ay—cp)zn+ay Tz, + cyty,, n>0, (1.8)

where {u,} is any bounded sequence in D.

Lemma 1.6 (see [7]). Let E be a uniformly smooth real Banach space and let | : E — 2F bea
normalized duality mapping. Then

lx+y)* < llxl? + 20y, T (x + v)), (1.9)

forall x,y € E.

Lemma 1.7 (see [8]). Let {pn}— be a nonnegative sequence which satisfies the following inequality:

Pn+1 < (1 - )Ln)Pn +0n, N 2 0/ (110)

where A, € [0,1] with 377 Ay = 00, 0, = 0(Ayy). Then p, — 0asn — co.

2. Main Results

First of all, we give a new concept.
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Definition 2.1. A mapping T : D — D is called uniformly generalized Lipschitz if there exists
a constant L > 0 such that

IT"x =Ty < L(1+[lx -y

), Vx,yeD,Vn>0. (2.1)

It is mentioned to notice that if T has bounded range, then it is uniformly generalized
Lipschitz. In fact, since R(T") € R(T), then sup, ,{[IT"x|} < sup,p{lITx||} = M;, thus

IT"x - T"y|| < 2M; < L(1 + ||x — y||), where L = 2M;. On the contrary, it is not true in general
(See [6]).

In the following, we prove the main theorems of this paper.

Theorem 2.2. Let E be an arbitrary uniformly smooth real Banach space, let D be a nonempty
closed convex subset of E, and let T : D — D be a uniformly generalized Lipschitz generalized
asymptotically ®-strongly pseudocontractive mapping with q € F(T) #0. Let {a,}, {bn}, {cn}, {dn)
be four real sequences in [0, 1] and satisfy the following conditions:
(i) a,+c, <1,b,+d, <1;

(ii) a,, by, d, — O0asn — oo and ¢, = o(ay);

(i) =2 ,a, = oo.
For some xg,zo € D, let {uy}, {vn}, {wn} be any bounded sequences in D, and let {x,} and {z,} be
Ishikawa and Mann iterative sequences with errors defined by (1.7) and (1.8), respectively. Then the
following conclusions are equivalent:

(1) {x,} converges strongly to the unique fixed point q of T,

(2) {zn} converges strongly to the unique fixed point q of T.
Proof. (1)=(2) is obvious, that is, let b, = d, = 0, (1.7) turns into (1.8). We only need to
show that (2)=(1). Since T : D — D is a uniformly generalized Lipschitz generalized

asymptotically ®@-strongly pseudocontractive mapping, then there exists a strictly increasing
continuous function @ : [0,+00) — [0, +0c0) with @(0) = 0 such that

("% =T"y, ] (x =) < allx =yl = @(lx =), 22)
that is,

((knl =T x = (kul =Ty, J(x=y)) 2 D(||x - y]|), (2.3)
IT"> =T"y|| <L(1+ [lx = y]), (24)

for any x,y € D. For convenience, denote k = sup, {k; }.

Step 1. There exists xo € D and x, # Txg such that ry = (k+L)||xo—g|[*+L||xo—q| € R(®)(range
of @).

Indeed, if ®(r) — +ooasr — +oo, then ryg € R(D); if sup{D(r) : r € [0,+00)} =11 <
+oo with 1 < rp, then, for g € D, there exists a sequence {v, } in D such thatv, — gasn — oo
with v, # g. Furthermore, there exists a natural number ng such that (k+L)||v,—q||*+L||v,—q]|| <
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r1/2 for n > ny, then we redefine xo, ro such that xo = v,,,, 7o = (k+L)||x0—q||*+L||x0—g|| € R(®).
Hence, it is to ensure that @1 (ry) is well defined.
Step 2. For any n > 0, {x,} is a bounded sequence.

Set R = ®~!(rp). From (2.3), we have

(kn(x0—q) = (T"x0 = q), ] (x0 - q)) 2 @(||x0 ~q]|), (2.5)

that is, (k + L)||xo — g|> + Lo — ]| > ®(||x0 — gl|). Thus, we obtain that [|x, - g|| < R. Denote

)
B,={xeD:|x-q| <2R}, (2.6)

M = sup, {[|ox - ql|} +sup,{[|wn - q[}-

Next, we want to prove that x,, € By for any n > 0 by induction. If n = 0, then x¢ € B;. Now
we assume that it holds for some #, that is, x, € B;. We prove that x,,1 € By. Suppose that
it is not the case, then ||x,.+1 — g|| > R. Since ] is uniformly continuous on bounded subset
of E, then, for ¢y = ®(R/4)/24L(1 + 2R), there exists 6 > 0 such that || Jx — Jy|| < ep when
llx —yl|l < 6,forallx,y € B,. Now denote

R R
2[L(1+2R) +2R+ M]  4[L(1 + R) + 2R + M]’

6 ®(R/4) ®(R/4) O(R/4)
2[L(1+2R) + 2R+ M]’ 24R? ’'24L(1+2R)’ 48MR }

T = min{

(2.7)

Since ay,, by, ¢y, d, — 0asn — oo, and ¢, = o(a,), without loss of generality, we assume that
0 < ay, by, cn, dy < 70, Cn < anTy for any n > 0. Then we obtain the following estimates:

[T = qll < L1+ [|xn —4l)
<LA+R),

[yn = all < (1= bw = dn) |20 = gl +Ball T"00 = q| + du]|con - 4]|
<SR+b,L(1+|xn—q|) +duM
<R+b,L(1+R)+d,M
<R+7[L(1+ R) + M]
<2R,

Ty —qll < L1+ [|yn —4ql|)
<L(1+2R),
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e =Tl < | = q| + || 720 — 4]
<L+ @1+L)|x.—4|
<L+(+L)R,

[l Gen =) = (n = @) || < bullacn = T"xall + da[[|wn = g + |4 =4[]

<b,[L+(1+L)R]+d,(M+R)
<1[L(1+ R) + 2R + M]
<1[L(1+2R) + 2R + M]

sg<d

120 =4l =[xt = gl = @nl|T"yn = x| = cullon = 2l
2 [|%n1 = qll = an [Ty = gl + I = qll] = enlllxn = qll + [[on = 4ll]
>R-a,[L(1+2R) + R] - cy(R+ M)
> R-19[L(1+2R) + M + 2R]

17 = qll = |12 = q]| = bull T2 = 2all = dul| s — 204
> ||xn = q|| = balL + (1 + L)R] = du[||xn — q]| + ||2on — 4[]
> || =gl = balL + (1 + L)R] — dn(R + M)
> ||xn - g|| - To[L(1 + R) + 2R + M]

R R R

77w
l|xne1 =gl < (1= an = cu) |20 = ql| + @nl|T"yn = ql| + cul|on - 4|
<R+ 1[L(1+2R) + M]
<2R,
| Genir =) = (xn = @) || < @nl|T"yn = x| + cullten = xull
< an[[|[T"yn —ql| + [|xn = aqll] + cu[llon = qll + [0 - 4[]
<ay[L(1+2R) + Rl +c,(M + R)

<1[L(1+2R) +2R + M]

< g < 6.
(2.8)

Hence, |[J(xn = q) = J(yn — @)l < €0; [ (xn1 — q) — J(xn — g)|| < 0.
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Using Lemma 1.6 and formulas above, we obtain

% = qll* < (1= a5 = )| % = qlI* + 285 (T"y = 4, ] (1 = 4))
+2¢n(tn = 4, ] (X1 = q))
< (1= an)’ |0 = q|1* + 2an(T"yn = 4, ] (Xnir - q) = J (xa = 9))
+2an(T"yn = 4,] (xn =) = J (yn = 9))
+2an(T"Yn = q, ] (Yn = q)) + 2cn(un = 4, ] (Xni1 = q))
< (1= an)?||x = ql* +2aul|T"yn = qll - ] (xni1 = @) = T (xa = @) |
+2au||T"yn =gl - |7 (xn =) = T (yn =) |

+2ay|llyn = all* = ©(llyn - al)| + 2eallun = qll - 001 -l

(2.9)

< (1-a,)’ R+ 4a,L(1 +2R)eo + 2ay ||y - 4l - ©(|ly - ql))]
+4¢,MR,
ya = all® < (1= ba = da)? 0 = q|| + 26(T"x0 = 4, (v~ 9))
+2dn(wn = q,] (Yn = q))
< |lxw = qlI”* +26,(T"x = 4, ] (Y = 9) = T (xa = 9))
+2b,(T"xn = q, ] (X = q) ) + 2du||wn = q]| - |y - 9| (2.10)
< lxn = all* + 26 T3 =l - 1 (W= @) = T (xu = @)
+ 20y [l = qlI* = ©(llxu = q))] + 2dn |0 ~ 4| - |ly2 - ]

< R?+2b,L(1 + R)eg + 2b,R* + 4d,MR.
Substitute (2.10) into (2.9)

l|xns1 = q||* < (1 - @,)?R? + 4a,L(1 + 2R)eq + 2a, [RZ +2b,L(1 + R)eg + 2b,R* + 4anR]
- 2a,®(||yn - q||) + 4ca MR

< R?+ aR* + 4a,L(1 + 2R)eq + 2as, [anL(l + R)eo +2b, R + 4d,,MR]

- Zan(I)(g) +4c, MR
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- R’ +2a, [%18 +2L(1 +2R)ey + 2b,L(1 + R)ep + 2b, R? + 4d, MR + ZC';MR

n
—2an¢)<§>
D(R/4) R
<R*+2 - —
=T m{ 2 (4)]
R

<R*>- (I)<Z>an

<R,
(2.11)

this is a contradiction. Thus x,.,1 € Bj, that is, {x,} is a bounded sequence. So {y,},
{T"yn}, {T"x,} are all bounded sequences. Since ||z, — g|| — 0 as n — oo, without loss
of generality, we let ||z, — g|| < 1. Therefore, ||x, — z,|| is also bounded.

Step 3. We want to prove ||x, — z,|| — Oasn — oo.

Set My = max{sup,||T"y, — T"z,|,sup,llvn = uall,sup,|lx, = zull,sup,|T"x, —
x|, sup, llwy = xul, sup,, lyn = zall, sup,, |v, — x4}

Again using Lemma 1.6, we have

%41 = Znaal® < (1= @ = cu)?[1%n = Zall® + 280 (T" Y = T" 2, ] (Xns1 = Zns1))
+2¢,(Un = Un, J (Xns1 = Zns1))
< (1= an)?[1%n = zall* + 2an(T"yn = T" 20, J (Xns1 = Zns1) = J (Xn = 2Zn))
+ 20, (T"Yn = T"2n, ] (Xn = 20) = J (Yn = 2n)) (2.12)
+2an(T"Yn = T"2n, J (Yn = 2n) ) + 2¢ullon — tnll - |Xne1 = Zusa

< (1= an)?||xn = zall* + 2a, Mo A, + 2a,MyB,
+ 2y [[yn = zall* = ©(llyn - 2al])| + 262 M2,

”yn - Zn”2 < loen — Zn||2 + 2bn<Tnxn - Xn, ](yn - Zn)>
+ 2dn<wn - xnr](yn - Zn)> (213)
< 1% = zall* + 2b, M3 + 2d, M3,

where A, = ||J(xp41 = Zns1) = J (X0 = 20|, By = [|J (X0 = 20) = J(Yn — 2u) ||, and Ay, B, — O as

n — oo.
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Taking place (2.13) into (2.12), we have

Ins1 = Zust II* € (1= @n)? |3 — zal* + 28, Mo Ay, + 22, MoB,
42,120 = zal + 26, M3 + 24, M3 = O(|lyn - za]])] + 264 M3
< |lon = za|* + 2 M2 + 2a, Mo A, + 2a,MoB,, + 4a,b, M2 + 4a,d,M> (2.14)
20,0 (lyn - 2] + 26,M3
= [l = zall” + 2, [Co = 282D (|| yn ~ za]])],
where C, = a,M3/2 + MoA, + MoB,, + 2b, M3 + 2d, M3 + c,Mj/a, — Oasn — oo.
Set inf0®@(||yn — zall) /(1 + || X041 — Zpal?) = A, then A = 0. If it is not the case, we

assume that A > 0. Let 0 < y < min{1, 1}, then @(||ly, — zu||)/ (1 + ||Xns1 — Zus1|*) > 7, that is,
O([[yn = zall) 2y + ¥ll%ni1 = Zus1l® 2 Yl ¥ns1 = Zuaa|*. Thus, from (2.14) that

lni =zt I < 0 = Zall> + 28 (Co = Y1t =zt ), (215)

which implies that
C
_ 2 < _ 2 anpLy
||xn+1 Zn+l|| =7 +2anY“xn Zn“ + 1 +2anY
, e (2.16)
any 2 anLy
=(1- =1 )jx, - Znton
( 1+ 2any> Ien = 2all” + 1+2a,y
Let p,, = ||x, — Zull%, Ay = 2a,y/(1+2a,y), 0n =2a,C, /(1 + 2a,Yy). Then we get that
Pne1 £ (1= Ap)pn + 0. (2.17)

Applying Lemma 1.7, we get that p, — 0asn — oo. This is a contradiction and so A = 0.
Therefore, there exists an infinite subsequence such that @(||yy,, — z, ) / (1 +||2n,+1 = Zn+1]1?) —
0asi — . Since 0 < D(llyn, — 24 )/ (1+ M2) < DIy, - 2 1)/ (1 + X001 — Zuys1 ), then
D(||Yyn, — zn]]) — O0asi — co. In view of the strictly increasing and continuity of @, we have
|Yn; — zn; |l — O0asi — oo. From (1.7), we have

”xni - zni” < ”ym - Zni” + bni”xni - Txni” + Cni”xni - wni” - 0/ (218)

asi — oo. Next we want to prove ||x,—z,|| — Oasn — oo. Letforalle € (0,1), there exists n;,
such that ||x,,—z, || < €, an, an, < min{e/4L(1+My),e/8 My}, cn, cn, < €/16 My, by, dy, by, dy, <
€/8My,C,,C,, < ®(e/4)/2, for any n;, n > n;,. First, we want to prove ||xp+1 — Zn+1ll < €.
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Suppose it is not this case, then ||x,,+1 — zu+1|| > €. Using (1.7), we may get the following
estimates:

||xni - Zni” 2 ||xni+1 - Z"i+1|| - ani”Tn]/n,- - TnZTli” - ani”xni - Zni”

- Cni”vni - uni” — Cny ||xni - ZTli”

2.19

>€e—a, L1+ My) - (an, +2cn,) Mo ( )
S €
2/

”]/m - Z"i” 2 ||xni - Z"i” - bni”Tnxni - xni” - dni”vni - lei”

€

2 5 = (bu, +dn,) Mo (2.20)
S €
T

Since @ is strictly increasing, then (2.20) leads to @(||y,, — zu|l) > @(e/4). From (2.14), we
have

||xni+1 - Zni+1||2 < ”xni - zni”Z + 2ani [Cn,- - q)(”]/m — Zn ”)]

< +20,[jo(5) ()

<ée - CI’(Z)‘M

(2.21)

<é

s

is a contradiction. Hence, ||x,+1 — Zn41|| < €. Suppose that ||xy,m — Zn+m| < € holds. Repeating
the above course, we can easily prove that ||Xp,4m+1 — Zn+m+1|| < € holds. Therefore, for any m
and n; > np, we obtain that ||xXp,+m — Zn+ml| < €, which means ||x;,, — z,|| — 0asn — oo. This
completes the proof. O

In order to make the existence of Theorem 2.2 more meaningful, we give the following
theorem.

Theorem 2.3. Let E be an arbitrary uniformly smooth real Banach space, let D be a nonempty
closed convex subset of E, and let T : D — D be a uniformly generalized Lipschitz generalized
asymptotically ®-strongly pseudocontractive mapping with q € F(T) #0. Let {a,}, {c,} be two real
sequences in [0, 1] and satisfy the conditions (i) an, + ¢, < 1; (ii) a, — 0asn — oo and ¢, = o(ay);
(iii) = yan = oo. For some zg € D, let {u,} be any bounded sequence in D and let {z,} be modified
Mann iterative sequence with errors defined by (1.8). Then {z,} converges strongly to the unique

fixed point q of T.
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Proof. Since T : D — D is a uniformly generalized Lipschitz generalized asymptotically
®-strongly pseudocontractive mapping, then there exists a strictly increasing continuous
function @ : [0, +o0) — [0, +o0) with @(0) = 0 such that

((knl =T")x = (kI =T")y, J(x = y)) > O(||x - y||), (2.22)
[T"x - T"y|| <L(1+|lx -y

), (2.23)

forany x,y € D.

Step 1. There exists zg € D and z # Tz such that ry = (k + L)||zo0 — g||* + L||z0 - g|| € R(®),
where k = sup, {k,}. In fact, if ®(r) — +oo asr — +oo, then ryp € R(D); if sup{D(r) :
r € [0,40)} = r1 < +oo with 11 < ry, then, for g € D, there exists a sequence {v,} in D
such that v, — gasn — oo with v, #4. Furthermore, there exists a natural number n,
such that (k + L)|lv, — g|*> + L||v, — ql| < (r1/2) for n > ny, then we redefine z,, ry such that
20 = V7o = (k + L)l|z0 - g1 + Li|z0 - qll € R(®).
Step 2. For any n > 0, {z,} is bounded.

Set r = ®!(ry), we have |lxg — gl < R Let By = {z € D : |z—¢q| <r},B, = {z €
D : |lz-gq| £ 2r},M" = sup,{|lu, - qll}. Next, we prove that z, € B} for any n > 0 by
induction. First zo € Bj is obvious. Suppose that z, € B] holds. We prove that z,,; € B}. If
it is not the case, then ||z,.+1 — g|| > r. By uniformly continuity of J on bounded subset, we
choose €y = ®(r/2)/16L(1 + 2r), there exists 6 > 0 such that ||Jx — Jy|| < o when |x - y|| <
6, forall x,y € B,. Now denote

. r 6 O(r/2) OF/2) D(r/2)
o= mm{ 2[LA+r)+2r+ M 2[L( + r)+2r+ M|’ 82 ' 24L(1+2r) 16M'r } (2:24)

Since ay, ¢y, kn—1 — Oasn — oo, and ¢, = o(a,), without loss of generality, let 0 < a,,, ¢, kn,—
1 < 7, ¢n < anTp for any n > 0. Then we have the following estimates from (1.8):

120 = T"2all < |20 = qll + I T"20 - ]|
<r+L(1+r),
20 = all = l|zne1 = gll = anll 720 = zall = cullitn — zul
>r—au[r+L(1+1)] —cu(r+M)
>r—1o[L(1+7)+2r+ M|

2

4

N =
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20 = all < (1= @ = )20 -l + @l "2, - all + o lus g
<r+1[LA+7)+M]
< 2r,
1 =)  (zn— )| € @l T2 zall + collitn - 2o
Sap[r+L(A+71)]+cu(r+ M)
<To[L(1+7)+2r+ M']

< g <6.
(2.25)
Therefore, || J(zns1 — q) — J(zn — 9)| < €0.
Using Lemma 1.6 and formulas above, we obtain
llz0e1 = qlI* < (0 = an) |20 = q11° + 20(T"20 = 4, ] (z0e1 = 9) = T (20— 9))
+2a,(T" 2y~ q, ] (20— q) ) +2¢n(ttn — q, ] (211 — q))
< (1= a0 ||z0 = qll” +2au ]| T"20 = ql| - | (2001 = q) = ] (20 = 9) |
2
+2a, [kal| 20 = q* = ||z = q})] + 2enll1tn = ]| - | 7001~ gl
< (1-ay)?*r? +4a,L(1 +2r)eo
+2a, k|2 = qlI* - @ (|| 20 - ql))] + 4cu'r
(2.26)
< (1-ay)*r? +4a,L(1 +2r)eg + 2a, [knr2 - CD(%)] +4c,M'r

2e, M’
=12 +2a, [@rz +2L(1 +2r)e + (kn — 1)r% + M] - 2anq>(f>
2 a, 2

<r’+ 2a, [(I)(Z/Z) - CD(%)]

<r’- a,ﬁD(%)

<r

7

this is a contradiction. Thus z,,1 € B;, that is, {z,} is a bounded sequence, so {T"z,} is also
bounded. Denote My = sup,, {||z, — qll} + sup, {[IT"z, — gl|} + sup,,{[lu. — qll}.
Step 3. We prove ||z, —g|| — 0Oasn — co.
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Again using Lemma 1.6, we have

|znr1 = qll” < (1= an = )’z = ql1* + 200(T"20 = 4, ] (201 = q))
+2¢,(un — 4, ] (Zne1 — 9) )
< (1= an)||za = q||* +28(T"2s = 4, ] (201 = ) = J (20— 9))
+2a,(T"2zn = 4, ] (20 = q)) + 2¢n|un = q|| - || 2041 — 4|
< (1-a,)?||za - q||” + 2a,MoD,, (2.27)
+2a,[knllza = q)1* = © (|20 - ql))] +2¢,M3

2 2
a,M c M
0+ MyD,, + 0

< ||zn—q||2+2an[(kn—1)M(2)+ -
n

—®<||zn—q||>]
<|lzn = q||* + 2a, [Ex - (|| - q[|)],
where

a, M> cya M2
Du=J(zun1 =4) =T (za =), En=(kn=1)Mj+ =2 + MoD, + =2, (2.28)

n

and D,,E,, — Oasn — oo.

Set infs0®([|z = gll) /(1 + ||zas1 — glI*) = A, then A = 0. If it is not the case, we assume
that A > 0. Let 0 < y <min{1, A}, then ®(||z, — q|)/ (1 + ||zp+1 — q||2) >y, thatis, @(||z, — q||) >
Y+ ¥llzne — q||2 > vllzne — q||2. Thus, from (2.14) that

1201 = 4ll* < 120 = l1* + 220 (Ex = l|2001 - 4ll*), (2.29)
which implies that
2 1 2> 2a,E
[E] [ m”zn -4l + 5 +§a:},
, . (2.30)
_ _ any _ 2 apky
B (1 1+2any>”Z" qll”+ 1+2a,y’

Let p, = ||z - q||2,)tn =2a,y/(1+2a,y),0, = 2a,E, /(1 + 2a,y). Then we get that
P+l < (1= Ay)pn + On. (2.31)

Applying Lemma 1.7, we get that p, — 0 asn — oo. This is a contradiction and so A = 0.
Therefore, there exists an infinite subsequence such that @(||z,, —gll) / (1+[|zn,+1 — gl*) — Oas
i — o0.Since 0 < ®(||z,—qll)/ (1+M3) < D(||zy,—ql))/ (1+]|zn1 — qII*), then ®(]|z,,—q]l) — 0
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asi — oo. In view of the strictly increasing and continuity of @, we have ||z,, —gql| — 0
asi — oo. Let ¢ € (0,1) be any given, there exists n;, such that ||z,, — q|| < €,a,,a, <
min{e/4L(1 + My),e/8My}, ¢y, cn < €/16My, E,,, E, < ®(e/2)/2, for any n;, n > n;,. First,
we want to prove ||z,,+1 — q|| < €. Suppose it is not this case, then ||z,,+1 — g|| > €. Using (1.8),
we may get the following estimates:

”Z"i - q” 2 ||zn1.+1 - q” - aﬂi“TnZ"i - q” - ani”Z"i - q” - C"i”uni - q”
>€—anL(1+ M) — (an, +2cn,) My (2.32)

>

N @

Since @ is strictly increasing, then (2.32) leads to @(||z,, —g||) > ®(e¢/2). From (2.27), we have
12001 = all” < llza —all” + 2an, [En, ~ ©(||2s, - q]))]
< [ln(S) (9
<ée - q)(g)ani

< é?

(2.33)

7

is a contradiction. Hence, ||z,,+1 — g|| < €. Suppose that ||z4,+m — g|| < € holds. Repeating the
above course, we can easily prove that ||z,+m+1 — g|| < € holds. Therefore, for any m and
n; > np, we obtain that ||z, — g|| < €, which means ||z, —g|| — 0asn — oo. This completes
the proof. O

Theorem 2.4. Let E be an arbitrary uniformly smooth real Banach space, let D be a nonempty
closed convex subset of E, and let T : D — D be a uniformly generalized Lipschitz generalized
asymptotically ®-strongly pseudocontractive mapping with q € F(T) #0. Let {an}, {b,}, {cn}, {dn}
be four real sequences in [0, 1] and satisfy the conditions (i) ay,+c, < 1, by+d, < 1; (i) ay, by, dy — 0
asn — oo and ¢, = o(ay); (iii) X a, = oo. For some xo € D, let {v,}, {w,} be two arbitrary
bounded sequences in D, and let {x,} be Ishikawa iterative sequence with errors defined by (1.7). Then
(1.7) converges strongly to the unique fixed point q of T.

Proof. By Theorems 2.3 and 2.2, we obtain directly the result of Theorem 2.4. O

Remark 2.5. Our Theorem 2.2 extends and improves Theorem 3.1 of [4] from the bounded
range of T to uniformly generalized Lipschitz mapping, and the proof course of Theorem 2.2
is quite different from that of [4].
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