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Abstract. Given an x0 ∈ Rn we study the infinite horizon problem of
minimizing the expression

∫ T
0 f(t, x(t), x′(t))dt as T grows to infinity where

x : [0, ∞) → Rn satisfies the initial condition x(0) = x0. We analyse the
existence and the properties of approximate solutions for every prescribed
initial value x0. We also establish that for every bounded set E ⊂ Rn the
C([0, T ]) norms of approximate solutions x : [0, T ] → Rn for the minimiza-
tion problem on an interval [0, T ] with x(0), x(T ) ∈ E are bounded by some
constant which does not depend on T .

Introduction

The study of variational and optimal control problems defined on in-
finte intervals has recently been a rapidly growing area of research. These
problems arise in engineering (see Anderson and Moore [1], Artstein and
Leizarowitz [2]), in models of economic growth (see Rockafellar [14], Za-
slavski [20]), in infinite discrete models of solid-state physics related to dis-
locations in one-dimensional crystals which are under discussion in Aubry
and Le Daeron [3], Zaslavski [16] and in the theory of thermodynamical
equilibrium of materials (see Leizarowitz and Mizel [12], Coleman, Marcus
and Mizel [7], Zaslavski [17,18]).

We consider the infinite horizon problem of minimizing the expression

∫ T

0
f(t, x(t), x′(t))dt

as T grows to infinity where a function x : [0,∞) → K is absolutely
continuous (a.c.) and satisfies the initial condition x(0) = x0, K ⊂ Rn is a
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closed convex set and f belongs to a complete metric space of functions to
be described below.

The following notion known as the overtaking optimality criterion was
introduced in the economics literature by Gale [8] and von Weizsacker [15]
and has been used in control theory by Artstein and Leizarowitz [2], Brock
and Haurie [5], Carlson [6] and Leizarowitz [11].

An a.c. function x : [0,∞) → K is called (f)-overtaking optimal if for
any a.c. function y : [0,∞) → K satisfying y(0) = x(0)

lim sup
T→∞

∫ T

0
[f(t, x(t), x′(t)) − f(t, y(t), y′(t))]dt ≤ 0.

Usually it is difficult to establish the existence of overtaking optimal so-
lutions, and actually, in general they may fail to exist. Most studies that
are concerned with their existence assume convex integrands ([11], [5],[14]).

Another type of optimality criterion for infinite horizon problems (which
is probably the weakest optimality concept) was introduced by Aubry and
Le Daeron [3] in their study of the discrete Frenkel-Kontorova model related
to dislocations in one-dimensional crystals. More recently this optimality
criterion was used by Moser [13], Leizarowitz and Mizel [12] and Zaslavski
[16]. A similar notion was introduced in Halkin [9] for his proof of the
maximum principle.

Let I be either [0,∞) or (−∞,∞). An a.c. function x : I → K is called
an (f)-minimal solution if for each T1 ∈ I, T2 > T1 and each a.c. function
y : [T1, T2] → K which satisfies y(Ti) = x(Ti), i = 1, 2 the following relation
holds: ∫ T2

T1

[f(t, x(t), x′(t)) − f(t, y(t), y′(t))]dt ≤ 0.

Clearly every (f)-overtaking optimal function is an (f)-minimal solution.
In the present paper we consider a functional space of integrands M

described in Section 1 and analyze existence and properties of (f)-minimal
solutions with f ∈ M. More exactly we will show that given f ∈ M and
z ∈ Rn there exists a bounded (f)-minimal solution Z : [0,∞) → Rn

satisfying Z(0) = z such that any other a.c. function Y : [0,∞) → Rn is not
“better” then Z. We will also establish that given f ∈ M and a bounded set
E ⊂ Rn the C([0, T ]) norms of approximate solutions x : [0, T ] → Rn for the
minimization problem on an interval [0, T ] with x(0), x(T ) ∈ E are bounded
by some constant which depends only on f and E. These results which
are valid for any f ∈ M have been applied in [19] to get more information
about the existence of optimal solutions over an infinite horizon and about
the structure of optimal solutions on finite intervals for a generic integrand
f ∈ M.

The paper is organized as follows. In Section 1 we state our main theo-
rems, Section 2 contains several preliminary results, in Section 3 we consider
discrete-time control systems obtained by discretization of variational prob-
lems and in Section 4 we prove the main theorems.
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1. Statements of main results

Let K ⊂ Rn be a closed convex set. Denote by | · | the Euclidean norm in
Rn and denote by M the set of continuous functions f : [0,∞)×K×Rn →
R1 which satisfy the following assumptions:

(A) (i) for each (t, x) ∈ [0,∞) ×K the function f(t, x, ·) : Rn → R1 is
convex;

(ii) the function f is bounded on [0,∞) × E for any bounded set E ⊂
K ×Rn;

(iii) f(t, x, u) ≥ sup{ψ(|x|), ψ(|u|)|u|}−a for each (t, x, u) ∈ [0,∞)×K×
Rn where a > 0 is a constant and ψ : [0,∞) → [0,∞) is an increasing
function such that ψ(t) → ∞ as t → ∞ (here a and ψ are independent on
f);

(iv) for each M, ε > 0 there exist Γ, δ > 0 such that

|f(t, x1, u1) − f(t, x2, u2)| ≤ ε sup{f(t, x1, u1), f(t, x2, u2)}

for each t ∈ [0,∞), each u1, u2 ∈ Rn and each x1, x2 ∈ K which satisfy

|xi| ≤ M, |ui| ≥ Γ, i = 1, 2, sup{|x1 − x2|, |u1 − u2|} ≤ δ;

(v) for each M, ε > 0 there exist δ > 0 such that

|f(t, x1, u1) − f(t, x2, u2)| ≤ ε

for each t ∈ [0,∞), each u1, u2 ∈ Rn and each x1, x2 ∈ K which satisfy

|xi|, |ui| ≤ M, i = 1, 2, sup{|x1 − x2|, |u1 − u2} ≤ δ.

When K = Rn it is an elementary exercise to show that an integrand
f = f(t, x, u) ∈ C1([0,∞)×Rn×Rn) belongs to M if f satisfies assumptions
(Ai), (Aiii) with a constant a > 0 and a function ψ : [0,∞) → [0,∞),

sup{|f(t, 0, 0)| : t ∈ [0,∞)} < ∞

and there exists an increasing function ψ0 : [0,∞) → [0,∞) such that

sup{|∂f/∂x(t, x, u)|, |∂f/∂u(t, x, u)|} ≤ ψ0(|x|)(1 + ψ(|u|)|u|)

for each t ∈ [0,∞), x, u ∈ Rn.
For the set M we consider the uniformity which is determined by the the

following base

(1.1) E(N, ε, λ) = {(f, g) ∈ M × M : |f(t, x, u) − g(t, x, u)| ≤ ε

(t ∈ [0,∞), u ∈ Rn, x ∈ K, |x|, |u| ≤ N),
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(|f(t, x, u)| + 1)(|g(t, x, u)| + 1)−1 ∈ [λ−1, λ]

(t ∈ [0,∞), u ∈ Rn, x ∈ K, |x| ≤ N)}
where N > 0, ε > 0, λ > 1.

Clearly, the uniform space M is Hausdorff and has a countable base.
Therefore M is metrizable. We will show that the uniform space M is
complete (see Proposition 2.2).

We consider functionals of the form

(1.2) If (T1, T2, x) =
∫ T2

T1

f(t, x(t), x′(t))dt

where f ∈ M, 0 ≤ T1 < T2 < ∞ and x : [T1, T2] → K is an a.c. function.
For f ∈ M, a, b ∈ K and numbers T1, T2 satisfying 0 ≤ T1 < T2 we set

(1.3) Uf (T1, T2, a, b) = inf{If (T1, T2, x) : x : [T1, T2] → K

is an a.c. function satisfying x(T1) = a, x(T2) = b},

(1.4) σf (T1, T2, a) = inf{Uf (T1, T2, a, b) : b ∈ K}.

It is easy to see that −∞ < Uf (T1, T2, a, b) < ∞ for each f ∈ M, each
a, b ∈ K and each numbers T1, T2 satisfying 0 ≤ T1 < T2.

Here we follow Leizarowitz [10] in defining “good functions” for the vari-
ational problem.

Let f ∈ M. An a.c. function x : [0,∞) → K is called an (f)-good
function if for any a.c. function y : [0,∞) → K there is a number My such
that

(1.5) If (0, T, y) ≥ My + If (0, T, x) for each T ∈ (0,∞).

In this paper our goal will be to study the set of (f)-good functions. We
will establish the following results.

Theorem 1.1. For each f ∈ M and each z ∈ K there exists an (f)-good
function Zf : [0,∞) → K satisfying Zf (0) = z such that:

1. For each f ∈ M, each z ∈ K and each a.c. function y : [0,∞) → K
one of the following properties holds:

(i) If (0, T, y) − If (0, T, Zf ) → ∞ as T → ∞;
(ii) sup{|If (0, T, y) − If (0, T, Zf )| : T ∈ (0,∞)} < ∞,

sup{|y(t)| : t ∈ [0,∞)} < ∞.

2. For each f ∈ M and each number M > inf{|u| : u ∈ K} there exist a
neighborhood U of f in M and a number Q > 0 such that

sup{|Zg(t)| : t ∈ [0,∞)} ≤ Q
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for each g ∈ U and each z ∈ K satisfying |z| ≤ M .
3. For each f ∈ M and each number M > inf{|u| : u ∈ K} there exist a

neighborhood U of f in M and a number Q > 0 such that for each g ∈ U ,
each z ∈ K satisfying |z| ≤ M , each T1 ≥ 0, T2 > T1 and each a.c. function
y : [T1, T2] → K satisfying |y(T1)| ≤ M the following relation holds:

Ig(T1, T2, Zg) ≤ Ig(T1, T2, y) +Q.

4. If K = Rn then for each f ∈ M and each z ∈ Rn the function
Zf : [0,∞) → Rn is an (f)-minimal solution.

Corollary 1.1. Let f ∈ M, z ∈ K and let y : [0,∞) → K be an a.c.
function. Then y is an (f)-good function if and only if condition (ii) of
Assertion 1 holds.

Theorem 1.2. For each f ∈ M there exists a neighborhood U of f in M
and a number M > 0 such that for each g ∈ U and each (g)-good function
x : [0∞) → K

lim sup
t→∞

|x(t)| < M.

In this paper we prove the following result which establishes that for
every bounded set E ⊂ K the C([0, T ]) norms of approximate solutions
x : [0, T ] → K for the minimization problem on an interval [0, T ] with
x(0), x(T ) ∈ E are bounded by some constant which does not depend on T .

Theorem 1.3. Let f ∈ M and M1,M2, c be positive numbers. Then there
exist a neighborhood U of f in M and a number S > 0 such that for each
g ∈ U , each T1 ∈ [0,∞) and each T2 ∈ [T1 + c,∞) the following properties
hold:

(i) for each x, y ∈ K satisfying |x|, |y| ≤ M1 and each a.c. function
v : [T1, T2] → K satisfying

v(T1) = x, v(T2) = y, Ig(T1, T2, v) ≤ Ug(T1, T2, x, y) +M2

the following relation holds:

(1.6) |v(t)| ≤ S, t ∈ [T1, T2];

(ii) for each x ∈ K satisfying |x| ≤ M1 and each a.c. function v :
[T1, T2] → K satisfying

v(T1) = x, Ig(T1, T2, v) ≤ σg(T1, T2, x) +M2

relation (1.6) holds.
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2. Preliminary results

Proposition 2.1. Let f ∈ M, M and ε be positive numbers. Then there
exist Γ, δ > 0 such that

|f(t, x1, u1) − f(t, x2, u2)| ≤ ε inf{f(t, x1, u1), f(t, x2, u2)}

for each t ∈ [0,∞), each u1, u2 ∈ Rn and each x1, x2 ∈ K which satisfy

(2.1) |xi| ≤ M, |ui| ≥ Γ, i = 1, 2, |u1 − u2|, |x1 − x2| ≤ δ.

Proof. Fix a number

(2.2) ε0 ∈ (0, 4−1 inf{1, ε}).

By Assumption (Aiv) there exist Γ, δ > 0 such that

(2.3) |f(t, x1, u1) − f(t, x2, u2)| ≤ ε0 sup{f(t, x1, u1), f(t, x2, u2)}

for each t ∈ [0,∞), each u1, u2 ∈ Rn and each x1, x2 ∈ K which satisfy
(2.1).

Assume that t ∈ [0,∞), u1, u2 ∈ Rn and x1, x2 ∈ K satisfy (2.1). It
follows from the definition of Γ, δ and (2.2), (2.3) that

inf{f(t, x1, u1), f(t, x2, u2)} ≥ (1 − ε0) sup{f(t, x1, u1), f(t, x2, u2)}

≥ (1 − ε0)ε−1
0 |f(t, x1, u1) − f(t, x2, u2)| ≥ ε−1|f(t, x1, u1) − f(t, x2, u2)|.

The proposition is proved.

Proposition 2.2. The uniform space M is complete.

Proof. Assume that {fi}∞
i=1 ⊂ M is a Cauchy sequence. Clearly, there

exists a function f : [0,∞) ×K × Rn → R1 such that for each (t, x, u) ∈
[0,∞) ×K ×Rn

(2.4) f(t, x, u) = lim
i→∞

fi(t, x, u).

To prove the proposition it is sufficient to show that f satisfies Assumption
(Aiv).

Let M, ε be positive numbers. Fix a number λ > 1 such that

(2.5) λ2 − 1 < 8−1ε.

Clearly there exists an integer j ≥ 1 such that

(2.6) (fi, fj) ∈ E(M, ε, λ) for any integer i ≥ j.
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By (2.5) and the properties of ψ there exists a number Γ0 such that

(2.7) Γ0 > 1, ψ(Γ0) ≥ 2a, λ2(1 + 2ψ(Γ0)−1)2 − 1 < 8−1ε.

Fix a positive number ε1 which satisfies

(2.8) 8ε1[λ(1 + 2ψ(Γ0)−1)]2 < ε.

By Proposition 2.1 there exist numbers Γ, δ > 0 such that
(2.9)

Γ > Γ0, |fj(t, x1, u1) − fj(t, x2, u2)| ≤ ε1 inf{fj(t, x1, u1), fj(t, x2, u2)}

for each t ∈ [0,∞), each u1, u2 ∈ Rn and each x1, x2 ∈ K which satisfy
(2.1).

Assume that t ∈ [0,∞), u1, u2 ∈ Rn, x1, x2 ∈ K satisfy (2.1). It follows
from the definition of Γ, δ that (2.9) holds. By (1.1), (2.4), (2.6) and (2.1)

(2.10) (|f(t, xi, ui)| + 1)(|fj(t, xi, ui)| + 1)−1 ∈ [λ−1, λ], i = 1, 2.

Assumption (Aiii), (2.1), (2.7) and (2.9) imply that

(2.11) inf{f(t, xi, ui), fj(t, xi, ui)} ≥ 2−1ψ(Γ0), i = 1, 2.

Together with (2.10) this implies that
(2.12)
f(t, xi, ui)fj(t, xi, ui)−1 ∈ [(λ(1 + 2ψ(Γ0)−1))−1, λ(1 + 2ψ(Γ0)−1)], i = 1, 2.

We may assume without loss of generality that

(2.13) f(t, x1, u1) ≥ f(t, x2, u2).

It follows from (2.12), (2.9), (2.8) and (2.7) that

f(t, x1, u1) − f(t, x2, u2) ≤ λ(1 + 2ψ(Γ0)−1)fj(t, x1, u1)

−(λ(1 + 2ψ(Γ0)−1))−1fj(t, x2, u2) = λ(1 + 2ψ(Γ0)−1)[fj(t, x1, u1)−
fj(t, x2, u2)] + fj(t, x2, u2)[λ(1 + 2ψ(Γ0)−1) − (λ(1 + 2ψ(Γ0)−1))−1]

≤ λ(1 + 2ψ(Γ0)−1)ε1fj(t, x2, u2) + fj(t, x2, u2)[λ(1 + 2ψ(Γ0)−1)−
(λ(1 + 2ψ(Γ0)−1))−1] ≤ ε1[λ(1 + 2ψ(Γ0)−1)]2f(t, x2, u2)+

f(t, x2, u2)[λ2(1 + 2ψ(Γ0)−1)2 − 1] ≤ εf(t, x2, u2).

Therefore the function f satisfies Assumption (Aiv). This completes the
proof of the proposition.
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Proposition 2.3. Let M1 > 0, 0 < τ0 < τ1. Then there exists a number
M2 > 0 such that for each f ∈ M, each pair of numbers T1, T2 satisfying

(2.14) 0 ≤ T1 < T2, T2 − T1 ∈ [τ0, τ1]

and each a.c. function x : [T1, T2] → K which satisfies

(2.15) If (T1, T2, x) ≤ M1

the following relation holds:

(2.16) |x(t)| ≤ M2, t ∈ [T1, T2].

Proof. By Assumption (Aiii) and the properties of the function ψ there
exists a number c0 > 0 such that

(2.17) f(t, x, u) ≥ |u|
for each f ∈ M and each (t, x, u) ∈ [0,∞) ×K ×Rn satisfying |u| ≥ c0, and

(2.18) f(t, x, u) ≥ 2M1(inf{1, τ0})−1

for each f ∈ M and each (t, x, u) ∈ [0,∞) ×K ×Rn satisfying |x| ≥ c0. Fix
a number

(2.19) M2 > 1 +M1 + aτ1 + c0(1 + τ1)

(recall a in Asssumption (Aiii)).
Let f ∈ M, T1, T2 be numbers satisfying (2.14) and let x : [T1, T2] → K

be an a.c. function satisfying (2.15). We will show that (2.16) holds.
Assume the contrary. Then there exists t0 ∈ [T1, T2] such that

(2.20) |x(t0)| > M2.

By the definition of c0, (2.18), (2.14) and (2.15) there exists t1 ∈ [T1, T2]
satisfying

(2.21) |x(t1)| ≤ c0.

Set
(2.22)
E = [inf{t0, t1}, sup{t0, t1}], E1 = {t ∈ E : |x′(t)| ≥ c0}, E2 = E \ E1.

It follows from (2.22), (2.14), the definition of c0, (2.17), Assumption (Aiii)
and (2.15) that

|x(t1) − x(t0)| ≤
∫

E1

|x′(t)|dt+
∫

E2

|x′(t)|dt ≤ τ1c0 +
∫

E1

|x′(t)|dt ≤

τ1c0 +
∫

E1

f(t, x(t), x′(t))dt ≤ τ1c0 + If (T1, T2, x) + aτ1 ≤ τ1(c0 + a) +M1.

By this relation and (2.20), (2.21) M2 − c0 ≤ τ1(c0 + a) + M1. This is
contradictory to (2.19). The obtained contradiction proves the proposition.
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Proposition 2.4. Let M1, ε > 0, 0 < τ0 < τ1. Then there exists a number
δ > 0 such that for each f ∈ M, each numbers T1, T2 satisfying (2.14), each
a.c. function x : [T1, T2] → K satisfying (2.15) and each t1, t2 ∈ [T1, T2]
which satisfy |t1 − t2| ≤ δ the relation |x(t1) − x(t2)| ≤ ε holds.

Proof. By Assumption (Aiii) and the properties of the function ψ there
exists a number c0 > 0 such that

(2.23) f(t, x, u) ≥ 4ε−1(M1 + 2 + aτ1)|u|
for each f ∈ M and each (t, x, u) ∈ [0,∞) ×K ×Rn satisfying |u| ≥ c0. Fix
a number

(2.24) δ ∈ (0, 8−1(c0 + 1)−1ε).

Assume that f ∈ M, numbers T1, T2 satisfy (2.14), an a. c. function
x : [T1, T2] → K satisfies (2.15) and

(2.25) t1, t2 ∈ [T1, T2], 0 < |t1 − t2| ≤ δ.

Set

E = [inf{t1, t2}, sup{t1, t2}], E1 = {t ∈ E : |x′(t)| ≥ c0}, E2 = E \ E1.

It follows from (2.25), the definition of c0, (2.23), (2.14) and Assumption
(Aiii) that

|x(t2) − x(t1)| ≤
∫

E1

|x′(t)|dt+
∫

E2

|x′(t)|dt ≤ δc0 +
∫

E1

|x′(t)|dt

≤ δc0 + [4(M1 + 2 + aτ1)]−1ε

∫
E1

f(t, x(t), x′(t))dt

≤ δc0 + [4(M1 + 2 + aτ1)]−1ε(If (T1, T2, x) + aτ1).

Together with (2.15), (2.14) and (2.24) this relation implies that

|x(t2) − x(t1)| ≤ δc0 + 4−1ε ≤ ε.

This completes the proof of the proposition.

We have the following result (see Berkovitz [4]).

Proposition 2.5. Assume that f ∈ M, M1 > 0, 0 ≤ T1 < T2, xi :
[T1, T2] → K, i = 1, 2, . . . is a sequence of a. c. functions such that

If (T1, T2, xi) ≤ M1, i = 1, 2, . . .

Then there exists a subsequence {xik
}∞

k=1 and an a. c. function x : [T1, T2] →
K such that

If (T1, T2, x) ≤ M1, xik
→ x(t) as k → ∞ uniformly in [T1, T2] and

x′
ik

→ x′ as k → ∞ weakly in L1(Rn; (T1, T2)).
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Corollary 2.1. For each f ∈ M, each pair of numbers T1, T2 satisfying 0 ≤
T1 < T2 and each z1, z2 ∈ K there exists an a.c. function x : [T1, T2] → K
such that x(Ti) = zi, i = 1, 2, If (T1, T2, x) = Uf (T1, T2, z1, z2).

Corollary 2.2. For each f ∈ M, each T1, T2 satisfying 0 ≤ T1 < T2 and
each z ∈ K there exists an a.c. function x : [T1, T2] → K such that x(T1) =
z, If (T1, T2, x) = σf (T1, T2, z).

It is an elementary exercise to prove the following result.

Proposition 2.6. Let f ∈ M, 0 < c1 < c2 < ∞ and let c3 > 0. Then there
exists a neighborhood U of f in M such that the set

{Ug(T1, T2, z1, z2) : g ∈ U, T1 ∈ [0,∞), T2 ∈ [T1 + c1, T1 + c2],

z1, z2 ∈ K, |zi| ≤ c3, i = 1, 2}
is bounded.

Proposition 2.7. Assume that K = Rn, f ∈ M, 0 < c1 < c2 < ∞ and
M, ε > 0. Then there exists δ > 0 such that for each T1, T2 ≥ 0 satisfying

(2.26) T2 − T1 ∈ [c1, c2]

and each y1, y2, z1, z2 ∈ Rn satisfying

(2.27) |yi|, |zi| ≤ M, i = 1, 2, sup{|y1 − y2|, |z1 − z2|} ≤ δ

the following relation holds:

(2.28) |Uf (T1, T2, y1, z1) − Uf (T1, T2, y2, z2)| ≤ ε.

Proof. By Proposition 2.6 there exists a number

(2.29) M0 > sup{|Uf (T1, T2, y, z)| : T1 ∈ [0,∞), T2 ∈ [T1 + c1, T1 + c2],

y, z ∈ Rn, |y|, |z| ≤ M}.
By Proposition 2.3 there exists a number M1 > 0 such that for each pair of
numbers T1, T2 ≥ 0 satisfying (2.26) and each a.c. function x : [T1, T2] → Rn

which satisfies If (T1, T2, x) ≤ 4M0 + 1 the following relation holds:

(2.30) |x(t)| ≤ M1, t ∈ [T1, T2].

Choose a number δ1 > 0 such that

(2.31) 4δ1(2c2 + 2a+ 4ac2 + 1 +M0) < ε
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(see Assumption (Aiii)). By Proposition 2.1 there exist

(2.32) Γ0 > 2 and δ2 ∈ (0, 8−1)

such that

(2.33) |f(t, x1, u1) − f(t, x2, u2)| ≤ δ1 inf{f(t, x1, u1), f(t, x2, u2)}

for each t ∈ [0,∞) and each u1, u2, x1, x2 ∈ Rn which satisfy

(2.34) |xi| ≤ M1 + 1, |ui| ≥ Γ0 − 1, i = 1, 2, |u1 − u2|, |x1 − x2| ≤ δ2.

By Assumption (Aiv) there is a number

(2.35) δ3 ∈ (0, 4−1 inf{δ1, δ2})

such that

(2.36) |f(t, x1, u1) − f(t, x2, u2)| ≤ δ1

for each t ∈ [0,∞), each u1, u2, x1, x2 ∈ Rn which satisfy

(2.37) |xi|, |ui| ≤ Γ0 +M1 + 4, i = 1, 2, sup{|x1 − x2|, |u1 − u2|} ≤ δ3.

There exists a positive number δ such that

(2.38) 8(c−1
1 + 1)δ < δ3.

Assume that numbers T1, T2 ≥ 0 satisfy (2.26) and y1, y2, z1, z2 ∈ Rn

satisfy (2.27). By Corollary 2.1 there exists an a.c. function x1 : [T1, T2] →
Rn such that

(2.39) x1(T1) = y1, x1(T2) = z1, I
f (T1, T2, x1) = Uf (T1, T2, y1, z1).

Set
(2.40)
x2(t) = x1(t) + y2 − y1 + (t− T1)(T2 − T1)−1(z2 − z1 − y2 + y1), t ∈ [T1, T2].

Clearly

(2.41) x2(T1) = y2, x2(T2) = z2.

It follows from (2.26), (2.27), (2.39), (2.29) and the definition of M1 that

(2.42) |x1(t)| ≤ M1, t ∈ [T1, T2].
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(2.40), (2.27) and (2.26) imply that

(2.43) |x1(t) − x2(t)| ≤ 3δ, |x′
1(t) − x′

2(t)| ≤ 2c−1
1 δ, t ∈ [T1, T2].

Set

(2.44) E1 = {t ∈ [T1, T2] : |x′
1(t)| ≥ Γ0}, E2 = [T1, T2] \ E1.

We have

(2.45) |If (T1, T2, x2) − If (T1, T2, x1)| ≤ σ1 + σ2

where

(2.46) σj =
∫

Ej

|f(t, x1(t), x′
1(t)) − f(t, x2(t), x′

2(t))|dt, j = 1, 2.

We will estimate σ1, σ2 separately. Let t ∈ E1. It follows from (2.42), (2.43),
(2.44), (2.38), (2.35), (2.32) and the definition of δ2 that

|f(t, x1(t), x′
1(t)) − f(t, x2(t), x′

2(t))| ≤ δ1f(t, x1(t), x′
1(t)).

Therefore σ ≤ δ1
∫

E1
f(t, x1(t), x′

1(t))dt. This relation, Assumption (Aiii),
(2.39), (2.27), (2.29) and (2.26) imply that

(2.47) σ1 ≤ δ1(If (T1, T2, x1) + a(T2 − T1)) ≤ δ1(M0 + ac2).

Let t ∈ E2. It follows from (2.42), (2.43), (2.38), (2.44) and the definition
of δ3 that

|f(t, x1(t), x′
1(t)) − f(t, x2(t), x′

2(t))| ≤ δ1.

Therefore

(2.48) σ2 ≤ δ1c2.

Combining (2.45), (2.47), (2.48) and (2.31) we obtain that

|If (T1, T2, x2) − If (T1, T2, x1)| ≤ δ1(M0 + ac2 + c2) ≤ ε.

Together with (2.39) and (2.41) this implies that

Uf (T1, T2, y2, z2) ≤ Uf (T1, T2, y1, z1) + ε.

This completes the proof of the proposition.
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Proposition 2.8. Let f ∈ M, 0 < c1 < c2 < ∞, D, ε > 0. Then there
exists a neighborhood V of f in M such that for each g ∈ V , each pair of
numbers T1, T2 ≥ 0 satisfying T2 − T1 ∈ [c1, c2] and each a. c. function
x : [T1, T2] → K satisfying

(2.49) inf{If (T1, T2, x), Ig(T1, T2, x)} ≤ D

the relation |If (T1, T2, x) − Ig(T1, T2, x)| ≤ ε holds.

Proof. By Proposition 2.3 there exists a number S > 0 such that for each
g ∈ M, each T1, T2 ≥ 0 satisfying T2 − T1 ∈ [c1, c2] and each a.c. function
x : [T1, T2] → K which satisfies Ig(T1, T2, x) ≤ D + 1 the following relation
holds:

(2.50) |x(t)| ≤ S, t ∈ [T1, T2].

There exist δ ∈ (0, 1), N > S and Γ > 1 such that

(2.51) δ(c2 + 1) ≤ 4−1ε, ψ(N)N > 4a, (Γ − 1)(c2 +D + ac2 + 1) ≤ 4−1ε.

Set V = {g ∈ M : (f, g) ∈ E(N, δ,Γ)} (see (1.1)). Assume that g ∈ V ,

(2.52) T1, T2 ≥ 0, T2 − T1 ∈ [c1, c2]

and x : [T1, T2] → K is an a.c. function satisfying (2.49). It follows from
the definition of S that (2.50) holds. Set

E1 = {t ∈ [T1, T2] : |x′(t)| ≤ N}, E2 = [T1, T2] \ E1.

It follows from (2.50) and the definition of V and N that

(2.53) |f(t, x(t), x′(t)) − g(t, x(t), x′(t))| ≤ δ, t ∈ E1.

Define

(2.54) h(t) = inf{f(t, x(t), x′(t)), g(t, x(t), x′(t))}, t ∈ [T1, T2].

It follows from (2.50), (2.51), Assumption (Aiii) and the definition of V , N
that for t ∈ E2

(2.55) (f(t, x(t), x′(t)) + 1)(g(t, x(t), x′(t)) + 1)−1 ∈ [Γ−1,Γ],

|f(t, x(t), x′(t)) − g(t, x(t), x′(t))| ≤ (Γ − 1)(h(t) + 1).

By (2.53), (2.52), (2.55), (2.49), (2.54), Assumption (Aiii) and (2.51 )

|If (T1, T2, x) − Ig(T1, T2, x)| ≤
∫

E1

|f(t, x(t), x′(t)) − g(t, x(t), x′(t))|dt

+
∫

E2

|f(t, x(t), x′(t)) − g(t, x(t), x′(t))|dt ≤ δc2 + (Γ − 1)
∫

E2

(h(t) + 1)dt

≤ δc2 + (Γ − 1)c2 + (Γ − 1)(D + ac2) ≤ ε.

The proposition is proved.
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Proposition 2.9. Let f ∈ M, 0 < c1 < c2 < ∞, c3, ε > 0. Then there
exists a neighborhood V of f in M such that for each g ∈ V , each T1, T2 ≥ 0
satisfying T2 − T1 ∈ [c1, c2] and each y, z ∈ K satisfying |y|, |z| ≤ c3 the
relation

|Uf (T1, T2, y, z) − Ug(T1, T2, y, z)| ≤ ε

holds.

Proof. By Proposition 2.6 there exist a neighborhood V1 of f in M and a
number

D0 > sup{|Ug(T1, T2, z1, z2)| : g ∈ V1, T1 ∈ [0,∞), T2 ∈ [T1 + c1, T1 + c2],

z1, z2 ∈ K, |zi| ≤ c3, i = 1, 2}.
By Proposition 2.8 there exists a neighborhood V of f in M such that
V ⊂ V1 and for each g ∈ V , each T1, T2 ≥ 0 satisfying T2 − T1 ∈ [c1, c2] and
each a.c. function x : [T1, T2] → K satisfying

inf{If (T1, T2, x), Ig(T1, T2, x)} ≤ D0 + 2

the relation |If (T1, T2, x) − Ig(T1, T2, x)| ≤ inf{1, ε} holds.
To complete the proof it remains now to note that for g ∈ V , T1 ≥ 0,

T2 ∈ [T1 + c1, T1 + c2] and y, z ∈ K satisfying |y|, |z| ≤ c3 the following
relation holds:

Ug(T1, T2, y, z) = inf{Ig(T1, T2, x) : x : [T1, T2] → K is an a.c. function

satisfying x(T1) = y, x(T2) = z, Ig(T1, T2, x) ≤ D0 + 1}.

3. Discrete-time control systems

Let f ∈ M, z̄ ∈ K and let 0 < c1 < c2 < ∞. By Proposition 2.6 there
exists a neighborhood U0 of f in M and a number
(3.1)
M0 ≥ sup{|Ug(T1, T2, y, z)| : g ∈ U0, T1 ∈ [0,∞), T2 ∈ [T1 + c1, T1 + c2],

y, z ∈ K, |y|, |z| ≤ 2|z̄| + 1}.
By Proposition 2.3 there exists a positive number M1 such that

(3.2) inf{Ug(T1, T2, y, z) : g ∈ M, T1 ∈ [0,∞), T2 ∈ [T1 + c1, T1 + c2],

y, z ∈ K, |y| + |z| ≥ M1} > 2M0 + 1.



OPTIMAL SOLUTIONS OF VARIATIONAL PROBLEMS 279

Proposition 3.1. Assume that a positive number M1 satisfies (3.2) and
M2 > 0. Then there exists a neighborhood U of f in M and an integer
N > 2 such that:

1. For each g ∈ U , each ∆ ∈ [0,∞), each T ∈ [c1, c2], each pair of integers
q1, q2 satisfying 0 ≤ q1 < q2, q2 − q1 ≥ N and each sequence {zi}q2

i=q1
⊂ K

satisfying
{i ∈ {q1, . . . .q2} : |zi| ≤ M1} = {q1, q2}

the following relation holds:
(3.3)
q2−1∑
i=q1

[Ug(∆+iT,∆+(i+1)T, zi, zi+1)−Ug(∆+iT,∆+(i+1)T, yi, yi+1)] ≥ M2

where yi = zi, i = q1, q2, yi = z̄, i = q1 + 1, . . . q2 − 1;
2. For each g ∈ U , each ∆ ∈ [0,∞), each T ∈ [c1, c2], each pair of integers

q1, q2 satisfying 0 ≤ q1 < q2, q2 − q1 ≥ N and each sequence {zi}q2
i=q1

⊂ K
satisfying

{i ∈ {q1, . . . , q2} : |zi| ≤ M1} = {q1}
relation (3.3) holds with yq1 = zq1 , yi = z̄, i = q1 + 1, . . . , q2.

Proof. By Proposition 2.6 there exists a neighborhood U of f in M and a
number M3 > 0 such that

U ⊂ U0, M3 ≥ sup{|Ug(T1, T2, y, z)| : g ∈ U, T1 ∈ [0,∞),

T2 ∈ [T1 + c1, T1 + c2], y, z ∈ K, |y|, |z| ≤ 2|z̄| + 1 + 2M1}.
Fix an integer N ≥ M2 + 4M3 + 4. The validity of the proposition now
follows from the definition of U , M3, N and (3.1), (3.2).

Proposition 3.2. Assume that a positive number M1 satisfies (3.2) and
M3 > 0. Then there exists a neighborhood V of f in M and a number
M4 > M1 such that:

1. For each g ∈ V , each ∆ ∈ [0,∞), each T ∈ [c1, c2], each pair of integers
q1, q2 satisfying 0 ≤ q1 < q2 and each sequence {zi}q2

i=q1
⊂ K satisfying

(3.4) sup{|zq1 |, |zq2 |} ≤ M1, sup{|zi| : i = q1, . . . q2} > M4

there is a sequence {yi}q2
i=q1

⊂ K which satisfies yqj = zqj , j = 1, 2,
(3.5)
q2−1∑
i=q1

[Ug(∆+iT,∆+(i+1)T, zi, zi+1)−Ug(∆+iT,∆+(i+1)T, yi, yi+1)] ≥ M3.

2. For each g ∈ V , each ∆ ∈ [0,∞), each T ∈ [c1, c2], each pair of integers
q1, q2 satisfying 0 ≤ q1 < q2 and each sequence {zi}q2

i=q1
⊂ K satisfying

(3.6) |zq1 | ≤ M1, sup{|zi| : i = q1, . . . q2} > M4
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there is a sequence {yi}q2
i=q1

⊂ K which satisfies yq1 = zq1 and (3.5).

Proof. There exist a neighborhood U of f in M and an integer N > 2
such that Proposition 3.1 holds with M2 = 4(M3 + 1) and U ⊂ U0. By
Proposition 2.6 there exist a neighborhood V of f in M and a number r1
such that

(3.7) V ⊂ U, r1 > sup{|Ug(T1, T2, y, z)| : g ∈ V, T1 ∈ [0,∞), T2 ∈

[T1 + c1, T1 + c2], y, z ∈ K, |y|, |z| ≤ |z̄| + 1 +M1}.
By Proposition 2.3 there exists a positive number M4 > M1 such that

(3.8) inf{Ug(T1, T2, y, z) : g ∈ M, T1 ∈ [0,∞), T2 ∈ [T1 + c1, T1 + c2],

y, z ∈ K, |y| + |z| ≥ M4} > 3r1N + 4 + 4M3 + 3ac2N

(recall a in Assumption (Aiii)).
We will prove Assertion 1. Let g ∈ V , ∆ ∈ [0,∞), T ∈ [c1, c2], 0 ≤ q1 <

q2, {zi}q2
i=q1

⊂ K. Assume that (3.4) holds. Then there is j ∈ {q1, . . . q2}
such that |zj | > M4. Set

i1 = sup{i ∈ {q1, . . . , j} : |zi| ≤ M1}, i2 = inf{i ∈ {j, . . . q2} : |zi| ≤ M1}.

If i2 − i1 ≥ N then by the definition of V ,U , N and Proposition 3.1 there
exists a sequence {yi}q2

i=q1
⊂ K which satisfies (3.5) and yqi = zqi , i = 1, 2.

Assume that i2 − i1 < N and define a sequence {yi}q2
i=q1

⊂ K by

(3.9) yi = zi, i ∈ {q1, . . . i1} ∪ {i2, . . . q2}, yi = z̄, i = i1 + 1 . . . i2 − 1.

It follows from (3.9), (3.7), Assumption (Aiii) and the definition of i1, i2, j
that
(3.10)
q2−1∑
i=q1

[Ug(∆ + iT,∆ + (i+ 1)T, zi, zi+1) − Ug(∆ + iT,∆ + (i+ 1)T, yi, yi+1)]

=
i2−1∑
i=i1

[Ug(∆ + iT,∆ + (i+ 1)T, zi, zi+1) −Ug(∆ + iT,∆ + (i+ 1)T, yi, yi+1)]

≥ Ug(∆ + (j − 1)T,∆ + jT, zj−1, zj) − a(i2 − i1 − 1)c2 − (i2 − i1)r1.

By this relation and the definition of j,M4 (see (3.8))

(3.11)
q2−1∑
i=q1

[Ug(∆ + iT,∆ + (i+ 1)T, zi, zi+1)−
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Ug(∆ + iT,∆ + (i+ 1)T, yi, yi+1)] ≥ 4M3 + 4.

This completes the proof of Assertion 1.
We will prove Assertion 2. Let g ∈ V , ∆ ∈ [0,∞), T ∈ [c1, c2], 0 ≤ q1 <

q2, {zi}q2
i=q1

⊂ K. Assume that (3.6) holds. Then there is j ∈ {q1, . . . q2}
such that |zj | > M4. Set i1 = sup{i ∈ {q1, . . . , j} : |zi| ≤ M1}.

There are two cases: 1) |zi| > M1, i = j, . . . , q2,; 2) inf{|zi| : i =
j, . . . q2} ≤ M1. Consider the first case. We set

yi = zi, i = q1, . . . i1, yi = z̄, i = i1 + 1, . . . q2.

If q2 − i1 ≥ N then (3.5) follows from the definition of V , U , N and Propo-
sition 3.1. If q2 − i1 < N then (3.5) follows from the definition of {yi}q2

i=q1
,

i1, j,M4, (3.7) (see (3.10), (3.11) with i2 = q2).
Consider the second case. Set i2 = inf{i ∈ {j, . . . q2} : |zi| ≤ M1}.

If i2 − i1 ≥ N then by the definition of V,U,N and Proposition 3.1 there
exists a sequence {yi}q2

i=q1
⊂ K which satisfies (3.5) and yqi = zqi , i = 1, 2.

If i2 − i1 < N we define a sequence {yi}q2
i=q1

⊂ K by (3.9). Then (3.10) and
(3.11) follows from (3.9), the definition of i1, i2, j,M4, (3.7). Assertion 2 is
proved. This completes the proof of the proposition.

4. Proof of Theorems 1.1-1.3

Construction of a neighborhood U . Let f ∈ M, z̄ ∈ K, M > 2|z̄|. By
Proposition 2.6 there exist a neighborhood U0 of f in M and a number

(4.1) M0 ≥ sup{|Ug(T1, T2, y, z)| : g ∈ U0, T1 ∈ [0,∞),

T2 ∈ [T1 + 4−1, T1 + 4], y, z ∈ K, |y|, |z| ≤ 2|z̄| + 1}.
By Proposition 2.3 there exists a number M1 > M such that

(4.2) inf{Ug(T1, T2, y, z) : g ∈ M, T1 ∈ [0,∞), T2 ∈ [T1 + 4−1, T1 + 4],

y, z ∈ K, |y| + |z| ≥ M1} > 2M0 + 1.

By (4.1), (4.2) there exists a neighborhood U1 of f in M and a number M2
such that

(4.3) U1 ⊂ U0, M2 > M1 and Proposition 3.2 holds with M3 = 1,

c1 = 4−1, c2 = 4, V = U1, M4 = M2.

By Proposition 2.6 there exist a neighborhood U2 of f in M and a number
Q0 > 0 such that

(4.4) U2 ⊂ U1, Q0 > sup{|Ug(T1, T2, y, z)| : g ∈ U2, T1 ∈ [0,∞),
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T2 ∈ [T1 + 4−1, T1 + 4], y, z ∈ K, |y|, |z| ≤ M2 + 1}.
By Proposition 2.3 there exists a number

(4.5) Q1 > Q0 +M2 + 1

such that

(4.6) |x(t)| ≤ Q1, t ∈ [T1, T2]

for each g ∈ M, each T1, T2 satisfying

0 ≤ T1 < T2, T2 − T1 ∈ [4−1, 4]

and each a.c. function x : [T1, T2] → K which satisfies Ig(T1, T2, x) ≤
2Q0 + 2.

By Proposition 2.6 there exist a neighborhood U of f in M and a number
Q2 > 0 such that

(4.7) U ⊂ U2, Q2 > Q1, Q2 > sup{|Ug(T1, T2, y, z)| : g ∈ U,

T1 ∈ [0,∞), T2 ∈ [T1 + 4−1, T1 + 4], y, z ∈ K, |y|, |z| ≤ 2Q1 + 4}.
We may assume without loss of generality that there exists a number

(4.8) Q3 > sup{|g(t, y, u)| : g ∈ U, t ∈ [0,∞), y ∈ K, u ∈ Rn,

|y|, |u| ≤ 2M2 + 2}.
Construction of a function Zg : [0,∞) → K. Let g ∈ U , z ∈ K, |z| ≤ M .

By Corollary 2.2 for any integer q ≥ 1 there exists an a. c. function
Zg

q : [0, q] → K such that

(4.9) Zg
q (0) = z, Ig(0, q, Zg

q ) = σg(0, q, z).

It follows from Proposition 3.2 and the definition of Zg
q , U1, M2 that

(4.10) |Zg
q (i)| ≤ M2, i = 0, . . . q, q = 1, 2, . . . .

There exists a subsequence {Zg
gj

}∞
j=1 such that for any integer i ≥ 0 there

exists

(4.11) zg
i = lim

j→∞
Zg

qj
(i).

By Corollary 2.1 there exists an a.c. fnction Zg : [0,∞) → K such that for
each integer i ≥ 0

(4.12) Zg(i) = zg
i , I

g(i, i+ 1, Zg) = Ug(i, i+ 1, zg
i , z

g
i+1).

It follows from (4.9), (4.10) and (4.4) that

(4.13) Ig(i, i+ 1, Zg
q ) < Q0, i = 0, . . . q − 1, q = 1, 2, . . . .

(4.10), (4.11), (4.12) and (4.4) imply that

(4.14) Ig(i, i+ 1, Zg) < Q0, i = 0, 1, . . .

By (4.13), (4.14) and the definition of Q1 (see (4.5), (4.6))

(4.15) |Zg
q (t)| ≤ Q1, t ∈ [0, q], q = 1, 2, . . . , |Zg(t)| ≤ Q1, t ∈ [0,∞).

Therefore for each g ∈ U and each z ∈ K satisfying |z| ≤ M we define a.c.
functions Zg

q : [0, q] → K, q = 1, 2, . . . and Zg : [0,∞) → K satisfying
(4.9)-(4.15).
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Lemma 4.1. Let g ∈ U , z ∈ K, |z| ≤ M . Then for each pair of integers
q1, q2 satisfying 0 ≤ q1 < q2 and each sequence {yi}q2

i=q1
⊂ K satisfying

|yq1 | ≤ M1 the following relation holds:

(4.16)
q2−1∑
i=q1

[Ug(i, i+ 1, zg
i , z

g
i+1) − Ug(i, i+ 1, yi, yi+1)] ≤ 4 + 4Q2.

Proof. Assume that integers q1, q2 satisfy 0 ≤ q1 < q2 and a sequence
{yi}q2

i=q1
⊂ K satisfies |yq1 | ≤ M1. We will show that (4.16) holds.

Let us assume the converse. Then

(4.17)
q2−1∑
i=q1

[Ug(i, i+ 1, zg
i , z

g
i+1) − Ug(i, i+ 1, yi, yi+1)] > 4 + 4Q2.

By Corollaries 2.1, 2.2 we may assume without loss of generality that

q2−1∑
i=q1

[Ug(i, i+ 1, yi, yi+1) − Ug(i, i+ 1, ȳi, ȳi+1)] ≤ 0

for each sequence {ȳi}q2
i=q1

⊂ K satisfying ȳq1 = yq1 . It follows from (4.3),
(4.5) that

(4.18) |yi| ≤ M2 < Q1, i = q1, . . . q2.

By Proposition 2.5, (4.9), (4.11) and (4.13) for any integer i ≥ 0

Ug(i, i+ 1, zg
i , z

g
i+1) ≤ lim inf

j→∞
Ug(i, i+ 1, Zg

qj
(i), Zg

qj
(i+ 1)).

Therefore there exists an integer q > q2 + 1 such that

(4.19)
q2∑

i=q1

[Ug(i, i+ 1, zg
i , z

g
i+1) − Ug(i, i+ 1, Zg

q (i), Zg
q (i+ 1))] ≤ 1.

We define a sequence {hi}q
i=0 ⊂ K as follows

(4.20) hi = Zg
q (i), i ∈ {0, . . . q1}∪{q2 + 1, . . . q}, hi = yi, i = q1 + 1, . . . q2.

It follows from (4.20), (4.9), Corollary 2.1, (4.19) and (4.17) that

0 ≥
q−1∑
i=0

[Ug(i, i+ 1, Zg
q (i), Zg

q (i+ 1)) − Ug(i, i+ 1, hi, hi+1)]
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=
q2∑

i=q1

[Ug(i, i+ 1, Zg
q (i), Zg

q (i+ 1)) − Ug(i, i+ 1, hi, hi+1)]

=
q2∑

i=q1

[Ug(i, i+ 1, Zg
q (i), Zg

q (i+ 1)) − Ug(i, i+ 1, zg
i , z

g
i+1)]

+
q2∑

i=q1

Ug(i, i+1, zg
i , z

g
i+1)−

q2−1∑
i=q1

Ug(i, i+1, yi, yi+1)+Ug(q1, q1+1, yq1 , yq1+1)

−Ug(q1, q1 + 1, hq1 , hq1+1) − Ug(q2, q2 + 1, hq2 , hq2+1) ≥ 3 + 4Q2

+Ug(q2, q2 + 1, , zg
q2
, zg

q2+1) + Ug(q1, q1 + 1, yq1 , yq1+1)

−Ug(q1, q1 + 1, hq1 , hq1+1) − Ug(q2, q2 + 1, hq2 , hq2+1).

Together with (4.20), (4.18), (4.10), (4.11), (4.5) and (4.7) this relation
implies that

0 ≥ 3 + 4Q+ Ug(q2, q2 + 1, zg
q2
, zg

q2+1) + Ug(q1, q1 + 1, yq1 , yq1+1)

−Ug(q1, q1+1, Zg
q (q1), yq1+1)−Ug(q2, q2+1, yq2 , Z

g
q (q2+1)) ≥ 3+4Q2−4Q2.

The obtained contradiction proves the lemma.

Lemma 4.2. Let g ∈ U , z ∈ K, |z| ≤ M , an integer q ≥ 0, T ∈ (q,∞) and
let x : [q, T ] → K be an a.c. function satisfying |x(q)| ≤ M1. Then

(4.21) Ig(q, T, Zg) ≤ Ig(q, T, x) + 4 + 4Q2 +Q0 + 2a

(recall a in Assumption (Aiii)).

Proof. There exists an integer q1 ≥ q such that q1 < T ≤ q1 + 1. It follows
from Lemma 4.1 and (4.12) that

(4.22) Ig(q, q1, Zg) ≤ Ig(q, q1, x) + 4 + 4Q2.

By Assumption (Aiii) and (4.14)

(4.23) Ig(q1, T, x) ≥ −a, Ig(q1, T, Zg) ≤ Q0 + a.

(4.22) and (4.23) imply (4.21). The lemma is proved.
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Lemma 4.3. Let g ∈ U , z ∈ K, |z| ≤ M , 0 ≤ T1 < T2 and let x : [T1, T2] →
K be an a.c. function satisfying |x(T1)| ≤ M1. Then

(4.24) Ig(T1, T2, Zg) ≤ Ig(T1, T2, x) + 4 + 4Q2 +Q0 +Q3 + 3a.

Proof. There exists an integer q ≥ 0 such that q ≤ T1 < q + 1. Set

(4.25) x1(t) = x(T1), t ∈ [q, T1], x1(t) = x(t), t ∈ [T1, T2].

By Lemma 4.2

(4.26) Ig(q, T2, Zg) ≤ Ig(q, T2, x1) + 4 + 4Q2 +Q0 + 2a.

By Assumption (Aiii) and (4.26)

(4.27) Ig(T1, T2, Zg) = Ig(q, T2, Zg) − Ig(q, T1, Zg) ≤ Ig(q, T2, Zg) + a ≤

Ig(q, T2, x1) + 4 + 4Q2 +Q0 + 3a.

It follows from (4.25) and (4.8) that |Ig(q, T1, x1)| ≤ Q3. (4.24) now follows
from this relation and (4.27), (4.25). The lemma is proved.

Lemma 4.4. Let g ∈ U , z ∈ K, |z| ≤ M , {yi}∞
i=0 ⊂ K,

(4.28) lim sup
i→∞

|yi| > M2.

Then

(4.29)
N−1∑
i=0

[Ug(i, i+ 1, yi, yi+1) − Ug(i, i+ 1, zg
i , z

g
i+1)] → ∞ as N → ∞.

Proof. There are two cases:

a) lim inf
i→∞

|yi| > 2−1M1; b) lim inf
i→∞

|yi| ≤ 2−1M1.

Consider the case a). Set hi = z̄ for i = 0, 1, . . . . It follows from (4.1), (4.2)
that

Ug(i, i+ 1, yi, yi+1) − Ug(i, i+ 1, hi, hi+1) ≥ M0 + 1

for all large i. (4.29) now follows from this relation and Lemma 4.1.
Consider the case b). By (4.28) there exists a subsequence {yik

}∞
k=1 such

that

(4.30) 0 < i1, |yik
| < M1, sup{|yj | : j = ik, . . . ik+1} > M2, k = 1, 2, . . . .
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It follows from (4.3), (4.30) and Proposition 3.2 that for any integer k ≥ 1
there exists a sequence {hj}ik+1

j=ik
⊂ K such that hj = yj , j ∈ {ik, ik+1},

(4.31)
ik+1−1∑
j=ik

[Ug(j, j + 1, yj , yj+1) − Ug(j, j + 1, hj , hj+1)] ≥ 1.

Fix an integer q ≥ 4. By (4.30), Lemma 4.1 and (4.31) for an integer N > iq

N−1∑
j=iq

[Ug(j, j + 1, zg
j , z

g
j+1) − Ug(j, j + 1, yj , yj+1)] ≤ 4 + 4Q2,

iq−1∑
j=i1

[Ug(j, j + 1, zg
j , z

g
j+1) − Ug(j, j + 1, hj , hj+1)] ≤ 4 + 4Q2,

N−1∑
j=0

[Ug(j, j + 1, zg
j , z

g
j+1) − Ug(j, j + 1, yj , yj+1)]

=
i1−1∑
j=0

[Ug(j, j + 1, zg
j , z

g
j+1) − Ug(j, j + 1, yj , yj+1)]

+
iq−1∑
j=i1

[Ug(j, j + 1, zg
j , z

g
j+1) − Ug(j, j + 1, hj , hj+1)]

+
iq−1∑
j=i1

[Ug(j, j + 1, hj , hj+1) − Ug(j, j + 1, yj , yj+1)]

+
N−1∑
j=iq

[Ug(j, j + 1, zg
j , z

g
j+1) − Ug(j, j + 1, yj , yj+1)]

≤
i1−1∑
j=0

[Ug(j, j + 1, zg
j , z

g
j+1) − Ug(j, j + 1, yj , yj+1)] + 2(4 + 4Q2) − (q − 1).

This completes the proof of the lemma.

Lemma 4.5. Assume that g ∈ U , z ∈ K |z| ≤ M and y : [0,∞) → K is
an a.c. function which satisfies

(4.32) lim sup
t→∞

|y(t)| > Q1.

Then

(4.33) Ig(0, T, y) − Ig(0, T, Zg) → ∞ as T → ∞.
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Proof. There are two cases: a) lim supi→∞ |y(i)| > M2; b) lim supi→∞ |y(i)|
≤ M2 where i is an integer. Consider the case a). It follows from Lemma
4.4, (4.12) that

(4.34) Ig(0, q, y) − Ig(0, q, Zg) → ∞ as an integer q → ∞.

Let T > 0. There exists an integer q(T ) ≥ 0 such that

(4.35) q(T ) < T ≤ q(T ) + 1.

By Assumption (Aiii) and (4.14)

(4.36) Ig(q(T ), T, y) ≥ −a, Ig(q(T ), T, Zg) = Ig(q(T ), q(T ) + 1, Zg)

−Ig(T, q(T ) + 1, Zg) ≤ Q0 + a.

Together with (4.34) these relations imply that

Ig(0, T, y) − Ig(0, T, Zg) ≥ Ig(0, q(T ), y)

−Ig(0, q(T ), Zg) −Q0 − 2a → ∞ as T → ∞.

Consider the case b). There exists an integer i0 ≥ 2 such that

(4.37) |y(i)| ≤ M2 + 2−1 for all integers i ≥ i0.

By (4.37), (4.32), (4.4) and the definition of Q1 (see (4.5))

(4.38)
N∑

i=0

[Ig(i, i+ 1, y) − Ug(i, i+ 1, y(i), y(i+ 1))] → ∞ as N → ∞.

Define a sequence {di}∞
i=i0

⊂ K as follows

di0 = z, di = y(i) for all integers i > i0.

By Lemma 4.1 and the definition of {di}∞
i=i0

for any integer N ≥ i0 + 1

N∑
i=i0+1

[Ug(i, i+ 1, y(i), y(i+ 1)) − Ug(i, i+ 1, zg
i , z

g
i+1)] =

N∑
i=i0

[Ug(i, i+ 1, di, di+1) − Ug(i, i+ 1, zg
i , z

g
i+1)] + Ug(i0, i0 + 1, zg

i0
, zg

i0+1)

−Ug(i0, i0 + 1, z, y(i0 + 1)) ≥ −4 − 4Q2+

Ug(i0, i0 + 1, zg
i0,z

g
i0+1) − Ug(i0, i0 + 1, z, y(i0 + 1)).

Together with (4.28), (4.12) this implies that

(4.39)
N∑

i=0

[Ig(i, i+ 1, y) − Ig(i, i+ 1, Zg)] → +∞ as N → ∞.

Let T > 0. There exists an integer q(T ) ≥ 0 satisfying (4.35). Clearly
(4.36) holds. (4.33) now follows from (4.36) and (4.39). The lemma is
proved.
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Lemma 4.6. Let g ∈ U , z ∈ K, |z| ≤ M and let y : [0,∞) → K be an a.c.
function. Then one of the relations below holds:

(i) Ig(0, T, y) − Ig(0, T, Zg) → ∞ as T → ∞;
(ii) sup{|Ig(0, T, y) − Ig(0, T, Zg)| : T ∈ (0,∞)} < ∞.

Proof. By Lemma 4.5 we may assume that lim supt→∞ |y(t)| ≤ Q1. There
exists an integer i0 > 0 such that

(4.40) |y(t)| ≤ Q1 + 2−1, t ∈ [i0,∞).

Fix an integer i > i0. By Corollary 2.1 there exists an a.c. function ȳ :
[i− 1,∞) → K such that
(4.41)
ȳ(i− 1) = z, ȳ(t) = y(t), t ∈ [i,∞), Ig(i− 1, i, ȳ) = Ug(i− 1, i, z, y(i)).

(4.7), (4.41), (4.40), (4.5) imply that |Ug(i − 1, i, z, y(i))| ≤ Q2. It follows
from this relation, (4.41), Lemma 4.2 and Assumption (Aiii) that for each
T > i

(4.42) Ig(i, T, y) − Ig(i, T, Zg) = Ig(i− 1, T, ȳ) − Ig(i− 1, T, Zg)

−Ig(i− 1, i, ȳ) + Ig(i− 1, i, Zg) ≥ −4 − 4Q2 −Q0 − 2a

−Ig(i− 1, i, ȳ) + Ig(i− 1, i, Zg) ≥ −4 − 5Q2 −Q0 − 3a.

(4.42) holds for each integer i > i0 and each T > i.
Let S > i0 + 1, T > S + 1. There exists an integer i > i0 + 1 such that

i− 1 ≤ S < i. Clearly (4.42) holds. By Assumption (Aiii) and (4.14)

Ig(S, i, y) ≥ −a, Ig(S, i, Zg) = Ig(i− 1, i, Zg) − Ig(i− 1, S, Zg) ≤ Q0 + a.

Together with (4.42) this implies that
(4.43)
Ig(S, T, y)−Ig(S, T, Zg) = Ig(i, T, y)−Ig(i, T, Zg)+Ig(S, i, y)−Ig(S, i, Zg)

≥ −4 − 5Q2 − 2Q0 − 5a.

We established (4.43) for each S > i0 + 1 and each T > S + 1.
Assume that (ii) does not hold. It follows from (4.14), Assumption (Aiii)

and (4.43) which holds for each S > i0 + 1, T > S + 1 that

inf{Ig(0, T, y) − Ig(0, T, Zg) : T ∈ (0,∞)} > −∞.

Therefore sup{Ig(0, T, y)−Ig(0, T, Zg) : T ∈ (0,∞)} = ∞. By Assumption
(Aiii) and (4.14) sup{Ig(0, i, y) − Ig(0, i, Zg) : i = 1, 2, . . . } = ∞. Together
with (4.43) which holds for each S > i0 + 1, T > S + 1 this implies (i). The
lemma is proved.
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Lemma 4.7. Assume that K = Rn, g ∈ U , z ∈ K, |z| ≤ M , 0 ≤ T1 < T2.
Then

Ig(T1, T2, Zg) = Ug(T1, T2, Zg(T1), Zg(T2)).

Proof. Let us assume the converse. Fix a number

(4.44) ε ∈ (0, 8−1[Ig(T1, T2, Zg) − Ug(T1, T2, Zg(T1), Zg(T2))]

and an integer q0 > T2 + 5. By Corollary 2.1 there exists an a.c. function
y : [T1, T2] → K such that
(4.45)

y(Ti) = Zg(Ti), i = 1, 2, Ig(T1, T2, y) = Ug(T1, T2, Zg(T1), Zg(T2)).

It follows from (4.10), (4.11), (4.12) and Proposition 2.7 that there exists
an integer k > 2q0 + 4 for which

(4.46) |Ug(i, i+ 1, Zg(i), Zg(i+ 1)) − Ug(i, i+ 1, Zg
k(i), Zg

k(i+ 1))| ≤

(2q0 + 1)−1ε, i = 0, . . . 2q0 + 1,

(4.47) |Ug(q0, q0 + 1, Zg(q0), Zg
k(q0 + 1))−

Ug(q0, q0 + 1, Zg
k(q0), Zg

k(q0 + 1))| ≤ (2q0 + 1)−1ε.

By Corollary 2.1 and (4.45) there exists an a.c. function x : [0, k] → K such
that

(4.48) x(t) = Zg(t), t ∈ [0, T1] ∪ [T2, q0], x(t) = y(t), t ∈ [T1, T2],

x(t) = Zg
k(t), t ∈ [q0+1, k], Ig(q0, q0+1, x) = Ug(q0, q0+1, x(q0), x(q0+1)).

It follows from (4.48), (4.9) that

(4.49) Ig(0, k, x) ≥ Ig(0, k, Zg
k).

By (4.48), (4.9), (4.12), (4.46), (4.47) and (4.44)

Ig(0, k, x) − Ig(0, k, Zg
k) = Ig(0, q0 + 1, x) − Ig(0, q0 + 1, Zg

k) =

(Ig(0, q0, x)− Ig(0, q0, Zg)) + (Ig(0, q0, Zg)− Ig(0, q0, Z
g
k)) + Ig(q0, q0 + 1, x)

−Ig(q0, q0 + 1, Zg
k) ≤ Ig(T1, T2, y) − Ig(T1, T2, Zg)

+
q0−1∑
i=0

[Ug(i, i+ 1, Zg(i), Zg(i+ 1)) − Ug(i, i+ 1, Zg
k(i), Zg

k(i+ 1))]

+Ug(q0, q0 + 1, Zg(q0), Zg
k(q0 + 1)) − Ug(q0, q0 + 1, Zg

k(q0), Zg
k(q0 + 1)) ≤
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Ig(T1, T2, y) − Ig(T1, T2, Zg) + ε.

It follows from this relation, (4.44), (4.45) that

Ig(0, k, x) − Ig(0, k, Zg
k) ≤ Ig(T1, T2, y) − Ig(T1, T2, Zg) + ε < −ε.

This is contradictory to (4.49). The obtained contradiction proves the
lemma.

Proof of Theorem 1.1. At the begining of Section 4 for each f ∈ M and
each M > 2|z̄| we constructed a neighborhood U of f in M and for each
g ∈ U and each z ∈ K satisfying |z| ≤ M we defined a.c. functions Zg :
[0,∞) → K, Zg

q : [0, q] → K, q = 1, 2, . . . satisfying (4.9)-(4.15). Clearly
an a.c. function Zf : [0,∞) → K was defined for every f ∈ M and every
z ∈ K. By Lemmas 4.5,4.6 for each f ∈ M and each z ∈ K the function Zf

is (f)-good and Assertion 1 of Theorem 1.1 holds.
Assertion 2 of Theorem 1.1 follows from (4.15) which holds for every

g ∈ U (U is a neighborhood of f in M) and each z ∈ K satisfying |z| ≤ M .
Assertion 3 of Theorem 1.1 follows from Lemma 4.3. Lemma 4.7 implies

Assertion 4 of Theorem 1.1. Theorem 1.1 is proved.

Theorem 1.2 follows from Lemma 4.5.

Proof of Theorem 1.3. Fix z̄ ∈ K. By Proposition 2.6 there exists a neigh-
borhood U0 of f in M and a number
(4.50)
M0 ≥ sup{|Ug(T1, T2, y, z)| : g ∈ U0, T1 ∈ [0,∞), T2 ∈ [T1 + c, T1 + 2c+ 2],

y, z ∈ K, |y|, |z| ≤ 2|z̄| + 1}.
By Proposition 2.3 we may assume without loss of generality that

(4.51) inf{Ug(T1, T2, y, z) : g ∈ M, T1 ∈ [0,∞), T2 ∈ [T1 + c, T1 + 2c+ 2],

y, z ∈ K, |y| + |z| ≥ M1} > 2M0 + 1.

There exists a neighborhood U1 of f in M and a number S1 such that

(4.52) U1 ⊂ U0, S1 > M1 and Proposition 3.2 holds with

M3 = M2 + 2, M4 = S1, V = U1, c1 = c, c2 = 2c+ 2.

By Proposition 2.6 there exist a neighborhood U of f in M and a number
M3 > 0 such that

(4.53) U ⊂ U1, M3 > sup{|Ug(T1, T2, y, z)| : g ∈ U, T1 ∈ [0,∞),

T2 ∈ [T1 + c, T1 + 2c+ 2], y, z ∈ K, |y|, |z| ≤ S1}.
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By Proposition 2.3 there exist S > S1 + 1 such that |v(t)| ≤ S, t ∈ [T1, T2]
for each g ∈ M, each T1 ∈ [0,∞), T2 ∈ [T1 + c, T1 + 2c + 2] and each a.c.
function v : [T1, T2] → K satisfying Ig(T1, T2, v) ≤ 2M3 + 2M2 + 2.

Assume that g ∈ U , T1 ∈ [0,∞), T2 ≥ c+T1. We will show that property
(i) holds.

Let x, y ∈ K, |x|, |y| ≤ M1 and let v : [T1, T2] → K be an a.c. function
which satisfies

(4.54) v(T1) = x, v(T2) = y, Ig(T1, T2, v) ≤ Ug(T1, T2, x, y) +M2.

There is a natural number p such that pc ≤ T2 − T1 < (p + 1)c. Set
T = p−1(T2 − T1). Clearly T ∈ [c, 2c]. By (4.54) and Corollary 2.1

p−1∑
i=0

[Ug(T1 + iT, T1 + (i+ 1)T, v(T1 + iT ), v(T1 + (i+ 1)T ))

−Ug(T1 + iT, T1 + (i+ 1)T, yi, yi+1)] ≤ M2

for each sequence {yi}p
i=0 ⊂ K satisfying y0 = v(T1), yp = v(T2). It follows

from this, (4.52), (4.54) and Proposition 3.2 that

|v(T1 + iT )| ≤ S1, i = 0, . . . p.

By this relation and (4.54), (4.53) for i = 0, . . . p− 1

Ig(T1 + iT, T1 + (i+ 1)T, v) ≤

Ug(T1 + iT, T1 + (i+ 1)T, v(T1 + iT ), v(T1 + (i+ 1)T )) +M2 < M3 +M2.

It follows from this relation and the definition of S that

|v(t)| ≤ S, t ∈ [T1, T2].

Therefore property (i) holds. Analogously to this we can show that property
(ii) holds. The theorem is proved.
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