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Abstract. In this part of our paper we present several new theorems con-
cerning the existence of common fixed points of asymptotically regular uni-
formly lipschitzian semigroups.

1. Introduction

Let (X, ‖·‖) be a Banach space and C a subset of X. A mapping T :
C → C is said to be uniformly k-lipschitzian if for each x, y ∈ C and every
natural number n, ‖Tnx − Tny‖ ≤ k ‖x − y‖. If k = 1, then the mapping T
is called nonexpansive. These definitions can also be introduced in metric
spaces. The class of uniformly lipschitzian mappings on C is completely
characterized as the class of those mappings on C which are nonexpansive
with respect to some metric on C which is equivalent to the norm [16]. In
this part of our paper we use the new geometric coefficients introduced in
its first part to study the existence of (common) fixed points for this class
of mappings.

2. Basic notations and facts

Throughout this paper we will use the notations from the first part of our
paper [6]. However, before we recall several known fixed point theorems we
need a few additional notations.
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Let (X, ‖·‖) denote a Banach space. For x ∈ X and a bounded se-
quence {xn} the asymptotic radius of {xn} at x is the number ra (x, {xn})
= lim supn ‖x − xn‖. Now for a nonempty closed convex subset C of X the
asymptotic radius of {xn} in C is the number r (C, {xn}) = inf {ra (x, {xn}) :
x ∈ C}. The asymptotic center of {xn} in C [13] is the set Ac (C, {xn}) =
{x ∈ C : ra (x, {xn}) = r (C, {xn})} . For more details see [1], [16] and [17].

Let B (0, 1) be the closed unit ball in X. The modulus of convexity of X
is the function δ : [0, 2] → [0, 1] defined by

δ (ε) = inf
{
1 − ‖x + y‖

2
;x, y ∈ B (0, 1) , ‖x − y‖ ≥ ε

}
[8]. The characteristic of convexity of X is the number ε0 (X) =
sup {ε : δ (ε) = 0} [16]. When ε0 (X) = 0 X is called a uniformly convex
space [8].

The Lifshitz characteristic κ (M) of a metric space (M,ρ) is the supremum
of all positive real numbers b such that there exists a > 1 such that for
each x, y ∈ M and r > 0 with ρ (x, y) > r there exists z ∈ M satisfying
B (x, br) ∩ B (y, ar) ⊂ B (z, r) [23]. It is obvious that κ (M) ≥ 1. In a
Banach space (X, ‖·‖) we denote by κ0 (X) the infimum of the numbers
κ (C) where C is a closed, convex, bounded and nonempty subset of X. It
is known [2] , [16] that

1
1 − δ (1)

≤ κ0 (X) ≤ N (X)(1)

and ε0 (X) < 1 if and only κ0 (X) > 1 [12]. Therefore κ0 (X) ≤ √
2 [2].

Unfortunately, we know the exact value of κ0 (X) or some lower bounds
for κ0 (X) in special spaces only [2]. Therefore it is convenient to introduce
a new coefficient which plays a role similar to the one of κ0 (X). In [10] T.
Domı́nguez Benavides and H.K. Xu introduced such a new constant κω (X)
in Banach spaces. We give here a slightly different definition of κω (X) from
the one given in [10]. Namely, if (X, ‖·‖) is a Banach space and C is a
nonempty bounded closed convex subset of X, then

(a) a number b ≥ 0 has property (Pω) with respect to C if there exists
some a > 1 such that for all x, y ∈ C and r > 0 with ‖x − y‖ ≥ r and
each weakly convergent sequence {zn} with elements in C such that
lim supn ‖x − zn‖ ≤ ar and lim supn ‖y − zn‖ ≤ br, there exists z ∈ C
such that lim infn ‖z − zn‖ ≤ r;

(b) κω (C) = sup {b > 0 : b has property (Pω) with respect to C} ;
(c) κω (X) = inf {κω (C) : C is a nonempty bounded closed convex subset

of X}.
It is clear that κω (C) ≥ κ (C) for all nonempty bounded closed convex

subsets C ⊂ X. Next let us observe that

κω (X) = inf {κω (C) : C is a convex weakly compact subset of X} .
Hence we get that κω (X) ≤ WCS (X) [2].
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Let (M,ρ) be a metric space, where M is not a singleton and T : M → M .
Then we will use the symbol |T | to denote the exact Lipschitz constant of
T , i.e.,

|T | = sup
{
ρ (Tx, Ty)
ρ (x, y)

: x, y ∈ M,x �= y

}
.

Let X be a Banach space, C a nonempty bounded closed convex subset
of X , G an unbounded subset of [0,∞) such that

t + h ∈ G for all t, h ∈ G,(2)

t − h ∈ G for all t, h ∈ G with t ≥ h,(3)

andT = {Tt : t ∈ G} a family of self-mappings on C . T is called a semigroup
of mappings on C if

(i) Ts+tx = TsTtx for all s, t ∈ G and x ∈ C,
(ii) for each x ∈ C, the mapping t → Ttx from G into C is continuous when

G has the relative topology of [0,∞).
Let us observe that in the particular case G = N we get the semigroups

of iterates T = {Tt : t ∈ G} = {Tn
1 : n ∈ N} .

If T satisfies i. - ii. and in addition there exists k > 0 such that

‖Ttx − Tty‖ ≤ k ‖x − y‖
for all x, y ∈ C and t in G, then we say that T is a uniformly lipschitzian
(k-lipschitzian) semigroup of mappings on C.

If T satisfies i. - ii. and for each x ∈ C, h ∈ G,

lim
t→∞ ‖Tt+hx − Ttx‖ = 0,

then T is said to be asymptotically regular. The concept of asymptotic
regularity is due to F.E. Browder and W.V. Petryshyn [5].

Let us observe that the notions of the asymptotic radius and the as-
ymptotic center can be formulated in an obvious way for {xt}t∈G, where G
satisfies (2) and (3).

The first positive result about fixed points of uniformly lipschitzian map-
pings is due to K. Goebel and W.A. Kirk.

Theorem 2.1. [14] Let X be a Banach space with ε0 (X) < 1 and let C
be a nonempty bounded closed convex subset of X. Suppose T : C → C
is uniformly lipschitzian with a constant k < γ, where γ > 1 satisfies the
equation

γ

(
1 − δ

(
1
γ

))
= 1.(4)

Then T has a fixed point in C.

By (1) it is obvious that the constant γ from (4) is strictly less than κ0 (X)
[23].

In [30] K.-K. Tan and H.-K. Xu proved the following theorem which is
formulated in the same spirit as the previous one.
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Theorem 2.2. [30] Let X be a uniformly convex Banach space, C a non-
empty bounded closed convex subset of X and T : C → C a k-lipschitzian
mapping with k < γ1, where γ1 > 1 is the solution of the equation

γ1

[
1 − δ

(
N (X)
γ21

)]
= 1.(5)

Then T has a fixed point in C.

The constant γ1 given by formula (5) is always bigger than the constant
γ defined by (4).

In [23] Lifshitz extended the result of Goebel and Kirk in the following
way:

Theorem 2.3. [23] Let (M,ρ) be a complete metric space and T : M → M
a uniformly lipschitzian mapping with constant k < κ (M). If there exists
x0 ∈ M such that the orbit {Tnx0} is bounded, then T has a fixed point in
M .

Here we must note that in the case of a Banach space we do not know in
general how to compare the constant γ1 given by (5) to the constant κ (X)
or κ0 (X).

In each Banach space we have κ0 (X) ≤ N (X) (see (1)) but in particular
cases we can have κ0 (X) <

√
N (X) [7]. Therefore the following result is

important.

Theorem 2.4. [7] Let X be a Banach space X with uniform normal struc-
ture and C a nonempty bounded closed convex subset of X. If T : C → C
is a uniformly k-lipschitzian mapping with k <

√
N (X), then T has a fixed

point.

Now we recall a fixed point theorem in which the coefficients κ0 (X) and
N (X) appear simultaneously.

Theorem 2.5. [9] Let X be a Banach space, C a nonempty bounded closed
convex subset of X and T : C → C. If

lim inf
n

|Tn| < 1 +
√

1 + 4 · N (X) · (κ0 (X) − 1)
2

,

then T has a fixed point.

For a discussion of this theorem see [9].
For asymptotically regular mappings we have the following results.

Theorem 2.6. [20] Let X be an infinite dimensional uniformly convex Ba-
nach space, C a nonempty bounded closed convex separable subset of X and
T : C → C an asymptotically regular mapping with lim inf

n
|Tn| < γ2, where

γ2 > 1 is the solution of the equation

γ2

[
1 − δ

(
WCS (X)

γ22

)]
= 1.(6)

Then T has a fixed point in C.
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Theorem 2.7. [2, 10] Suppose X is a Banach space. Suppose also C is a
convex weakly compact subset of X and T : C → C is asymptotically regular.
If lim inf

n
|Tn| < κω (C), then T has a fixed point.

Theorem 2.8. [2, 10] Suppose X is a Banach space such that WCS (X) >
1, C is a convex weakly compact subset of X and T : C → C is asymptotically
regular. If lim inf

n
|Tn| <

√
WCS (X), then T has a fixed point.

Theorem 2.9. [9] Let X be a reflexive Banach space, C a nonempty bounded
closed convex subset of X and T : C → C an asymptotically regular mapping.
If

lim inf
n

|Tn| < 1 +
√

1 + 4 · WCS (X) · (κω (X) − 1)
2

,

then T has a fixed point.

For a discussion of the connections among the above results see [9, 10].
In [11], [20], [21], [30], [31] and [32] some of the above results were refor-

mulated in terms of semigroups. It is also worthwhile to see [4], [15], [18],
[19], [22], [24], [25], [26], [27], [28], [29], [33], [34].

3. Existence of fixed points of lipschitzian semigroups of
mappings

We begin with a generalization of Theorem 2.2.

Theorem 3.1. Let (X, ‖·‖) be a Banach space with ε0 < 1, C a nonempty
bounded closed convex subset of X and T = {Tt : t ∈ G} a uniformly lips-
chitzian semigroup of mappings on C with supt |Tt| = k < γ, where γ > 1 is
the solution of the equation

γ

[
1 − δ

(
N (X)

γ

)]
= 1.(7)

Then there exists a common fixed point of T.

Proof. Without loss of generality we can assume that (X, ‖·‖) is uniformly
convex and k > 1. If 0 < ε0 < 1 we need only make minor changes in the
following proof. Let us denote N (X) by N . For each x ∈ C let z be the
unique element of Ac (C, {Ttx}). Let us assume that

d (x)
N

=
diama {Ttx}

N
≥ r = r (C, {Ttx}) > 0(8)

and d (z) = diama {Ttz} > 0. Then we can find sequences {sn} and {tn}
such that

lim
n

sn = lim
n

tn = ∞
and

lim
n

‖Ttnz − Tsnz‖ = diama {Ttz} = d (z) .

Next we have
ra (Tsnz, {Ttx}) ≤ k · r
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and
ra (Ttnz, {Ttx}) ≤ k · r.

Hence

r ≤ lim inf
n

ra

(
Tsnz + Ttnz

2
, {Ttx}

)
≤
[
1 − δ

(
d (z)
k · r

)]
· k · r,

1 ≤
[
1 − δ

(
d (z)
k · r

)]
· k ≤

[
1 − δ

(
N · d (z)
d (x) · k

)]
· k,

and finally

d (z) ≤
[
k

N
· δ−1

(
1 − 1

k

)]
· d (x) .(9)

Let us denote k
N · δ−1

(
1 − 1

k

)
by a. Directly from our assumption we get

a < 1. Now we define a sequence {xn}∞
n=0 in C in the following way: x0

is an arbitrarily chosen element of C and xn+1 is the unique element of
Ac (C, {Ttxn}) for n = 0, 1, 2, ... . By (9) we obtain

d (xn) ≤ an · d (x0) ,

and the inequalities

‖xn − xn+1‖ ≤ ‖xn − Tjxn−1‖ + ‖Tjxn−1 − Tixn‖ + ‖Tixn − xn+1‖
≤ ‖xn − Tjxn−1‖ + k ‖Tj−ixn−1 − xn‖ + ‖Tixn − xn+1‖ ,

which are valid for i < j, lead to

‖xn − xn+1‖ ≤ (1 + k) d (xn−1) + d (xn) ≤
[
(1 + k) an−1 + an

]
· d (x0) .

This, in turn, yields the conclusion that {xn}∞
n=0 is norm Cauchy and hence

strongly convergent. Let x = limn xn. Then by (8) for each s ∈ G we have

‖x − Tsx‖ ≤ lim
n

‖x − xn+1‖ + lim sup
n

lim sup
t

‖xn+1 − Tt+sxn‖

+ lim sup
n

lim sup
t

‖Tt+sxn − Tsxn+1‖ + lim
n

‖Tsxn+1 − Tsx‖

≤ lim
n

(1 + k)
[
‖x − xn+1‖ +

d (xn)
N

]
= 0.

This completes the proof.

Remark 3.1. The constant γ given by (7) is bigger than the constant γ
defined by (5).

For our next results we need the following simple fact.

Lemma 3.1. Let (X, ‖·‖) be a Banach space.
1) For each 0 < 1

θ < w-SOC (X) and every asymptotically regular se-
quence {xn} with a weakly compact conv {xn} there exists a weakly conver-
gent to w subsequence {xni} such that

(i) r (w, {xni}) ≤ θ · diama ({xn}),
(ii) ‖w − y‖ ≤ ra (y, {xni}) for every y ∈ X.
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2) For each 0 < 1
θ < w-AN (X) and every asymptotically regular sequence

{xn} with a weakly compact conv {xn} there exists a subsequence {xni} and
a point w ∈ conv {xn} such that

r (w, {xni}) ≤ θ · diama ({xn}) .
Proof. 1) ii. It is sufficient to apply the lower semicontinuity of ‖·‖ with
respect to the weak topology because we have

ra (y, {xni}) = lim sup
i

‖y − xni‖

and
y − xni ⇀ y − w.

We will use the above lemma in the proofs of the next three theorems.

Theorem 3.2. Let (X, ‖·‖) be an infinite dimensional Banach space with
ε0 < 1, C a nonempty bounded closed convex subset of X and T = {Tt : t ∈ G}
a uniformly k-lipschitzian asymptotically regular semigroup of mappings on
C with k < γ, where γ satisfies

γ
2
> max

(
1,

w-AN (X)
2

)
and is the solution of the equation

γ

[
1 − δ

(
w-AN (X)

(γ)2

)]
= 1.(10)

Then there exists in C a common fixed point of T.

Proof. Without loss of generality we can assume that (X, ‖·‖) is uniformly
convex, k2 > w-AN(X)

2 and k > 1. If 0 < ε0 < 1 we need only make minor
changes in our proof. First we choose θ such that 1 < 1

θ < w-AN (X) and

k

[
1 − δ

(
1
θk2

)]
< 1.

Next we fix t0, h ∈ G with h > 0 and define tn = t0 + nh for n = 1, 2, ...
Let us observe that for each x ∈ C the sequence {Ttnx} is asymptotically
regular and by Lemma 3.1 for each x ∈ C there exists a weakly convergent
subsequence

{
Ttni

x
}

with w ∈ conv {Ttnx} such that

ra

(
w,
{
Ttni

x
})

≤ θ · diama ({Ttnx}) .(11)

In other words, for each x ∈ C we can find a subsequence
{
Ttni

x
}

and
w (x) ∈ C which satisfy the inequality (11). Hence, if z (x) is the unique
element of Ac

(
C,
{
Ttni

x
})

, then we have

r (x) = ra

(
z (x) ,

{
Ttni

x
})

≤ ra

(
w (x) ,

{
Ttni

x
})

≤ θ · diama ({Ttnx}) .
(12)
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The asymptotic regularity of T leads to

ra

(
Ttmz (x) ,

{
Ttni

x
})

≤ ra

(
Ttmz (x) ,

{
Ttni+tmx

})
+ lim sup

i

∥∥∥Ttni+tmx − Ttni
x
∥∥∥

= ra

(
Ttmz (x) ,

{
Ttni+tmx

})
≤ k · ra

(
z (x) ,

{
Ttni

x
})

(13)

for every m. Now we set

R (x) = ra (x, {Ttnx}) = lim sup
n

‖x − Ttnx‖ .
We observe that by the asymptotic regularity of T and since

tl = t0 + lh for l = 1, 2, ...,

we have
diama ({Ttnx}) = lim

m̃
sup

m̃<m<n
‖Ttmx − Ttnx‖

= lim
m̃

sup
m̃<m

(
max

1≤n≤n0

∥∥Ttmx − Ttm+nx
∥∥ , sup

l>0

∥∥∥Ttmx − Ttm+n0+l
x
∥∥∥)

= lim
m̃

[
sup
m̃<m

(
sup
l>0

∥∥∥Ttmx − Ttm+n0+l
x
∥∥∥)]

≤ lim sup
m̃

(
sup
m̃<m

‖Ttmx − Tmhx‖
)

+ lim sup
m̃

[
sup
m̃<m

(
sup
l>0

∥∥∥Tmhx − Ttm+n0+l
x
∥∥∥)]

≤ k · sup
l>0

∥∥∥x − Ttn0+l
x
∥∥∥ = k · sup

n>n0

‖x − Ttnx‖
for n0 ≥ 1. Hence

diama ({Ttnx}) ≤ k · lim sup
n

‖x − Ttnx‖ = k · R (x) .(14)

We construct the sequence {xm} in the following way: x0 ∈ C is arbitrary
and

xm+1 = z (xm)
for m = 0, 1, ... . By (12) and (14) we get

rm = r (xm) ≤ θ · k · R (xm) .(15)

Now we have to consider two cases. If for some m0 we have rm0 = 0, then
we get

R (z (xm0)) = lim sup
n

‖z (xm0) − Ttnz (xm0)‖

≤ lim sup
n

lim sup
i

[∥∥∥z (xm0) − Ttni
xm0

∥∥∥
+
∥∥∥Ttni

xm0 − Ttn+tni
xm0

∥∥∥+
∥∥∥Ttn+tni

xm0 − Ttnz (xm0)
∥∥∥] = 0.
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In the second case we have rm > 0 for all m ≥ 0. For each m we first choose
an arbitrary 0 < ε < R (xm+1) and then j such that∥∥∥Ttjxm+1 − xm+1

∥∥∥ ≥ R (xm+1) − ε.

Now we find i0 such that for all i ≥ i0 we have∥∥∥Ttni
xm − xm+1

∥∥∥ ≤ rm +
ε

2
(the subsequence {tni} depends on xm here) and (see (13))∥∥∥Ttni

xm − Ttjxm+1

∥∥∥ ≤ k · (rm + ε) .

It follows that ∥∥∥∥Ttni
xm − 1

2

(
xm+1 + Ttjxm+1

)∥∥∥∥
≤ k · (rm + ε) ·

[
1 − δ

(
R (xm+1) − ε.

k · (rm + ε)

)]
.

Letting i tend to infinity we obtain

rm ≤ k · (rm + ε) ·
[
1 − δ

(
R (xm+1) − ε.

k · (rm + ε)

)]
.

Taking now ε to 0 we get

rm ≤ k · rm ·
[
1 − δ

(
R (xm+1)
k · rm

)]
which after applying the inequality (15) implies that

R (xm+1) ≤
[
θ · k2 · δ−1

(
1 − 1

k

)]
· R (xm) .

Let us observe that

0 < α = θ · k2 · δ−1
(
1 − 1

k

)
< 1

and therefore

R (xm) ≤ αm · R (x0)(16)

for m = 1, 2, ... . Hence by (15) and (16) we deduce that

‖xm+1 − xm‖ ≤ lim sup
i

∥∥∥xm+1 − Ttni
xm

∥∥∥+ lim sup
i

∥∥∥Ttni
xm − xm

∥∥∥
≤ ra

(
xm+1,

{
Ttni

xm

})
+ R (xm) = rm + R (xm)

≤ (θ · k + 1) · R (xm) ≤ (θ · k + 1) · αm · R (x0)
(the subsequence {tni} depends on xm here) and therefore the sequence {xn}
is strongly convergent to some x ∈ C. By the inequality

|R (x) − R (y)| ≤ (1 + k) · ‖x − y‖ ,
which is valid for all x, y ∈ C, we have R (x) = 0.

Thus in both cases we can find y ∈ C with R (y) = 0. This means that

y = lim
n

Ttny
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and by the asymptotic regularity of T we have

Tty = lim
n

Tt+tny = lim
n

Ttny = y

for each t ∈ G. This completes the proof.

Theorem 3.3. Let C be a convex weakly compact subset of a Banach space
X with w-SOC (X) > 1. Then every asymptotically regular uniformly
k-lipschitzian semigroup T = {Tt : t ∈ G} of mappings on C with k <

[w-SOC (X)]
1
2 has a common fixed point.

Proof. Let k ≥ 1 and let us fix θ such that

k2 <
1
θ
< w-SOC (X) .

We choose t0, h ∈ G with h > 0 and consider the sequence {tn} = {t0 + nh}.
For each x ∈ C we define R (x) by

R (x) = ra (x, {Ttnx}) = lim sup
n

‖x − Ttnx‖ .
Let us observe that for each x ∈ C the sequence {Ttnx} is asymptotically
regular and by Lemma 3.1 for each x ∈ C there is a weakly convergent to w

subsequence
{
Ttni

x
}

such that

(i) ra

(
w,
{
Ttni

x
})

≤ θ · diama ({Ttnx}),
(ii) ‖y − w‖ ≤ ra

(
y,
{
Ttni

x
})

for every y ∈ X.

By i., ii., (14) and the asymptotic regularity of T we obtain

ra

(
Ttmw,

{
Ttni

x
})

≤ ra

(
Ttmw,

{
Ttni+tmx

})
+ lim sup

i

∥∥∥Ttni+tmx − Ttni
x
∥∥∥

≤ k · ra

(
w,
{
Ttni

x
})

≤ k · θ · diama ({Ttnx}) ≤ θ · k2 · R (x) ,

‖Ttmw − w‖ ≤ ra

(
Ttmw,

{
Ttni

x
})

≤ θ · k2 · R (x)

for each m, and finally

R (w) ≤ θ · k2 · R (x) = α · R (x) ,

where 0 ≤ α = θ · k2 < 1. Consequently, for each x ∈ C there is w (x) such
that

Ttni
x ⇀ w (x) ,

ra

(
w (x) ,

{
Ttni

x
})

≤ θ · k · R (x)

and
R (w) ≤ α · R (x) .

This allows us to construct a sequence {xm} which is convergent to a fixed
point of T. We simply choose the first element x1 arbitrarily and next we
set

xm = w (xm−1)
for m = 2, 3, ... . Now it is sufficient to observe that

R (xm) ≤ αm−1 · R (x1)
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and repeat the arguments from the end of the proof of Theorem 3.2 to finish
the present proof.

In the next theorem we employ κω (X) and w-SOC (X).

Theorem 3.4. Let (X, ‖·‖) be a Banach space with w-SOC (X) > 1, C a
convex weakly compact subset of X and T = {Tt : t ∈ G} an asymptotically
regular uniformly k-lipschitzian semigroup of mappings on C. If

k <
1 +

√
1 + 4 · [w-SOC (X)] · (κω (X) − 1)

2
,(17)

then T has a common fixed point.

Proof. The proof is based on ideas presented in [9]. Let us denote S = w-
SOC (X) and κ = κω (X). Without loss of generality we may assume that
S < +∞ (see Theorem 3.2 in [6]) and k > 1. The inequality (17) and k > 1
imply κ > 1. Next we observe that

1 +
√

1 + 4 · S · (κ − 1)
2

≤ S < +∞,

because (see Section 2)

κ ≤ WCS(X) ≤ S < +∞.

The inequality

k <
1 +

√
1 + 4 · S · (κ − 1)

2
implies the inequality

k

S
<

κ − 1
k − 1

.

Directly from the definition of κ we find a > 1 and 1 < b < κ such that

k

S
<

b
a − 1
k − 1

,(18)

and for all x, y ∈ C and r > 0 with ‖x − y‖ ≥ r and each weakly convergent
sequence {zn} in C for which lim supn ‖x − zn‖ ≤ a·r and lim supn ‖y − zn‖ ≤
b · r there exists some z ∈ C such that lim infn ‖z − zn‖ ≤ r. Next we choose
ε > 0 such that

1 + 2ε
a

= α < 1.

Similarly as in the proofs of the previous theorems we consider the se-
quence {tn} = {t0 + nh}, where t0, h ∈ G and h > 0. For x ∈ C we define
R (x) as follows

R (x) = inf
{
r > 0 : ∃y∈C lim inf

n
‖x − Ttny‖ ≤ r

}
.

First we will show that R (x̃) = 0 for some x̃ ∈ C. To this end we take an
arbitrary x ∈ C. Assume that R (x) > 0. Then we can find y ∈ C with

lim inf
n

‖x − Ttny‖ < R (x) · (1 + ε) .
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There are two possibilities; either

sup
n

‖x − Ttn (x)‖ ≤ S · R (x) · (1 + ε)
k · a(19)

or ∥∥∥x − Ttj (x)
∥∥∥ > S · R (x) · (1 + ε)

k · a(20)

for some j.
Let us take a look at the first case. By (14) and (19) we get

diama ({Ttnx}) ≤ k · lim sup
n

‖x − Ttn (x)‖ ≤ S · R (x) · (1 + ε)
a

and after applying the definition of w-SOC (X) we obtain

S · inf
{
ra

(
w,
{
Ttni

x
})

:
{
Ttni

x
}

is weakly convergent to w
}

≤ S · R (x) · (1 + ε)
a

.

This implies that

inf
{
ra

(
w,
{
Ttni

x
})

:
{
Ttni

x
}

is weakly convergent to w
}

≤ R (x) · (1 + ε)
a

.

Hence there exists a subsequence
{
Ttni

x
}

which weakly converges to w ∈ C

such that

lim
i

∥∥∥w − Ttni
x
∥∥∥ < R (x) · (1 + 2ε)

a
= αR (x)(21)

and therefore

R (w) < αR (x) .(22)

Next we see that

‖w − x‖ ≤
∥∥∥w − Ttni

x
∥∥∥+

∥∥∥x − Ttni
x
∥∥∥

and by (19) and (21) this yields

‖w − x‖ ≤ lim
i

∥∥∥w − Ttni
x
∥∥∥+ lim sup

i

∥∥∥x − Ttni
x
∥∥∥

≤ α · R (x) +
S · R (x) · (1 + ε)

k · a

≤ α · R (x) +
S · α · R (x)

k
= α ·

(
1 +

S

k

)
· R (x) .(23)

Let us now consider the second case. By (20) we have∥∥∥x − Ttjx
∥∥∥ > S · R (x) · (1 + ε)

k · a
for some j. Let us choose a weakly convergent

{
Ttni

y
}

such that∥∥∥x − Ttni
y
∥∥∥ < R (x) ·

(
1 +

ε

2

)
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and
tj∑

m=1

∥∥∥Ttni+m−1y − Ttni+my
∥∥∥ < R (x) · ε

2
for each i. This implies

∥∥∥x − Ttni+tjy
∥∥∥ < ∥∥∥x − Ttni

y
∥∥∥+

tj∑
m=1

∥∥∥Ttni+m−1y − Ttni+my
∥∥∥ < R (x) · (1 + ε)

(24)

and ∥∥∥Ttjx − Ttni+tjy
∥∥∥ ≤ k · R (x) · (1 + ε)(25)

for every i. By (18) we can choose λ such that

k

S
< λ <

b
a − 1
k − 1

.(26)

Then by (24), (25) and (26) we have∥∥∥λTtjx + (1 − λ)x − Ttni+tjy
∥∥∥

≤ λ
∥∥∥Ttjx − Ttni+tjy

∥∥∥+ (1 − λ)
∥∥∥x − Ttni+tjy

∥∥∥
≤ λ · k · R (x) · (1 + ε) + (1 − λ) · R (x) · (1 + ε)

= [λ (k − 1) + 1] · R (x) · (1 + ε) < b · R (x) · (1 + ε)
a

(27)

and next by (20) and (26) ,∥∥∥λTtjx + (1 − λ)x − x
∥∥∥ = λ

∥∥∥Ttjx − x
∥∥∥

> λ · S · R (x) · (1 + ε)
k · a >

R (x) · (1 + ε)
a

.(28)

Directly from the definition of b and by (24), (27) and (28) there exists w ∈ C
such that ∥∥∥w − Ttni+tjy

∥∥∥ ≤ R (x) · (1 + ε)
a

≤ α · R (x)(29)

for every i. Therefore by the asymptotic regularity of T and (29) we get

R (w) ≤ lim sup
i

∥∥∥w − Ttni
y
∥∥∥

≤ lim sup
i

∥∥∥w − Ttni+tjy
∥∥∥+ lim sup

i

∥∥∥Ttni+tjy − Ttni
y
∥∥∥

= lim sup
i

∥∥∥w − Ttni+tjy
∥∥∥ ≤ α · R (x) ,(30)

and by (24) and (29) we obtain

‖w − x‖ ≤
∥∥∥w − Ttni+tjy

∥∥∥+
∥∥∥x − Ttni+tjy

∥∥∥
≤ α · R (x) + R (x) · (1 + ε) = (1 + ε + α) · R (x) .(31)
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Thus in both cases for every x ∈ C we can find w ∈ C for which the
following inequalities are valid:

R (w) ≤ α · R (x)(32)

and

‖w − x‖ ≤ max
{
1 + ε + α, α ·

(
1 +

S

k

)}
· R (x) = M · R (x)

(33)

(by (22), (23), (30) and (31)). This allows us to define a function f : C → C
by f (x) = w, where w satisfies (32) and (33). We introduce a sequence
{xn} as follows: x0 is chosen in an arbitrary way and next xn = f (xn−1)
for n = 1, 2, ... . The sequence {xn} is a Cauchy sequence. Indeed, the
inequalities (32) and (33) lead to

‖xn − xn−1‖ ≤ M · R (xn−1) ≤ M · αn−1 · R (x0) .

Setting x̃ as the limit of {xn} and applying the inequality∣∣∣R (u) − R (v)
∣∣∣ ≤ ‖u − v‖ ,

which is valid for all u, v ∈ C, we get R (x̃) = 0.
Now we prove that R (x̃) = 0 implies that x is a common fixed point of

T. To prove this fact it is sufficient to observe that for every y ∈ C, t ∈ G
and every natural n we have

‖x̃ − Ttx̃‖ ≤ ‖x̃ − Ttny‖ + ‖Ttny − Ttn+ty‖ + ‖Ttn+ty − Ttx̃‖
≤ (1 + k) ‖x̃ − Ttny‖ + ‖Ttny − Ttn+ty‖ .

Applying the definition of R and the asymptotic regularity of T we complete
the proof.

4. Examples

Example 4.1. Let us consider the space Xp
β [6], where 1 < p < ∞ and

1 < β < 4
1
p . Then for 2

1
p ≤ β < 4

1
p we have κω

(
Xp

β

)
= WCS

(
Xp

β

)
=

N
(
Xp

β

)
= 1 [2], but w-AN

(
Xp

β

)
= w-SOC

(
Xp

β

)
= 4

1
p

β > 1 [6].

Example 4.2. Let us observe that for the space X2
β with 1 < β <

√
5
2 , we

get WCS
(
X2

β

)
= max

(
1,

√
2

β

)
[2, 3], w-AN

(
X2

β

)
= w-SOC

(
X2

β

)
=

√
2 [6]

and κω (X) ≥ κ0 (X) [10], where

κ0
(
X2

β

)
=
(
1 +

1
β2 − 2

β2

√
β2 − 1

) 1
2

[9] (see also [35]). Hence for β sufficiently close to 1 the constants

1 +
√

1 + 4 · WCS
(
X2

β

)
·
(
κ0
(
X2

β

)
− 1

)
2
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<
1 +

√
1 + 4 ·

[
w-SOC

(
X2

β

)]
·
(
κ0
(
X2

β

)
− 1

)
2

are strictly bigger than
√
w-SOC

(
X2

β

)
= 2

1
4 . Let us observe in addition

that [16]

ε0
(
X2

β

)
=

{
2
(
β2 − 1

) 1
2 for 1 < β ≤ √

2
2 for

√
2 < β < 2

and therefore for 1 < β <
√
5
2 the constant γ given by (10) is strictly bigger

than the constant γ2 defined by (6).
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Banach, I, Séminaire d’Analyse Fonctionnelle de l’Ecole Polytechnique, Paris, no. VII,
1978–1979.

[5] F. E. BROWDER and W. V. PETRYSHYN, The solution by iteration of nonlinear
functional equations in Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 571–576.
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