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We show that infinite dimensional geometric moduli introduced by Milman are
strongly related to nearly uniform convexity and nearly uniform smoothness.
An application of those moduli to fixed point theory is given.

1. Introduction

Classical moduli of convexity and smoothness of Banach spaces were introduced
in [5, 14], respectively. They describe the shape of two-dimensional sections of
the unit ball of a space. Many applications of those moduli concern, however,
problems which are not of two-dimensional character. This was the reason for
introducing moduli which reflect multi-dimensional geometric structure of the
unit ball.

In [16] (see also [18]), Milman developed β and δ averaging procedures for
scalar functions on the unit sphere with respect to a family of subspaces of a
Banach space. He used those procedures to define various geometric moduli.
Some of them describe properties which may be seen as counterparts of uniform
convexity. Indeed, Figiel [7] established a formula relating the classical modulus
of convexity to one of Milman’s moduli. The idea used by Milman was different
from the classical one, so many authors tried to find more direct generalizations
of uniform convexity. In [22], Sullivan introduced k-dimensional uniform con-
vexity and in [10, 11] infinite dimensional uniform convexity was defined. It
turned out however that k-uniform convexity of Sullivan can be characterized
in terms of δ-moduli of Milman (see [13]). The dual property is in turn strongly
related to β-moduli (see [2, 15]).

In this paper, we study infinite dimensional Milman’s moduli. In their defi-
nitions, subspaces with finite codimension are used. We establish new formulae
for these moduli in Banach spaces with shrinking M-bases. In our formulae
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weakly null sequences are used. This enables us to show that in the infinite
dimensional case β-moduli correspond to nearly uniform convexity introduced
in [11] and δ-moduli correspond to the dual property which was characterized
in [19]. In particular we obtain a counterpart of Figiel’s formula. We also give
an application to the fixed point theory. Namely, we show that the weakly con-
vergent sequence coefficient studied in this theory can be estimated in terms of
β-moduli.

2. Results

In this paper, we consider only infinite dimensional Banach spaces. Let X be
such a space. By BX and SX we denote its closed unit ball and the unit sphere,
respectively. The moduli studied in this paper are obtained via the so-called
averaging procedures. The first two of them were considered in [16]. Let �
be the family of all closed subspaces of X with finite codimension. Given a
function f : X → R, we define its β and δ averaging as follows

βf = sup
E∈�

inf
y∈SE

f (y), δf = inf
E∈�

sup
y∈SE

f (y). (2.1)

In this paper, we also use other averaging procedures. A Banach space X

is said to have the Schur property if every weakly convergent sequence in X

is norm convergent. It is well known that all finite dimensional spaces and the
space l1 have this property. On the other hand, if an infinite dimensional space
does not contain an isomorphic copy of l1, then it does not have the Schur
property. Given a space X without the Schur property, let � denote the set of
all weakly null sequences (xn) in SX, and let f be a real-valued function on X.
We put

bf = sup
(yn)∈�

inf
n∈N

f
(
yn

)
, df = inf

(yn)∈�
sup
n∈N

f
(
yn

)
. (2.2)

Now fix ε ≥ 0 and x ∈ X. We apply the averaging procedures to the function
f given by the formula

f (y) = ‖x +εy‖−1, (2.3)

where y ∈ X. This gives the following quantities

β(ε;x) = βf, δ(ε;x) = δf, b(ε;x) = bf, d(ε;x) = df. (2.4)

Considering them as functions of x ∈ X, we set

ββ(ε) = ββ(ε;x), δδ(ε) = δδ(ε;x),

bb(ε) = bb(ε;x), dd(ε) = dd(ε;x).
(2.5)
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Additionally, we write

β̃(ε) = inf
x∈SX

β(ε;x), δ̃(ε) = sup
x∈SX

δ(ε;x),

b̃(ε) = sup
x∈SX

b(ε;x), d̃(ε) = inf
x∈SX

d(ε;x).
(2.6)

The functions of variable ε ≥ 0 defined by (2.5) and (2.6) will be called moduli
of the space X. To avoid confusion in some cases we will add the name of a
space as a subscript to the symbol of a modulus. The moduli obtained by β

and δ averaging procedures were intensively studied by Milman (see [16, 17]).
Functions strictly related to b̃ and d̃ can be found, for instance, in [8].

Lemma 2.1. Let φ be one of the moduli defined in (2.5) or (2.6). Then

(i) φ(0) = 0 and φ is nonnegative,
(ii) φ satisfies the Lipschitz condition with the constant 1,

(iii) the function φ(ε)/ε is nondecreasing on (0,∞).

Proof. Fix ε > 0 and x ∈ SX. We show that in this case the quantities defined
by (2.4) are nonnegative. For this purpose, we choose a functional x∗ ∈ SX∗ so
that x∗(x) = 1. Then

‖x +εy‖ ≥ x∗(x +εy) = 1 (2.7)

for every y ∈ kerx∗. It follows that

inf
y∈SE

‖x +εy‖−1 ≥ 0, (2.8)

where E = kerx∗ and, consequently, β(ε;x) ≥ 0. One can similarly show that
δ(ε;x) ≥ 0. If X does not have the Schur property, then the same is true for
kerx∗. The space kerx∗ contains therefore a sequence (yn) ∈ � and from (2.7)
we see that b(ε;x) ≥ 0. The inequality d(ε;x) ≥ 0 follows in turn from the
estimate

sup
n∈N

∥∥x +εyn

∥∥ ≥ lim inf
n→∞

∥∥x +εyn

∥∥ ≥ ‖x‖ = 1 (2.9)

for every (yn) ∈ �.
Property (ii) is a direct consequence of the triangle inequality. To prove (iii)

it is enough to observe that for each x,y ∈ SX the function ψ(ε) = ‖x +εy‖ is
convex on (0,∞). Its divided difference

1

ε

(
ψ(ε)−ψ(0)

) = 1

ε

(‖x +εy‖−1
)

(2.10)

is therefore a nondecreasing function of ε. �
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Lemma 2.2. Let X be a Banach space without the Schur property. If ε ≥ 0 and
x ∈ X, then

d(ε;x) = inf sup
n∈N

∥∥x +εyn

∥∥−1, (2.11)

where the infimum is taken over all weakly null sequences (yn) in X such that
‖yn‖ ≥ 1 for every n. Moreover,

d̃(ε) = inf
{
d(ε;x) : x ∈ X, ‖x‖ ≥ 1

}
, (2.12)

for every ε ∈ [0,1].

Proof. Fix ε ≥ 0, x ∈ X and a weakly null sequence (yn) in X such that ‖yn‖ ≥ 1
for every n. Since for each n the function t �→ ‖x +εtyn‖ is convex,

∥∥x +εy′
n

∥∥−‖x‖ ≤ 1∥∥yn

∥∥(∥∥x +εyn

∥∥−‖x‖) ≤ 1∥∥yn

∥∥
(

sup
m∈N

∥∥x +εym

∥∥−‖x‖
)

,

(2.13)
where y′

n = (1/‖yn‖)yn. But supm∈N ‖x +εym‖ ≥ ‖x‖. We therefore see that

sup
n∈N

∥∥x +εy′
n

∥∥ ≤ sup
n∈N

∥∥x +εyn

∥∥. (2.14)

This gives formula (2.11).
Now assume that ‖x‖ ≥ 1, (yn) ∈ � and ε ∈ [0,1]. We have

‖x‖(∥∥x′ +εyn

∥∥−ε
) ≤ ∥∥x +εyn

∥∥−ε, (2.15)

for every n where x′ = (1/‖x‖)x. It follows that

‖x‖(d(ε;x′)−ε+1
) ≤ d(ε;x)−ε+1. (2.16)

But the proof of Lemma 2.1 shows that d(ε;x′) ≥ 0 ≥ ε −1. From (2.11) and
(2.16) we therefore obtain

d̃(ε) ≤ d(ε;x′) ≤ d(ε;x). (2.17)

This easily implies (2.12). �

Remark 2.3. A reasoning similar to that in the proof of Lemma 2.2 shows that
in each of the formulae (2.4), (2.5), and (2.6) the unit sphere can be replaced
by the set of all elements outside of the open unit ball if it occurs with infimum
and by the unit ball if it occurs with supremum. Moreover, one can replace � by
the set of all weakly null sequences outside of the open unit ball when dealing
with infimum and by the set of all weakly null sequences in the unit ball when
dealing with supremum. In case of formulae (2.5) and (2.6) this requires the
assumption that ε ∈ [0,1].
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The results in the above remark are analogous to those proved for the classical
moduli of convexity and smoothness in [5, 14].

Let X be a space without the Schur property. Given ε ∈ [0,1], we put

K(ε) = inf
{
1−‖x‖}, (2.18)

where the infimum is taken over all weak limits x of sequences (xn) in BX such
that ‖xn −x‖ ≥ ε for all n. An infinite dimensional Banach space X is nearly
uniformly convex (NUC for short) if X is reflexive and K(ε) > 0 for every
ε > 0 (see [11]). The property dual to NUC was studied in [19]. It is called
nearly uniform smoothness (NUS for short).

Lemma 2.4. Let X be a Banach space without the Schur property. Then K is
continuous on the interval [0,1) and the function K(ε)/ε is nondecreasing on
(0,1).

Proof. We follow an idea from [9]. Fix u ∈ SX and (un) ∈ �. Having ε ∈ [0,1],
by K(ε;u,(un)) we denote the infimum of all numbers t ∈ [0,1] for which there
is a scalar sequence (sn) such that ‖(1− t)u+snun‖ ≤ 1 and sn ≥ ε for all n.

It is easy to check that K(ε;u,(un)) is a convex function of ε and

K(ε) = inf
{
K

(
ε;u,

(
un

)) : u ∈ SX,
(
un

) ∈ �
}
, (2.19)

for every ε ∈ [0,1]. Consequently, for each s ∈ [0,1) the function K satisfies the
Lipschitz condition with the constant 1/(1−s) on the interval [0, s). Moreover,
K(0;u,(un)) = 0 for all u ∈ SX and (un) ∈ � which gives the second part of
the conclusion. �

Now recall the definition of a shrinking M-basis. A family {et }t∈T of vectors
of a Banach space X is called an M-basis of X if there exist functionals e∗

t ∈ X∗,
t ∈ T such that

e∗
t

(
es

) =
{

0 if t ∈ T \{s},
1 if t = s,

(2.20)

and {et }t∈T is linearly dense in X. If in addition {e∗
t }t∈T is linearly dense in X∗,

then {et }t∈T is said to be shrinking. Given x ∈ span{et }t∈T , we put suppx = {t ∈
T : e∗

t (x) 
= 0}. We point out that all reflexive spaces have shrinking M-bases
(see [21, page 716]).

Theorem 2.5. Let X be a Banach space without the Schur property and let
f,g : X → R be functions such that f is uniformly continuous and f (x) ≤ g(x)

for every x ∈ SX. Then βf ≤ dg and bf ≤ δg. Moreover, if X is a subspace of
a Banach space with a shrinking M-basis, then βf = df and δf = bf .

Proof. We fix γ > 0. By our assumption there is η > 0 such that if x,y ∈ X,
‖x − y‖ ≤ η, then |f (x) − f (y)| ≤ γ . We choose E ∈ � and (yn) ∈ � so
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that βf − γ ≤ infy∈SE
f (y) and supn∈N g(yn) ≤ dg + γ . Put m = codimE.

There are elements x1, . . . ,xm ∈ SX and functionals x∗
1 , . . . ,x∗

m ∈ X∗ such that
E = ⋂m

i=1 kerx∗
i , x∗

k (xk) 
= 0 and x∗
k (xi) = 0 for every i = 1, . . . ,m and k 
= i.

We set η1 = η(2
∑m

i=1 1/|x∗
i (xi)|)−1 and find s for which |x∗

k (ys)| < η1,
k = 1, . . . ,m. Consider an element

y′ = ys −
m∑

i=1

x∗
i

(
ys

)(
x∗
i

(
xi

))−1
xi. (2.21)

Clearly, x∗
k (y′) = 0 for k = 1, . . . ,m which shows that y′ ∈ E. Moreover, ‖ys −

y′‖ < η/2 and consequently ‖ys −y‖ < η where y = (1/‖y′‖)y′. Hence f (y)−
f (ys) ≤ γ , so

βf −γ ≤ f (y) ≤ g
(
ys

)+γ ≤ dg+2γ. (2.22)

Since γ > 0 is arbitrary, this gives the inequality βf ≤ dg. The inequality
bf ≤ δg can be proved in a similar way.

Now assume that βf 
= df . From the first part of the proof it follows that
we can find c ∈ R so that βf < c < df . Consequently, for every E ∈ � there is
y ∈ SE such that f (y) < c.

Let Z be the space with the shrinking M-basis ({xt }t∈T , {x∗
t }t∈T ) which

contains X as a subspace. We put Y = span{xt }t∈T and fix γ > 0. By induction
we choose two sequences; (yn) in SX and (un) in Y so that f (yn) < c, ‖yn −
un‖ < γ/n for every n and suppui ∩suppuj = ∅ if i 
= j .

By assumption, there is y1 ∈ SX such that f (y1) < c and we find u1 ∈ Y

with ‖y1 −u1‖ < γ . Next, having y1, . . . ,yn−1 and u1, . . . ,un−1, we set T1 =⋃n−1
i=1 suppui , E1 = ⋂

t∈T1
kerx∗

t . By assumption, there exists yn ∈ SE1 ∩ X

such that f (yn) < c. We choose u ∈ Y for which ‖yn −u‖ < γ1 where γ1 =
γ (2nmax{1,

∑
t∈T1

‖xt‖‖x∗
t ‖})−1 and set

un = u−
∑
t∈T1

x∗
t (u)xt . (2.23)

Clearly, suppun ∩T1 = ∅ and∥∥un −u
∥∥ ≤

∑
t∈T1

∣∣x∗
t

(
u−yn

)∣∣∥∥xt

∥∥ ≤
∑
t∈T1

∥∥x∗
t

∥∥∥∥xt

∥∥∥∥u−yn

∥∥ <
γ

2n
. (2.24)

Therefore ‖yn −un‖ < γ/n.
Since the M-basis of Z is shrinking, (un) is weakly null and consequently

(yn) ∈ �. Hence df ≤ supn∈N f (yn) ≤ c which is a contradiction. The formula
δf = bf can be shown in a similar way. �

Corollary 2.6. Let X be a Banach space without the Schur property and x ∈
SX. Then

β(ε;x) ≤ d(ε;x), b(ε;x) ≤ δ(ε;x),

ββ(ε) ≤ dd(ε), bb(ε) ≤ δδ(ε),
(2.25)
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for all ε ≥ 0. If X is a subspace of a Banach space with a shrinking M-basis,
then the equalities hold in each of these inequalities.

In what follows, we will show that some of the considered moduli are related
to NUC. Dealing with such a modulus φ of a space X, we say that X is φ-
uniformly convex if φ(ε) > 0 for every ε > 0. Other moduli correspond to NUS
and in this case we say that X is φ-uniformly smooth if the modulus φ of X

satisfies the condition limε→0 φ(ε)/ε = 0. For instance a reflexive space X is
NUS if and only if X is b̃-uniformly smooth (see [19]). Our next result shows
in turn that the moduli K and d̃ are, in a sense, equivalent.

Theorem 2.7. If a Banach space X does not have the Schur property, then

K

(
ε

1+ d̃(ε)

)
= d̃(ε)

1+ d̃(ε)
, (2.26)

d̃

(
ε

1−K(ε)

)
= K(ε)

1−K(ε)
, (2.27)

for every ε ∈ [0,1).

Proof. Fix ε,γ ∈ (0,1). There are x ∈ SX and (yn) ∈ � such that supn∈N ‖x +
εyn‖−1 < d̃(ε)+γ .

We put u = (1+ b̃(ε)+γ )−1x, un = ε(1+ b̃(ε)+γ )−1yn and zn = u+un for
n ∈ N. Then (zn) is a sequence in BX converging weakly to u and ‖zn −u‖ =
(1+ d̃(ε)+γ )−1 for every n. Therefore

K

(
ε

1+ d̃(ε)+γ

)
≤ 1−‖u‖ = 1−(

1+ d̃(ε)+γ
)−1

. (2.28)

In view of Lemma 2.4, we conclude that

K

(
ε

1+ d̃(ε)

)
≤ d̃(ε)

1+ d̃(ε)
. (2.29)

Lemma 2.4 shows also that if 0 < ε < 1, then K(ε) < 1. We assume now
that 0 < γ < 1−K(ε) and choose a sequence (zn) in BX so that (zn) converges
weakly to x, ‖zn − x‖ ≥ ε for all n and 1 − ‖x‖ < K(ε) + γ . We put v =
(1/(1−K(ε)−γ ))x, vn = (1/ε)(zn − x) for n ∈ N. Then ‖v‖ > 1, ‖vn‖ ≥ 1
for every n and (vn) converges weakly to 0. By Lemma 2.2,

d̃

(
ε

1−K(ε)−γ

)
≤ sup

n∈N

∥∥∥∥v+ ε

1−K(ε)−γ
vn

∥∥∥∥−1 ≤ K(ε)+γ

1−K(ε)−γ
. (2.30)

Using Lemma 2.1, we therefore get

d̃

(
ε

1−K(ε)

)
≤ K(ε)

1−K(ε)
. (2.31)
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To show the inequality opposite to (2.31) we set φ(t) = t/(1−K(t)) for
t ∈ [0,1). From (2.29) we obtain

d̃
(
φ(ε)

) ≥ (
1+ d̃

(
φ(ε)

))
K

(
φ(ε)

1+ d̃
(
φ(ε)

))
. (2.32)

Moreover, (2.31) yields

φ(ε)

1+ d̃
(
φ(ε)

) ≥ φ(ε)
(
1−K(ε)

) ≥ ε. (2.33)

This and Lemma 2.4 give

d̃
(
φ(ε)

) ≥ K(ε)

ε
φ(ε) = K(ε)

1−K(ε)
. (2.34)

This is the inequality opposite to (2.31) and the proof of (2.27) is completed.
Now observe that φ is a continuous function on [0,1) with φ(0) = 0 and

limτ→1 φ(τ) ≥ 1. Having ε ∈ [0,1), we can therefore find τ ∈ [0,1) so that
ε = φ(τ). By (2.27),

d̃(ε)

1+ d̃(ε)
= d̃

(
φ(τ)

)
1+ d̃

(
φ(τ)

) = K(τ). (2.35)

But ε(1−K(τ)) = τ , so

d̃(ε)

1+ d̃(ε)
= K

(
ε
(
1−K(τ)

))

= K

(
ε

(
1− d̃(ε)

1+ d̃(ε)

))

= K

(
ε

1+ d̃(ε)

)
.

(2.36)

�

Let δX be the classical modulus of convexity of a Banach space X (cf. [6,
page 124]). Given ε ≥ 0, we put

	X(ε) = inf
x,y∈SX

max
{‖x +εy‖,‖x −εy‖}−1. (2.37)

This modulus was also introduced in [16]. We have

	X

(
ε

2
(
1−δX(ε)

))
= δX(ε)

1−δX(ε)
, (2.38)

for every ε ∈ [0,2) (see [7, Lemma 6] and [6, page 127]). Formula (2.27) can be
seen as an infinite dimensional counterpart of (2.38). The reasoning used in the
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last part of the proof of Theorem 2.7 enables us to obtain the formula inverse
to (2.38). Namely,

δX

(
2ε

1+	X(ε)

)
= 	X(ε)

1+	X(ε)
, (2.39)

for every ε ∈ [0,1).
From Theorem 2.7 and Corollary 2.6, we immediately get the next result.

Corollary 2.8. If a Banach space X is a subspace of a space with a shrinking
M-basis, then

K

(
ε

1+ β̃(ε)

)
= β̃(ε)

1+ β̃(ε)
, β̃

(
ε

1−K(ε)

)
= K(ε)

1−K(ε)
, (2.40)

for every ε ∈ [0,1).

This gives in turn the following result.

Corollary 2.9. Let X be a reflexive space. Then X is NUC if and only if X is
β̃-uniformly convex.

We show that formulae analogous to those in Theorem 2.7 hold for the mod-
ulus ββ. In this case, we replace K by the function K̄ given by the formula

K̄(ε) = sup
E∈�

KE(ε), (2.41)

where ε ∈ [0,1].

Theorem 2.10. Let a Banach space X be a subspace of a space with a shrinking
M-basis. Then

K̄

(
ε

1+ββ(ε)

)
= ββ(ε)

1+ββ(ε)
, ββ

(
ε

1−K̄(ε)

)
= K̄(ε)

1−K̄(ε)
, (2.42)

for every ε ∈ [0,1).

Proof. Fix ε ∈ [0,1). From Corollary 2.6, we see that ββ(ε) = supE∈� d̃E(ε)

for every ε ≥ 0. This and Theorem 2.7 give the inequality

KE

(
ε

1+ββ(ε)

)
≤ KE

(
ε

1+ d̃E(ε)

)
= d̃E(ε)

1+ d̃E(ε)
≤ ββ(ε)

1+ββ(ε)
, (2.43)

for every E ∈ �. It follows that

K̄

(
ε

1+ββ(ε)

)
≤ ββ(ε)

1+ββ(ε)
. (2.44)
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In order to show the opposite inequality, we take γ > 0 and find E ∈ � so
that ββ(ε)−γ < d̃E(ε). By Theorem 2.7,

K̄

(
ε

1+ββ(ε)−γ

)
≥ KE

(
ε

1+ d̃E(ε)

)
= d̃E(ε)

1+ d̃E(ε)
>

ββ(ε)−γ

1+ββ(ε)
. (2.45)

The proof of Lemma 2.4 shows that K̄ is continuous on [0,1), so we can pass
to the limit with γ tending to 0. This completes the proof of the first formula.

From Theorem 2.7, we also see that

ββ

(
ε

1−K̄(ε)

)
≥ d̃E

(
ε

1−KE(ε)

)
= KE(ε)

1−KE(ε)
, (2.46)

for every E ∈ �, and it shows that

ββ

(
ε

1−K̄(ε)

)
≥ K̄(ε)

1−K̄(ε)
. (2.47)

To prove the opposite inequality we take arbitrary E,F ∈ �. Then E∩F ∈ �
and

d̃E

(
ε

1−KF (ε)

)
≤ d̃E∩F

(
ε

1−KE∩F (ε)

)
≤ K̄(ε)

1−K̄(ε)
. (2.48)

It follows that

ββ

(
ε

1−K̄(ε)

)
≤ K̄(ε)

1−K̄(ε)
. (2.49)

�

Corollary 2.11. Let X be a reflexive space. Then

(i) if ββ(1) > 0, then X has an equivalent norm for which it is NUC,
(ii) if limε→0 δδ(ε)/ε < 1, then X has an equivalent norm for which it is

NUS.

Proof. Assume that ββ(1) > 0. By Theorem 2.10, there exists a subspace E ∈ �
such that limt→1 KE(t) > 0. From [20, Theorem 2.11], we know that in this case
E has an equivalent norm in which it is NUC. Since E has finite codimension,
the same is true for the whole space X. In a similar way, one can derive (ii)
from [20, Theorem 2.7]. �

Since NUS is dual to NUC (see [19, Theorem 2.4]), Corollary 2.11 shows
that for reflexive spaces δδ-uniform smoothness is isomorphically dual to ββ-
uniform convexity. In [17] (see also [16, page 118]), isometric duality of these
properties was established for some class of spaces. Let X be a Banach space
and let � denote the family of all finite dimensional subspaces of X. Given
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ε ≥ 0, we put

b̄(ε) = inf
Y∈�

b̃X/Y (ε), d̄(ε) = sup
Y∈�

d̃X/Y (ε). (2.50)

A reasoning from the proof of Theorem 2.4 in [19] gives another duality result.

Proposition 2.12. Let X be a reflexive space. Then

(i) X is ββ-uniformly convex if and only if X∗ is b̄-uniformly smooth,
(ii) X is δδ-uniformly smooth if and only if X∗ is d̄-uniformly convex.

We will give examples which show that in general ββ-uniform convexity
and δδ-uniform smoothness are not dual to each other. Let ‖·‖2 be the standard
norm of l2 and (en) be the standard basis of this space. Given x = (xn) ∈ l2, we
put Rx = (0,x2,x3, . . .),

|x|0 = sup
1<m<n

(∣∣xm −x1
∣∣+ 1

4

∣∣xn

∣∣),

‖x‖0 = max
{‖Rx‖2, |x|0

}
.

(2.51)

Clearly, ‖ · ‖0 is a norm in l2 equivalent to ‖ · ‖2. Let X0 be the space l2 en-
dowed with the norm ‖ ·‖0. We have ‖en‖0 = 1 and ‖em + ten‖0 = 1+ (1/4)t

for all 1 < m < n and every t ∈ [0,1/2]. It follows that bb(t) ≥ (1/4)t for
every t ∈ [0,1/2]. From Corollary 2.6, we therefore see that X0 is not δδ-
uniformly smooth.

Let Y be the subspace of X1 spanned by e1. We fix x = (xn) in X0. Clearly,
the norm ν of x +Y in X0/Y does not exceed ‖Rx‖2. To show the opposite
inequality we consider two cases.

(I) |xk| ≤ (4/5)‖Rx‖2 for every k ≥ 2. Then

∣∣xm

∣∣+ 1

4

∣∣xn

∣∣ ≤ ‖Rx‖2, (2.52)

where 1 < m < n.
(II) There is k ≥ 2 for which |xk| > (4/5)‖Rx‖2. Then |xi | < (3/5)‖Rx‖2

whenever i ≥ 2, i 
= k. We put λ = (signxk)(3/20)‖Rx‖2. It is easy to see that

∣∣xm −λe1
∣∣+ 1

4

∣∣xn

∣∣ < ‖Rx‖2, (2.53)

for all 1 < m < n.
It follows that ν ≤ ‖Rx‖2 and finally ν = ‖Rx‖2. This shows that the space

X0/Y is isometrically isomorphic to l2. Consequently, X0 is b̄-uniformly smooth
and by Proposition 2.12, X∗

0 is ββ-uniformly convex.
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As the next example we consider the space l2 endowed with an equivalent
norm given by the formula

‖x‖1 = max

{
4

5
‖Rx‖2, |x|1

}
, (2.54)

where

|x|1 = sup
1<m<n

max

{∣∣xm −x1
∣∣, 4

5

∣∣xn

∣∣}, (2.55)

for x = (xk) ∈ l2. We denote this space by X1. Clearly, ‖en‖1 = 1 and ‖em +
ten‖0 = 1 for all 1 < m < n and every t ∈ [0,1/2]. This shows that dd(t) = 0
for every t ∈ [0,1/2].

As in the preceding example, X1/Y is isometrically isomorphic to l2. In
fact, the norm ν of a coset x + Y in X1/Y equals (4/5)‖Rx‖2. Indeed, the
inequality ν ≤ (4/5)‖Rx‖2 is obvious. To show the opposite one, we can ap-
ply the same reasoning as before but this time in the case (II) we put α =
(signxk)(1/5)‖Rx‖2. Thus X∗

1 is δδ-uniformly smooth while by Corollary 2.6,
X1 is not ββ-uniformly convex.

NUS spaces have the Banach-Saks property (see [19, Corollary 3.4]). We
will extend this result. First recall that a Banach space is said to have the weak
Banach-Saks property if every weakly convergent sequence (xn) in X has a
subsequence (xnk

) such that the means (1/m)
∑m

k=1 xnk
converge in norm.

Proposition 2.13. Let X be a Banach space such that limε→0 δδ(ε)/ε < 1.
Then X has the weak Banach-Saks property.

Proof. By assumption, there exist c ∈ (0,1) and η > 0 such that if 0 < ε < η,
then δδ(ε) < cε. In light of Corollary 2.6, we can therefore find E ∈ � so that
b(ε;x) < cε for every x ∈ SE .

Assume that X does not have the weak Banach-Saks property. Fix 0 < ε <

min{η,1} and put γ = (1−c)ε/6. Then there exists a weakly null sequence (yn)

in X such that

(1−γ )
(|α|+|β|) ≤ ∥∥αym +βyn

∥∥ ≤ (1+γ )
(|α|+|β|), (2.56)

for all m < n and α,β ∈ R (see [3]).
Similarly, as in the proof of Theorem 2.5 we can choose m and y ∈ SE for

which ‖ym −y‖ < 3γ . Clearly

inf
n>m

∥∥ym +εyn

∥∥ ≤ inf
n>m

∥∥y −εyn

∥∥+3γ ≤ b(ε;y)+3γ < 1+cε+3γ. (2.57)
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But

inf
n>m

∥∥ym +εyn

∥∥ ≥ (1−γ )(1+ε) (2.58)

which leads to a contradiction. �

The weakly convergent sequence coefficient (WCS for short) was introduced
in [4]. Here, we use a formula from [1, Lemma VI.3.8]. Let X be a space
without the Schur property. Then WCS(X) equals the infimum of all double
limits limn
=m ‖xn − xm‖ where (xn) ∈ � is a sequence for which the above
limit exists.

Proposition 2.14. Let X be a Banach space without the Schur property. Then

WCS(X) ≥ 1+βd(1). (2.59)

Proof. Given γ > 0, we find E ∈ � such that d(1;x) > βd(1)−γ for every x ∈
SE . There is a sequence (yn) ∈ � for which WCS(X)+γ > limn
=m ‖yn −ym‖.
We can clearly assume that WCS(X)+γ > ‖yn −ym‖ for all m,n.

Similarly as in the proof of Theorem 2.5 we can choose m and y ∈ SE so
that ‖ym −y‖ < γ . Then

WCS(X)+γ ≥ sup
n∈N

∥∥y −yn

∥∥−γ ≥ 1+d(1;y)−γ > 1+βd(1)−2γ. (2.60)

Since γ > 0 is arbitrary, this gives the desired estimate. �

In [1], many applications of the WCS coefficient to the fixed point theory
can be found. Here we only mention that if WCS(X) > 1, then X has weak
normal structure. In consequence, X has the weak fixed point property which
means that each nonexpansive mapping of nonempty weakly compact set in
X has a fixed point (see [12]). We therefore obtain the following corollary of
Proposition 2.14 and Corollary 2.6.

Corollary 2.15. Let X be a Banach space. If ββ(1) > 0, then X has the weak
fixed point property.
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