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1. Introduction

Recently, there have beenmany papersworking on the existence of positive solutions to bound-
ary value problems for differential equations on time scales (see, e.g., [1–4] and the references
therein). This has been mainly due to their unification of the theory of differential and differ-
ence equations. An introduction to this unification is given in [5]. Now, this study is still a
new area of fairly theoretical exploration in mathematics. However, it has led to several impor-
tant applications, for example, in the study of insect population models, neural networks, heat
transfer, and epidemic models (see, e.g., [1, 5]). We let T be any time scale (nonempty closed
subset of R) and let [a, b] be subset of T such that [a, b] = {t ∈ T : a ≤ t ≤ b}. Thus, R, Z, N, No,
that is, the real numbers, the integers, the natural numbers, and the nonnegative integers, are
examples of time scales.

In this paper, we study the existence of multiple positive solutions for the fourth-order
four-point nonlinear dynamic equation on time scales with p-Laplacian:

(
φp

(
xΔ∇(t)

))∇Δ −w(t)f
(
x(t)

)
= 0, t ∈ (0, 1), (1.1)
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subject to the following boundary conditions:

x(0) − λxΔ(η) = xΔ(1) = 0, xΔ∇(0) = α1xΔ∇(ξ), xΔ∇(1) = β1xΔ∇(ξ), (1.2)

where λ ≥ 0, α1 ≥ 0, β1 ≥ 0, 0 < ξ, η < 1, φp(s) is p-Laplacian operator, that is to say, φp(s) =
|s|p−2s, p > 1,

(
φp

)−1 = φq, 1/p + 1/q = 1, and

(H1) the function f : R→ [0,+∞) is continuous,

(H2) w(t) ∈ Crd([0, 1], [0,+∞)), where Crd([0, 1], [0,+∞)) denotes the set of all right dense
continuous functions from T to [0,+∞).

We remark that by a solution x of (1.1)-(1.2) we mean x : T → R which is delta/nabla
differentiable; xΔ∇ and (|xΔ∇|p−2xΔ∇)∇Δ are both continuous on Tk2 ∩ T

k2 , and x satisfies (1.1)-
(1.2). If xΔ∇(t) ≤ 0 on [0, 1]

Tk∩Tk , then we say that x is concave on [0, 1].
p-Laplacian problems with two-, three-, m-point boundary conditions for ordinary dif-

ferential equations and finite difference equations have been studied extensively (see [6, 7] and
the references therein). However, there are not many concerning the p-Laplacian problems on
time scales. In this paper, by using a new triple fixed-point theorem due to Avery [8] in a cone,
we prove that there exist at least triple positive solutions of problem (1.1)-(1.2). Our results
generalize the recent paper by Bai et al. [7] to some degree. Meanwhile, we choose an inver-
sion technique to simplify our arguments, which is a variation of the technique employed by
Avery and Peterson in [9].

The time-scale-related notations adopted in this paper can be found in almost all liter-
atures related to time scales. The readers who are unfamiliar with this area can consult, for
example, [5] for details. Throughout this paper, we assume that T is a closed subset of R with
0 ∈ Tk2 , 1 ∈ T

k2 .

2. Preliminaries

In this section, we provide some background materials from the theory of cones in Banach
spaces, and we then state the triple fixed-point theorem for a cone-preserving operator. The
following definitions can be found in the book by Guo and Lakshmikantham [10].

Definition 2.1. Let E be a real Banach space over R. A nonempty closed set P ⊂ E is said to be a
cone provided that

(i) au + bv ∈ P for all u, v ∈ P and all a ≥ 0, b ≥ 0,

(ii) u,−u ∈ P implies u = 0.

Every cone P ⊂ E induces an ordering in E given by x ≤ y if and only if y − x ∈ P .

Definition 2.2. The map α is said to be a nonnegative continuous concave functional on a cone
P of a real Banach space E provided that α : P → [0,∞) is continuous and

α
(
tx + (1 − t)y) ≥ tα(x) + (1 − t)α(y) (2.1)
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for all x, y ∈ P and 0 ≤ t ≤ 1. Similarly, one says that the map γ is a nonnegative continu-
ous convex functional on a cone P of a real Banach space E provided that γ : P → [0,∞) is
continuous and

γ
(
tx + (1 − t)y) ≤ tγ(x) + (1 − t)γ(y) (2.2)

for all x, y ∈ P and 0 ≤ t ≤ 1.

Let γ, β, and θ be nonnegative continuous convex functionals on P , α and ψ nonnegative
continuous concave functionals on P . Then, for positive real numbers h, a, b, d, and c, one
defines the following convex sets:

P(γ, c) =
{
x ∈ P | γ(x) < c}, P(γ, θ, α, a, b, c) =

{
x ∈ P | a ≤ α(x), θ(x) ≤ b, γ(x) ≤ c},

P(γ, α, a, c) =
{
x ∈ P | a ≤ α(x), γ(x) ≤ c}, Q(γ, β, d, c) =

{
x ∈ P | β(x) ≤ d, γ(x) ≤ c},

Q(γ, β, ψ, h, d, c) =
{
x ∈ P | h ≤ ψ(x), β(x) ≤ d, γ(x) ≤ c}.

(2.3)

The following fixed-point theorem due to Avery [8] which is a generalization of the
Leggett-Williams fixed-point theorem will be fundamental.

Theorem 2.3 (see [8]). Let P be a cone in a real Banach space E. Let γ, β, and θ be nonnegative
continuous convex functionals on P , α, ψ nonnegative continuous concave functionals on P , and there
exist two positive numbers c andM such that

α(x) ≤ β(x), ‖x‖ ≤Mγ(x) (2.4)

for all x ∈ P(γ, c). Suppose T : P(γ, c) → P(γ, c) is completely continuous and there exist positive
numbers h, d, a, b ≥ 0, with 0 < d < a such that

(S1) {x ∈ P(γ, θ, α, a, b, c) | α(x) > a}/= ø and α(Tx) > a for x ∈ P(γ, θ, α, a, b, c);
(S2) {x ∈ Q(γ, β, ψ, h, d, c) | β(x) < d}/= ø and β(Tx) < d for x ∈ Q(γ, β, ψ, h, d, c);

(S3) α(Tx) > a for x ∈ P(γ, α, a, c) with θ(Tx) > b;
(S4) β(Tx) < d for x ∈ Q(γ, β, d, c) with ψ(Tx) < h.

Then, T has at least three positive solutions x1, x2, x3 ∈ P(γ, c) such that

β
(
x1
)
< d, a < α

(
x2
)
, d < β

(
x3
)
, with α

(
x3
)
< a. (2.5)

3. Main results

Let E denote the real Banach space E = C([ρ2(0), σ(1)], R) with the norm

‖x‖0,T := sup
{∣∣x(t)

∣∣ : t ∈ [
ρ2(0), σ(1)

]}
, x ∈ E. (3.1)

Define a cone P ⊂ E by

P =
{
x ∈ E : x ≥ 0, x(t) is concave and nondecreasing on

[
ρ2(0), σ(1)

]}
. (3.2)

In our main results, we will make use of the following lemmas.
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Lemma 3.1. If y ∈ E, then BVP

−xΔ∇(t) = −φq
(
y(t)

)
, t ∈ (0, 1),

x(0) − λxΔ(η) = 0, xΔ(1) = 0,
(3.3)

has a unique solution

x(t) = −
∫1

0
h(t, s)φq

(
y(s)

)∇s, (3.4)

where

h(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

s, s ≤ t < η or s ≤ η ≤ t,
t, t ≤ s ≤ η,
s + λ, η ≤ s ≤ t,
t + λ, η ≤ t ≤ s or t < η ≤ s.

(3.5)

Proof. In fact, if x is a solution of (3.3), then

x(t) =
∫ t

0
(t − s)φq

(
y(s)

)∇s +At + B, t ∈ (0, 1). (3.6)

By the boundary condition of (3.3), we have

A = −
∫1

0
φq

(
y(s)

)∇s, B = x(0) = λxΔ(η) = −λ
∫1

η

φq
(
y(s)

)∇s. (3.7)

Therefore,

x(t) =
∫ t

0
(t − s)φq

(
y(s)

)∇s − t
∫1

0
φq

(
y(s)

)∇s − λ
∫1

η

φq
(
y(s)

)∇s

= −
∫1

0
h(t, s)φq

(
y(s)

)∇s.
(3.8)

Lemma 3.2. If y ∈ E, then BVP

−y∇Δ(t) = −w(t)f
(
x(t)

)
, t ∈ (0, 1),

y(0) = φp
(
α1
)
y(ξ), y(1) = φp

(
β1
)
y(ξ)

(3.9)

has a unique solution

y(t) = − 1
M

∫1

0
g(t, s)w(s)f

(
x(s)

)
Δs, (3.10)

where

g(t, s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

s(1 − t) + φp
(
β1
)
s(t − ξ), s ≤ t < ξ or s ≤ ξ ≤ t,

t(1 − s) + φp
(
β1
)
t(s − ξ) + φp

(
α1
)
(1 − ξ)(s − t), t ≤ s ≤ ξ,

s(1 − t) + φp
(
β1
)
ξ(t − s) + φp

(
α1
)
(1 − t)(ξ − s), ξ ≤ s ≤ t,

(1 − s) (t − φp
(
α1
)
t + φp

(
α1
)
ξ
)
, ξ ≤ t ≤ s or t < ξ ≤ s,

(3.11)

andM = 1 − φp(α1) − (φp(β1) − φp(α1))ξ /= 0.
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Proof. In fact, if y is a solution of (3.9), then

y(t) =
∫ t

0
(t − s)w(s)f

(
x(s)

)
Δs +A∗t + B∗, t ∈ (0, 1). (3.12)

By the boundary condition of (3.9), we have

B∗ = φp
(
α1
)
∫ ξ

0
(ξ − s)w(s)f

(
s, x(s)

)
Δs + φp

(
α1
)
ξA∗ + φp

(
α1
)
B∗,

∫1

0
(1 − s)w(s)f

(
s, x(s)

)
Δs +A∗ + B∗

= φp
(
β1
)
∫ ξ

0
(ξ − s)w(s)f

(
s, x(s)

)
Δs + φp

(
β1
)
ξA∗ + φp

(
β1
)
B∗.

(3.13)

Therefore,

y(t) =
∫ t

0
(t − s)w(s)f

(
s, x(s)

)
Δs −

(
1 − φp

(
α1
))
t

M

∫1

0
(1 − s)f(s)Δs

+

(
φp

(
β1
)
+ φp

(
α1
))
t

M

∫ ξ

0
(ξ − s)f(s)Δs − φp

(
α1
)
ξ

M

∫1

0
(1 − s)f(s)Δs

+
φp

(
α1
)

M

∫ ξ

0
(ξ − s)w(s)f

(
s, x(s)

)
Δs

= − 1
M

∫1

0
g(t, s)w(s)f

(
s, x(s)

)
Δs.

(3.14)

Obviously, ifM > 0, then g(t, s) ≥ 0 for (t, s) ∈ [0, 1] × [0, 1].
Suppose that x is a solution of (1.1)-(1.2). Then, from Lemma 3.1, we have

x(t) = −
∫1

0
h(t, s)φq

(
y(s)

)∇s. (3.15)

Substituting (3.10) into (3.15), we have

x(t) =
1

φq(M)

∫1

0
h(t, s)φq

(∫1

0
g(s, τ)w(τ)f

(
x(τ)

)
Δτ

)
∇s. (3.16)

Lemma 3.3. Assume that 0 < t1 < t2 < 1 and η, ξ ∈ (0, 1). Then, one has for s ∈ [ρ2(0), σ(1)],

h
(
t1, s

)

h
(
t2, s

) ≥ t1
t2
,

h(1, s)
h(ξ, s)

≤ 1
ξ
.

(3.17)

The proof follows by routine calculations.
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For the sake of applying Theorem 2.3, we let the nonnegative continuous concave func-
tionals α, ψ and the nonnegative continuous convex functionals β, θ, γ be defined on the cone
P by

γ(x) = max
t∈[0,t3]

x(t) = x
(
t3
)
, x ∈ P, ψ(x) = min

t∈[ξ,σ(1)]
x(t) = x(ξ), x ∈ P,

β(x) = max
t∈[ξ,σ(1)]

x(t) = x
(
σ(1)

)
, x ∈ P, α(x) = min

t∈[t1,t2]
x(t) = x

(
t1
)
, x ∈ P,

θ(x) = max
t∈[t1,t2]

x(t) = x
(
t2
)
, x ∈ P,

(3.18)

where t1, t2, and t3 ∈ (0, 1) and t1 < t2.
It is clear that

α(x) = x
(
t1
) ≤ x(σ(1)) = β(x), ‖x‖0,T = x

(
σ(1)

) ≤ σ(1)
t3

x
(
t3
)
=
σ(1)
t3

γ(x), for x ∈ P.
(3.19)

Theorem 3.4. Assume that (H1) and (H2) hold. Let positive numbers 0 < a < b < c satisfy 0 < a <
b < (t1/t2)b ≤ c and suppose that f(x) satisfies the following conditions:

(H3) f(x) ≤ φq(a/c) for 0 ≤ x ≤ a,
(H4) f(x) ≥ φq(b/B) for b ≤ x ≤ (t1/t2)b,

(H5) f(x) ≤ φq(c/A) for 0 ≤ x ≤ (σ(1)/t3)c,

where

A =
1

φq(M)

∫1

0
h
(
t3, s

)
[
φq

(∫1

0
g(s, τ)w(τ)Δτ

)]
∇s,

B =
1

φq(M)

∫1

0
h
(
t1, s

)
[
φq

(∫ t2

t1

g(s, τ)w(τ)Δτ
)]

∇s,

C =
1

φq(M)

∫1

0
h
(
σ(1), s

)
[
φq

(∫1

0
g(s, τ)w(τ)Δτ

)]
∇s,

M = 1 − φp
(
α1
) − (

φp
(
β1
) − φp

(
α1
))
ξ > 0.

(3.20)

Then, boundary value problem (1.1)-(1.2) has at least three positive solutions x1, x2, x3 ∈ P(γ, c)
satisfying

xi
(
t3
) ≤ c, i = 1, 2, 3, x1

(
t1
)
> b, x2

(
σ(1)

)
< a, x3

(
t1
)
< b, x3

(
σ(1)

)
> a.
(3.21)

Proof. Define a completely continuous operator Ψ : P1 → E by

(Ψx)(t) =
1

φq(M)

∫1

0
h(t, s)φq

(∫1

0
g(s, τ)w(τ)f

(
x(τ)

)
Δτ

)
∇s. (3.22)
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It is not difficult to prove that x is a positive solution of (1.1)-(1.2) if and only if x is a fixed
point of Ψ in P .

First, we prove that Ψ : P(γ, c) → P(γ, c).
ByM > 0, we obtain Ψx ≥ 0 for x ∈ P . On the other hand, by (3.22), we have

(Ψx)Δ(t) =
∫1

t

φq

(∫1

0
g(s, τ)w(τ)f(x(τ))Δτ

)
∇s ≥ 0,

(Ψx)Δ∇(t) = −φq
(∫1

0
g(t, s)w(s)f

(
x(s)

)
)
Δs ≤ 0.

(3.23)

Therefore, Ψ : P → P1.
For x ∈ P(γ, c), notice that α(x) ≤ β(x), ‖x‖ ≤ (σ(1)/t3)γ(x) ≤ (σ(1)/t3)c; so 0 ≤ x(t) ≤

(σ(1)/t3)γ(x) ≤ (σ(1)/t3)c. By (H5), we have

γ(Ψx) = max
t∈[0,t3]

∣∣(Ψx)(t)
∣∣ = (Ψx)

(
t3
)

=
1

φq(M)

∫1

0
h
(
t3, s

)
φq

(∫1

0
g(s, τ)w(τ)f

(
x(τ)

)
Δτ

)
∇s

=
1

φq(M)

∫1

0
h
(
t3, s

)
φq

(∫1

0
g(s, τ)w(τ)φp

c

A
Δτ

)
∇s

≤ C

A

1
φq(M)

∫1

0
h
(
t3, s

)
φq

(∫1

0
g(s, τ)w(τ)Δτ

)
∇s

= c.

(3.24)

Therefore, Ψ : P(γ, c) → P(γ, c).
To check condition (S1) of Theorem 2.3, we choose

x1(t) = b + ε1, for 0 < ε1 <
t2
t1
b − b, x2(t) = a − ε2, for 0 < ε2 < a − t3a. (3.25)

It is easy to see that x1 ∈ P(γ, θ, α, b, (t2/t1)b, c), x2 ∈ Q(γ, β, ψ, ξa, a, c), and α(x1) > b, β(x2) <
a. Therefore,

{
x ∈ P

(
γ, θ, α, b,

t2
t1
b, c

)
| α(x) > b

}

/=ø,
{
x ∈ Q(γ, β, ψ, ξa, a, c) | β(x) < a}/=ø. (3.26)

Hence, for t ∈ [t1, t2], x ∈ P(γ, θ, α, b, (t2/t1)b, c), there are

x(t) ≥ x(t1
)
= α(x) ≥ b, x(t) ≤ x(t2

)
= θ(x) ≤ t2

t1
b. (3.27)

Thus, for t ∈ [t1, t2], x ∈ P(γ, θ, α, b, (t2/t1)b, c)
(
t1
)
, by condition (H4), we have

α(Ψx) = min
t∈[t1,t2]

∣∣(Ψx)(t)
∣∣ = (Ψx)

(
t1
)

=
1

φq(M)

∫1

0
h
(
t1, s

)
φq

(∫1

0
g(s, τ)w(τ)f

(
x(τ)

)
Δτ

)
∇s

>
1

φq(M)

∫1

0
h
(
t1, s

)
φq

(∫1

0
g(s, τ)w(τ)φp

b

B
Δτ

)
∇s

=
b

Bφq(M)

∫1

0
h
(
t1, s

)
φq

(∫1

0
g(s, τ)w(τ)Δτ

)
∇s = b.

(3.28)
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This shows that condition (S1) of Theorem 2.3 is satisfied.
Secondly, we prove that β(Ψx) < a for all x ∈ Q(γ, β, ψ, ξa, a, c).
In fact, for t ∈ [0, σ(1)], x ∈ Q(γ, β, ψ, ξa, a, c), there is

0 ≤ x(t) ≤ x(σ(1)) = β(x) ≤ a. (3.29)

Thus, for t ∈ [0, σ(1)], x ∈ Q(γ, β, ψ, ξa, a, c), by condition (H3), we have

β(Ψx) = max
t∈[ξ,σ(1)]

∣∣(Ψx)(t)
∣∣ = (Ψx)

(
σ(1)

)

=
1

φq(M)

∫1

0
h
(
σ(1), s

)
φq

(∫1

0
g(s, τ)w(τ)f

(
x(τ)

)
Δτ

)
∇s

<
1

φq(M)

∫1

0
h
(
σ(1), s

)
φq

(∫1

0
g(s, τ)w(τ)φp

a

C
Δτ

)
∇s

=
a

Cφq(M)

∫1

0
h
(
σ(1), s

)
φq

(∫1

0
g(s, τ)w(τ)Δτ

)
∇s = a.

(3.30)

Thus, condition (S2) of Theorem 2.3 is satisfied.
Next, we show that α(Ψx) > b for x ∈ P(γ, α, b, c) and θ(Ψx) > (t2/t1)b. In fact,

α(Ψx) = min
t∈[t1,t2]

∣∣(Ψx)(t)
∣∣ = (Ψx)

(
t1
)

=
1

φq(M)

∫1

0
h
(
t1, s

)
φq

(∫1

0
g(s, τ)w(τ)f

(
x(τ)

)
Δτ

)
∇s

=
1

φq(M)

∫1

0

h
(
t1, s

)

h
(
t2, s

)h
(
t2, s

)
φq

(∫1

0
g(s, τ)w(τ)f

(
x(τ)

)
Δτ

)
∇s

≥ t1
t2
(Ψx)

(
t2
)
=
t1
t2
θ(Ψx) > b.

(3.31)

Finally, we show that condition (S4) of Theorem 2.3 also holds. In fact, for x ∈ Q(γ, β, a, c)
and ψ(Ψx) < ξa, we have

β(Ψx) = max
t∈[ξ,σ(1)]

∣∣(Ψx)(t)
∣∣ = (Ψx)

(
σ(1)

)

=
1

φq(M)

∫1

0
h
(
σ(1), s

)
φq

(∫1

0
g(s, τ)w(τ)f

(
x(τ)

)
Δτ

)
∇s

=
1

φq(M)

∫1

0

h
(
σ(1), s

)

h(ξ, s)
h(ξ, s)φq

(∫1

0
g(s, τ)w(τ)f

(
x(τ)

)
Δτ

)
∇s

≤ 1
ξ
(Ψx) (ξ) =

1
ξ
ψ(Ψx) < a.

(3.32)

So, condition (S4) of Theorem 2.3 is satisfied. Therefore, an application of Theorem 2.3
implies that problem (1.1)-(1.2) has at least three positive solutions x1, x2, and x3 such that

xi
(
t3
) ≤ c, i = 1, 2, 3, x1

(
t1
)
> b, x2

(
σ(1)

)
< a, x3

(
t1
)
< b, x3

(
σ(1)

)
> a.
(3.33)

The proof is complete.
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Remark 3.5. By the same method of this paper, we can also consider the following BVP:

(
φp

(
xΔ∇(t)

))∇Δ −w(t)f
(
x(t)

)
= 0, t ∈ (0, 1), (3.34)

subject to the following boundary conditions:

x(1) + λxΔ(η) = xΔ(0) = 0, xΔ∇(0) = α1xΔ∇(1), xΔ∇(1) = β1xΔ∇(ξ), (3.35)

where T is a time scale, λ ≥ 0, α1 ≥ 0, β1 ≥ 0, 0 < ξ, η < 1, φp(s) is p-Laplacian operator, that
is, φp(s) = |s|p−2s, p > 1, (φp)

−1 = φq, 1/p + 1/q = 1, and (H1)-(H2) hold.
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