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Using the fixed-point theorem, this paper is devoted to study the multiple and single positive
solutions of third-order boundary value problems for impulsive differential equations in ordered
Banach spaces. The arguments are based on a specially constructed cone. At last, an example is
given to illustrate the main results.

1. Introduction

The purpose of this paper is to establish the existence of positive solutions for the following
third-order three-point boundary value problems (BVP, for short) in Banach space E

−x′′′(t) = λf1
(
t, x(t), y(t)

)
, t ∈ [0, 1] \ {t1, t2, . . . , tm},

−y′′′(t) = μf2
(
t, x(t), y(t)

)
, t ∈ [0, 1] \ {t1, t2, . . . , tm},

Δx′′(tk) = −I1,k(x(tk)), Δy′′(tk) = −I2,k
(
y(tk)

)
, k = 1, 2, . . . , m,

x(0) = x′(0) = θ, x′(1) − αx′(η) = θ, y(0) = y′(0) = θ, y′(1) − αy′(η
)
= θ,
(1.1)

where fi ∈ C([0, 1] × P × P, P), Ii,k ∈ C(P, P), i = 1, 2, k = 1, 2, . . . , m. Δx′′(tk) = x′′(t+k) − x′′(t−k),
Δy′′(tk) = y′′(t+

k
) − y′′(t−

k
), μ > 0, λ > 0. θ is the zero element of E.

Recently, third-order boundary value problems (cf. [1–9]) have attractedmany authors
attention due to their wide range of applications in applied mathematics, physics, and
engineering, especially in the bridge issue. To our knowledge, most papers in literature
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concern mainly about the existence of positive solutions for the cases in which the spaces
are real and the equations have no parameters. And many authors consider nonlinear term
have same linearity. In this paper, we consider the existence of solutions when the nonlinear
terms have different properties, the space is abstract and the equations have two different
parameters.

In [3], Guo et al. studied the following nonlinear three-point boundary value problem:

u′′′(t) + a(t)f(u(t)) = 0,

u(0) = u′(0) = 0, u′(1) = αu′
(
η
)
,

(1.2)

where a ∈ C([0, 1], [0,+∞)), f ∈ C([0,+∞), [0,+∞)). The authors obtained at least one
positive solutions of BVP (1.2) by using fixed-point theoremwhen f is sublinear or suplinear.

In [8], Yao and Feng used the upper and lower solutions method proved some
existence results for the following third-order two-point boundary value problem

u′′′(t) + f(t, u(t)) = 0, 0 ≤ t ≤ 1,

u(0) = u′(0) = u′(1) = 0.
(1.3)

Inspired by the above work, the aim of this paper is to establish some simple criteria
for the existence of nontrivial solutions for BVP (1.1) under some weaker conditions. The new
features of this paper mainly include the following aspects. Firstly, we consider the system
(1.1) in abstract space while [3, 8] talk about equations in real space (E = R). Secondly, we
obtained the positive solutions when the two parameters have different ranges. Thirdly, f1
and f2 in system (1.1)may have different properties. Fourthly, fi (i = 1, 2) in system (1.1) not
only contains x, y but also t, which is much more complicated. Finally, the main technique
used here is the fixed-point theory and a special cone is constructed to study the existence of
nontrivial solutions.

We recall some basic facts about ordered Banach spaces E. The cone P in E induces
a partial order on E, that is, x ≤ y if and only if y − x ∈ P , P is said to be normal if
there exists a positive constant N such that θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖, without loss
of generality, suppose, in present paper, the normal constantN = 1. α(·) denotes the measure
of noncompactness (cf. [10]).

Some preliminaries and a number of lemmas to the derivation of the main results are
given in Section 2, then the proofs of the theorems are given in Section 3, followed by an
example, in Section 4, to demonstrate the validity of our main results.

2. Preliminaries and Lemmas

In this paper we will consider the Banach space (E, ‖ ·‖), denote J = [0, 1] and PC2(J, E) = {x |
x′ ∈ C(J, E), x′′ is continuous at t /= tk and x′′ is left continuous at t = tk, the right limit x′′(t+k)
exists, k = 1, 2, . . . , m}. For any x ∈ PC2(J, E) we define ‖x‖1 = supt∈J‖x(t)‖ and ‖(x, y)‖2 =
‖x‖1 + ‖y‖1 for (x, y) ∈ PC2(J, E) × PC2(J, E).

For convenience, let us list the following assumption.
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(A) fi ∈ C([0, 1] × P × P, P), Ii,k ∈ C(P, P), i = 1, 2, k = 1, 2, . . . , m. For any t ∈ [0, 1]
and r > 0, f(t, Pr , Pr) = {f(t, u, v) : u, v ∈ Pr} is relatively compact in E, where
Pr = {x ∈ P | ‖x‖ ≤ r}.

Lemma 2.1. Assume that αη /= 1, then for any y ∈ C[0, 1], the following boundary value problem:

−u′′′(t) = y(t), t ∈ [0, 1] \ {t1, t2, . . . , tm},
Δu′′(tk) = −Ik(u(tk)), k = 1, 2, . . . , m,

u(0) = u′(0) = θ, u′(1) − αu′(η) = θ
(2.1)

has a unique solution

u(t) =
∫1

0
G(t, s)y(s)ds +

m∑

k=1

G(t, tk)Ik(u(tk)), (2.2)

where

G(t, s) =
1

2
(
1 − αη)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
2ts − s2)(1 − αη) + t2s(α − 1), s ≤ min

{
η, t
}
,

t2
(
1 − αη) + t2s(α − 1), t ≤ s ≤ η,

(
2ts − s2)(1 − αη) + t2(αη − s), η ≤ s ≤ t,
t2(1 − s), max

{
η, t
} ≤ s.

(2.3)

Proof. The proof is similar to Lemma 2.2 in [3], we omit it.

Lemma 2.2 (see [3]). Assume that 0 < η < 1 and 1 < α < 1/η. Then 0 ≤ G(t, s) ≤ g(s) for any
(t, s) ∈ [0, 1] × [0, 1], where g(s) = ((1 + α)/(1 − αη))s(1 − s), s ∈ [0, 1].

Lemma 2.3 (see [3]). Let 0 < η < 1 and 1 < α < 1/η, then for any (t, s) ∈ [η/α, η] × [0, 1],
G(t, s) ≥ σg(s), where

0 < σ =
η2

2α2(1 + α)
min{α − 1, 1} < 1. (2.4)

In the paper, we define cone K as follows:

K =
{
x ∈ PC2(J, E) | x(t) ≥ θ, x(t) ≥ σx(s), t ∈

[η
α
, η
]
, s ∈ [0, 1]

}
. (2.5)

Lemma 2.4 (see [10]). Let E be a Banach space and K ⊂ E be a cone. Suppose Ω1 and Ω2 ∈ E are
bounded open sets, θ ∈ Ω1, Ω1 ⊂ Ω2, A : K ∩ (Ω2 \ Ω1) → K is completely continuous such that
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either

(i) ‖Au‖ ≤ ‖u‖ for any u ∈ K ∩ ∂Ω1 and ‖Au‖ ≥ ‖u‖ for any u ∈ K ∩ ∂Ω2 or

(ii) ‖Au‖ ≥ ‖u‖ for any u ∈ K ∩ ∂Ω1 and ‖Au‖ ≤ ‖u‖ for any u ∈ K ∩ ∂Ω2.

Then A has a fixed-point in K ∩ (Ω2 \Ω1).

Lemma 2.5. The vector (x, y) ∈ PC2(J, E) × PC2(J, E) is a solution of differential systems (1.1) if
and only if (x, y) ∈ PC2(J, E) is the solution of the following integral systems:

x(t) = λ
∫1

0
G(t, s)f1

(
s, x(s), y(s)

)
ds +

m∑

k=1

G(t, tk)I1,k(x(tk)),

y(t) = μ
∫1

0
G(t, s)f2

(
s, x(s), y(s)

)
ds +

m∑

k=1

G(t, tk)I2,k
(
y(tk)

)
.

(2.6)

Define operators T1 : K → K, T2 : K → K and T : K ×K → K ×K as follows:

T1
(
x, y
)
= λ
∫1

0
G(t, s)f1

(
s, x(s), y(s)

)
ds +

m∑

k=1

G(t, tk)I1,k(x(tk)),

T2
(
x, y
)
= μ
∫ 1

0
G(t, s)f2

(
s, x(s), y(s)

)
ds +

m∑

k=1

G(t, tk)I2,k
(
y(tk)

)
,

T
(
x, y
)
(t) =

(
T1
(
x, y
)
, T2
(
x, y
))
(t).

(2.7)

As we know, BVP (1.1) has a positive solution (x, y) if and only if (x, y) ∈ K ×K is the fixed-point
of T .

Lemma 2.6. T : K ×K → K ×K is completely continuous.

Proof. By condition (A) we get T1(x, y)(t) ≥ θ, T2(x, y)(t) ≥ θ, for all x, y ∈ K. For any
t ∈ [η/α, η], we have

T1
(
x, y
)
(t) =

∫1

0
G(t, s)f1

(
s, x(s), y(s)

)
ds +

m∑

k=1

G(t, tk)I1,k(x(tk))

≥ σ
∫1

0
g(s)f1

(
s, x(s), y(s)

)
ds + σ

m∑

k=1

g(tk)I1,k(x(tk))

≥ σ
∫1

0
G(u, s)f1

(
s, x(s), y(s)

)
ds + σ

m∑

k=1

G(u, tk)I1,k(x(tk))

= σT1
(
x, y
)
(u), u ∈ [0, 1].

(2.8)
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Similarly

T2
(
x, y
)
(t) ≥ σT2

(
x, y
)
(u), u ∈ [0, 1]. (2.9)

So T : K ×K → K ×K.
Next, we prove T : K ×K → K ×K is completely continuous. We first prove that T1 is

continuous. Let (xn, yn) ∈ K(n = 1, 2, . . .) and (x0, y0) ∈ K such that ‖(xn, yn) − (x0, y0)‖2 →
0 (n → ∞). Let r = supn‖(xn, yn)‖2, then

∥∥(x0, y0)
∥∥
2 ≤ r, ‖x0‖1 ≤ r,

∥∥y0
∥∥
1 ≤ r, ‖xn‖1 ≤ r,

∥∥yn
∥∥
1 ≤ r. (2.10)

By (A), we obtain

fi
(
t, xn(t), yn(t)

) −→ fi
(
t, x0(t), y0(t)

)
, (n −→ ∞), for any t ∈ [0, 1], i = 1, 2,

I1,k(xn(tk)) −→ I1,k(x0(tk)), (n −→ ∞), k = 1, 2, . . . , m,

I2,k
(
yn(tk)

) −→ I2,k
(
y0(tk)

)
, (n −→ ∞), k = 1, 2, . . . , m.

(2.11)

Hence

∥∥T1
(
xn, yn

)
(t) − T1

(
x0, y0

)
(t)
∥∥

=

∥∥∥∥
∥

∫1

0
G(t, s)f1

(
s, xn(s), yn(s)

)
ds +

m∑

k=1

G(t, tk)I1,k(xn(tk))

−
∫1

0
G(t, s)f1

(
s, x0(s), y0(s)

)
ds −

m∑

k=1

G(t, tk)I1,k(x0(tk))

∥
∥∥∥
∥

≤
∫1

0
G(t, s)

∥∥f1
(
s, xn(s), yn(s)

) − f1
(
s, x0(s), y0(s)

)∥∥ds

+
m∑

k=1

G(t, tk)‖I1,k(xn(tk)) − I1,k(x0(tk))‖

≤
∫1

0
g(s)

∥∥f1
(
s, xn(s), yn(s)

) − f1
(
s, x0(s), y0(s)

)∥∥ds

+
m∑

k=1

g(tk)‖I1,k(xn(tk)) − I1,k(x0(tk))‖.

(2.12)

Since

∥∥T1(xn, yn) − T1
(
x0, y0

)∥∥
1 = sup

t∈[0,1]

∥∥T1
(
xn, yn

)
(t) − T1

(
x0, y0

)
(t)
∥∥. (2.13)
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By (2.11)–(2.13) and Lebesgue-dominated convergence theorem

∥∥T1(xn, yn) − T1(x0, y0)
∥∥
1 −→ 0 (n −→ ∞). (2.14)

So T1 is continuous. Similarly, T2 is continuous. It follows that T is continuous.
Next we prove T is compact. Let V = {(xn, yn)} ⊂ K × K be bounded, V1 = {xn} and

V2 = {yn}. Let ‖(xn, yn)‖2 ≤ r for some r > 0, then ‖xn‖1 ≤ r, ‖yn‖1 ≤ r. It is easy to see that
{T1(xn, yn)(t)} is equicontinuous. By condition (A) we have

α((T1V )(t)) = α

{∫1

0
G(t, s)f1

(
s, xn(s), yn(s)

)
ds +

m∑

k=1

G(t, tk)I1,k(xn(tk)) : xn ∈ V1, yn ∈ V2

}

≤ 2
∫1

0
α
(
G(t, s)f1(s, V1(s), V2(s))

)
+

m∑

k=1

α(G(t, tk))I1,k(V1(tk))

= 0
(2.15)

which implies that α(T1V ) = 0. So, α(TV ) = 0, it follows that T is compact. The lemma is
proved.

In this paper, denote

f
β

i = lim sup
‖x‖+‖y‖→ β

max
t∈[0,1]

∥∥f
(
t, x, y

)∥∥

‖x‖ + ∥∥y∥∥ , fi,β = lim inf
‖x‖+‖y‖→ β

min
t∈[η/α,η]

∥∥f
(
t, x, y

)∥∥

‖x‖ + ∥∥y∥∥ ,

(
ψfi
)β = lim sup

‖x‖+‖y‖→ β

max
t∈[0,1]

ψ
(
f
(
t, x, y

))

‖x‖ + ∥∥y∥∥ ,
(
ψfi
)
β
= lim inf

‖x‖+‖y‖→ β
min

t∈[η/α,η]
ψ
(
f
(
t, x, y

))

‖x‖ + ∥∥y∥∥ .

Ii,β(k) = lim inf
‖x‖→ β

‖Ii,k(x)‖
‖x‖ , I

β

i (k) = lim sup
‖x‖→ β

‖Ii,k(x)‖
‖x‖ , k = 1, 2, . . . , m.

(2.16)

where β = 0 or β = +∞, ψ ∈ P ∗ = {ψ ∈ E∗ : ψ(x) ≥ θ, ∀x ∈ P} and ‖ψ‖ = 1. P ∗ is a dual cone
of P .

We list the assumptions:

(H1) (ψf1)0 > m1, ψ(f2)∞ > m2, wherem1, m2 ∈ (0,+∞);

(H2) f0
i < m3, (ψf1)∞ > m4, Ii,0(k) = 0, i = 1, 2, wherem3, m4 > 0 andm3 
 m4;

(H3) (ψf1)0 > m5, f∞
i < m6, I∞i (k) = 0, i = 1, 2, wherem5, m6 > 0 andm6 
 m5.
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For convenience, denote

a1 =
1
4

(

m3

∫1

0
g(s)ds

)−1
, α2 =

(

m4σ

∫η

α/η

G(η, s)ds

)−1
,

a3 =

(

m5σ

∫η

η/α

G(η, s)ds

)−1
, α4 =

1
4

(

m6

∫1

0
g(s)ds

)−1
.

(2.17)

3. Main Results

Theorem 3.1. Assume that (A), (H1) and the following condition (H)′ hold, then BVP (1.1) has at
least two positive solution while λ ∈ (0, 1/(4M1

∫1
0 g(s)ds)) and μ ∈ (0, 1/(4M2

∫1
0 g(s)ds)).

(H)′: m1λσ
∫η
η/α

G(η, s)ds ≥ 1; m2μσ
∫η
η/α

G(η, s)ds ≥ 1;
∑2

i=1
∑m

k=1 g(tk)Mi,k < 1/2, where
Mi = maxt∈[0,1], 0≤‖u‖+‖v‖≤1‖fi(t, u, v)‖ > 0,Mi,k = max0≤‖u‖≤1{‖Ii,k(u)‖}.

Proof. LetΩ1 = {(x, y) ∈ K ×K : ‖(x, y)‖2 < 1}, then for (x, y) ∈ ∂Ω1, we have

∥
∥T1
(
x, y
)
(t)
∥
∥ ≤
∥∥∥∥
∥
λ

∫1

0
g(s)f1

(
x(s), y(s)

)
ds

∥∥∥∥
∥
+

∥∥∥∥
∥

m∑

k=1

g(tk)I1,k(x(tk))

∥∥∥∥
∥

≤ λM1

∫1

0
g(s)ds +

m∑

k=1

g(tk)M1,k,

(3.1)

that is,

∥∥T1(x, y)
∥∥
1 ≤ λM1

∫1

0
g(s)ds +

m∑

k=1

g(tk)M1,k, (3.2)

Similarly

∥∥T2(x, y)
∥∥
1 ≤ M2μ

∫1

0
g(s)ds +

m∑

k=1

g(tk)M2,k. (3.3)

So

∥
∥T(x, y)

∥
∥
2 ≤
(
λM1 + μM2

)
∫1

0
g(s)ds +

2∑

i=1

m∑

k=1

g(tk)Mi,k

< 1 =
∥∥(x, y)

∥∥
2.

(3.4)

Hence

∥
∥T(x, y)

∥
∥
2 <
∥
∥(x, y)

∥
∥
2, for any

(
x, y
) ∈ ∂Ω1. (3.5)
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Since (ψf1)0 > m1, there exist ε1 > 0 and 0 < R1 < 1 such that ψ(f1(t, u, v)) ≥ (m1 +
ε1)(‖u‖+‖v‖) for 0 ≤ ‖u‖+‖v‖ ≤ R1 and t ∈ [η/α, η]. LetΩ2 = {(x, y) ∈ K×K : ‖(x, y)‖2 < R1}.
Then for any (x, y) ∈ ∂Ω2, by (H1) and the definition of ψ, we obtain

∥
∥T1(x, y)

∥
∥
1 ≥ ψ

((
T1
(
x, y
))(

η
)) ≥ λ

∫η

η/α

G
(
η, s
)
ψ
(
f1
(
t, x(s), y(s)

))
ds

≥ (m1 + ε1)λσ
∫η

η/α

G
(
η, s
)(‖x‖1 +

∥∥y
∥∥
1

)
ds

= R1(m1 + ε1)λσ
∫η

η/α

G
(
η, s
)
ds.

(3.6)

By (3.6) and (H)′

∥∥T(x, y)
∥∥
2 ≥
∥∥T1(x, y)

∥∥
1 ≥ R1(m1 + ε1)λσ

∫η

η/α

G
(
η, s
)
ds

> R1 =
∥∥(x, y)

∥∥
2,

(
x, y
) ∈ ∂Ω2,

(3.7)

Similarly, by (ψf2)∞ > m2, there exist ε2 > 0 and R2 > 1 such that ψ(f2(t, u, v)) ≥
(m2 + ε2)(‖u‖ + ‖v‖) for t ∈ [η/α, η] and u, v ∈ P with 0 ≤ ‖u‖ + ‖v‖ ≤ R2. Let Ω3 = {(x, y) ∈
K ×K : ‖(x, y)‖2 < R2}. Then for any (x, y) ∈ ∂Ω3,

∥∥T2(x, y)
∥∥
1 ≥ R2μ(m2 + ε2)σ

∫η

η/α

G
(
η, s
)
ds. (3.8)

So we have by (3.8) and (H)′

∥∥T(x, y)
∥∥
2 ≥
∥∥T2(x, y)

∥∥
1 > R2 =

∥∥(x, y)
∥∥
2, for any

(
x, y
) ∈ ∂Ω3. (3.9)

By (3.5), (3.7), (3.9) and Lemma 2.4 we get that BVP (1.1) has at least two positive solutions
with ‖(x1, y1)‖2 < 1 < ‖(x2, y2)‖2.

Corollary 3.2. Assume that (A) and the following condition hold, then the conclusion of Theorem 3.1
also holds.

(
ψf1
)
0 > m1, ψ

(
f2
)
∞ > m2, where m1, m2 ∈ (0,+∞). (3.10)

Theorem 3.3. Assume that (A) and (H2) hold, then BVP (1.1) has at least one positive solution when
λ ∈ [a2, a1] and μ ∈ (0, a1].

Proof. By Lemma 2.6, we see that T : K × K → K × K is completely continuous. By (H2),
there exists r1 > 0, ε3 > 0, ε > 0 such that for i = 1, 2,

∥
∥fi
(
t, x(t), y(t)

)∥∥ ≤ (m3 − ε3)
(‖x(t)‖ + ∥∥y(t)∥∥), ‖Ii,k(x(tk))‖ ≤ ε‖x(tk)‖, (3.11)



Advances in Difference Equations 9

for any x, y ∈ K with 0 ≤ ‖x‖1 + ‖y‖1 ≤ r1, wherem3 − ε3 > 0, ε > 0 such that

ε
m∑

k=1

g(tk) ≤ 1
2
. (3.12)

Let Ω4 = {(x, y) ∈ K ×K : ‖(x, y)‖2 < r1}. Then for any (x, y) ∈ ∂Ω4, we obtain

∥∥T1
(
x, y
)
(t)
∥∥ =

∥∥
∥∥∥
λ

∫1

0
G(t, s)f1

(
s, x(s), y(s)

)
ds +

m∑

k=1

G(t, tk)I1,k(x(tk))

∥∥
∥∥∥

≤ λ
∥∥∥
∥∥

∫1

0
g(s)f1

(
s, x(s), y(s)

)
ds

∥∥∥
∥∥
+

∥∥∥
∥∥

m∑

k=1

g(tk)I1,k(x(tk))

∥∥∥
∥∥

≤ λ(m3 − ε3)
∫1

0
g(s)ds

(‖x(t)‖ + ∥∥y(t)∥∥) + ε
m∑

k=1

g(tk)‖x(tk)‖

≤ λ(m3 − ε3)
∫1

0
g(s)ds

(‖x‖1 +
∥
∥y
∥
∥
1

)
+ ε

m∑

k=1

g(tk)‖x‖1

= λ(m3 − ε3)r1
∫1

0
g(s)ds + ε

m∑

k=1

g(tk)‖x‖1

≤ 1
4
r1 + ε

m∑

k=1

g(tk)‖x‖1,

(3.13)

Similarly

∥∥T2
(
x, y
)
(t)
∥∥ ≤ μ(m3 − ε3)r1

∫1

0
g(s)ds + ε

m∑

k=1

g(tk)
∥∥y
∥∥
1 ≤

1
4
r1 + ε

m∑

k=1

g(tk)
∥∥y
∥∥
1. (3.14)

It follows that

∥∥T(x, y)
∥∥
2 =
∥∥T1(x, y)

∥∥
1 +
∥∥T2(x, y)

∥∥
1 ≤ r1 =

∥∥(x, y)
∥∥
2, (3.15)

which implies

∥
∥T(x, y)

∥
∥
2 ≤
∥
∥(x, y)

∥
∥
2, for any

(
x, y
) ∈ ∂Ω4. (3.16)

On the other hand, by (ψf1)∞ > m4, there exists R > 0, ε4 > 0 such that ψ(f1(t, x(t), y(t))) ≥
(m4 + ε4)(‖x(t)‖ + ‖y(t)‖) for ‖x‖1 + ‖y‖1 > R and t ∈ [η/α, η]. Let R1 = max{2r1, R/σ},
Ω5 = {(x, y) ∈ K ×K : ‖(x, y)‖2 < R1}. For any (x, y) ∈ ∂Ω5, we have

x(t) ≥ σx(s), y(t) ≥ σy(s), ‖x(t)‖ ≥ σ‖x(s)‖,
∥∥y(t)

∥∥ ≥ σ∥∥y(s)∥∥, t ∈
[η
α
, η
]
, s ∈ [0, 1].

(3.17)
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By the definition of T1 we get

∥∥T1(x, y)
∥∥
1 ≥ ψ

((
T1
(
x, y
))(

η
)) ≥ λ

∫η

η/α

G
(
η, s
)
ψ
(
f1
(
t, x(s), y(s)

))
ds

≥ λ(m4 + ε4)
∫η

η/α

G
(
η, s
)(‖x(s)‖ + ∥∥y(s)∥∥)ds

≥ λ(m4 + ε4)σ
∫η

η/α

G
(
η, s
)(‖x(u)‖ + ∥∥y(u)∥∥)ds.

(3.18)

So

∥∥T1(x, y)
∥∥
1 ≥ λ(m4 + ε4)σ

∫η

η/α

G
(
η, s
)(‖x‖1 +

∥∥y
∥∥
1

)
ds = R1λ(m4 + ε4)σ

∫η

η/α

G
(
η, s
)
ds.

(3.19)

Hence

∥
∥T(x, y)

∥
∥
2 ≥
∥
∥T1(x, y)

∥
∥
1 ≥ R1λ(m4 + ε4)σ

∫η

η/α

G
(
η, s
)
ds ≥ R1 =

∥
∥(x, y

)∥∥
2. (3.20)

Therefore

∥∥T(x, y)
∥∥
2 ≥
∥∥(x, y)

∥∥
2, ∀(x, y) ∈ ∂Ω5. (3.21)

By (3.16), (3.21) and Lemma 2.4, it is easily seen that T has a fixed-point (x∗, y∗) ∈ (Ω5 \
Ω4).

Corollary 3.4. Let (A) and the following conditions hold, then BVP (1.1) has at least one positive
solution while μ ∈ [a2, a1] and λ ∈ (0, a1].

f0
i < m3,

(
ψf2
)
∞ > m4, Ii,0(k) = 0, i = 1, 2. (3.22)

Theorem 3.5. Let (A) and (H3) hold, then BVP (1.1) has at least one positive solution while λ ∈
[a3, a4] and μ ∈ (0, a4].
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Proof. Since (ψf1)0 > m5, we chooseR3 > 0, ε5 > 0 such that ψ(fi(t, u, v)) ≥ (m5+ε5)(‖u‖+‖v‖)
for 0 ≤ ‖u‖ + ‖v‖ ≤ R3 and t ∈ [η/α, η]. Let Ω6 = {(x, y) ∈ K ×K : ‖(x, y)‖2 < R3}. Then for
any (x, y) ∈ ∂Ω6,

∥
∥T1(x, y)

∥
∥
1 ≥ ψ

((
T1
(
x, y
))(

η
)) ≥ λ

∫η

η/α

G
(
η, s
)
ψ
(
f1
(
t, x(s), y(s)

))
ds

≥ λ(m5 + ε5)σ
∫η

η/α

G
(
η, s
)(‖x‖1 +

∥∥y
∥∥
1

)
ds

= R2λ(m5 + ε5)σ
∫η

η/α

G
(
η, s
)
ds.

(3.23)

So

∥
∥T(x, y)

∥
∥
2 =
∥
∥T1(x, y)

∥
∥
1 +
∥
∥T2(x, y)

∥
∥
1 ≥
∥
∥T1(x, y)

∥
∥
1

≥ R3λ(m5 + ε5)σ
∫η

η/α

G
(
η, s
)
ds

≥ R3,

(3.24)

which implies

∥∥T(x, y)
∥∥
2 ≥
∥∥(x, y)

∥∥
2, ∀(x, y) ∈ ∂Ω6. (3.25)

On the other hand, by f∞
i < m6 and I∞i (k) = 0 (i = 1, 2), there existM > 0, ε6 > 0, ε > 0 such

thatm6 − ε6 > 0 and

∥∥fi
(
t, x(t), y(t)

)∥∥ ≤ (m6 − ε6)
(‖x(t)‖ + ∥∥y(t)∥∥), ‖Ii,k(x(tk))‖ ≤ ε‖x(tk)‖,

for any ‖x‖1 +
∥
∥y
∥
∥
1 =
∥
∥(x, y)

∥
∥
2 ≥M, t ∈ [0, 1],

(3.26)

where ε satisfies

ε
m∑

k=1

g(tk) ≤ 1
2
. (3.27)
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Let R4 = max{M, 2R3} and Ω7 = {(x, y) | (x, y) ∈ K × K : ‖(x, y)‖2 < R4}. Then for any
(x, y) ∈ ∂Ω7, we have

∥∥T1
(
x, y
)
(t)
∥∥ =

∥∥∥
∥∥
λ

∫1

0
G(t, s)f1

(
s, x(s), y(s)

)
ds +

m∑

k=1

G(t, tk)I1,k(x(tk))

∥∥∥
∥∥

≤ λ
∥
∥∥∥
∥

∫1

0
g(s)f1

(
s, x(s), y(s)

)
ds

∥
∥∥∥
∥
+

∥
∥∥∥
∥

m∑

k=1

g(tk)I1,k(x(tk))

∥
∥∥∥
∥

≤ λ(m6 − ε6)
∫1

0
g(s)ds

(‖x(t)‖ + ∥∥y(t)∥∥) + ε
m∑

k=1

g(tk)‖x(tk)‖

≤ λ(m6 − ε6)
∫1

0
g(s)ds

(‖x‖1 +
∥∥y
∥∥
1

)
+ ε

m∑

k=1

g(tk)‖x‖1

= λ(m6 − ε6)R4

∫1

0
g(s)ds + ε

m∑

k=1

g(tk)‖x‖1

≤ 1
4
R4 + ε

m∑

k=1

g(tk)‖x‖1.

(3.28)

Similarly

∥
∥T2
(
x, y
)
(t)
∥
∥ ≤ μ(m6 − ε6)R4

∫1

0
g(s)ds + ε

m∑

k=1

g(tk)
∥
∥y
∥
∥
1

≤ 1
4
R4 + ε

m∑

k=1

g(tk)
∥
∥y
∥
∥
1.

(3.29)

Hence

∥
∥T(x, y)

∥
∥
2 ≤

1
2
R4 + εR4

m∑

k=1

g(tk) ≤ R4 =
∥
∥(x, y

)∥∥
2. (3.30)

So

∥∥T(x, y)
∥∥
2 ≤
∥∥(x, y)

∥∥
2, ∀(x, y) ∈ ∂Ω7. (3.31)

By (3.25), (3.31), and Lemma 2.4, T has a fixed-point (x∗, y∗) ∈ (Ω7 \Ω6).

Corollary 3.6. Assume that (A) and the following conditions hold, then BVP (1.1) has at least one
positive solution while μ ∈ [a3, a4] and λ ∈ (0, a4].

(
ψf2
)
0 > m5, f∞

i < m6, I∞i (k) = 0, i = 1, 2. (3.32)
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4. An Example

In this section, we construct an example to demonstrate the application of our main results
obtained in Section 3. Consider the following third-order boundary value problem:

−x′′′n (t) = λt2e−t
(
xn(t) + yn(t)

)2
,

−y′′′
n (t) = μt

2e−t
(
xn(t) + yn(t)

)2
,

Δx′′n

(
1
3

)
= −x4n

(
1
3

)
, Δy′′

n

(
1
3

)
= −y4

n

(
1
3

)
,

Δxn(0) = x′n(0) = θ, x′n(1) − 2x′n

(
2
5

)
= θ,

yn(0) = y′
n(0) = θ, y′

n(1) − 2y′
n

(
2
5

)
= θ.

(4.1)

Conclusion 1. BVP(4.1) has at least one positive solution.

Proof. E = Rm = {x = (x1, x2, . . . , xm), xn ∈ R, n = 1, 2, . . . , m}. Define ‖x‖ = max1≤n≤m|xn|.
P = {x ∈ E : xi > 0, i = 1, 2, . . . , m}. x = (x1, x2, . . . , xm), f = (f1, f2, . . . , fm). gn =
fn = t2e−t(xn(t) + yn(t))2, we know that P ∗ = P , let ψ = (1, 1, . . . , 1), then for any x ∈ P ,
ψ(f(t, x, y)) =

∑m
k=1 fn(t, x, y). It is easy to see that (A) is satisfied. On the other hand,

ψ
(
f
(
t, x, y

))

‖x‖ + ∥∥y∥∥ ≥
∥∥f
(
t, x, y

)∥∥

‖x‖ + ∥∥y∥∥ = +∞, f0 = lim sup
‖x‖+‖y‖→ 0

max
t∈[0,1]

∥∥f
(
t, x, y

)∥∥

‖x‖ + ∥∥y∥∥ = 0, (4.2)

that is, (ψf)∞ = ∞. Similarly, g0 = 0, it is easy to see that Ii,0(k) = 0, where k = 1, i = 1, 2. In
this example, α = 2, η = 2/5, σ = η2/(2α2(1 + α)) = 25/96 and

G(t, s) =
5
2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
2ts − s2)

5
+ t2s, s ≤

{
2
5
, t

}
,

(
t2 + t2s

)

5
, t ≤ s ≤ 2

5
,

(
2ts − s2)

5
+ t2
(
4
5
− s
)
,

2
5
≤ s ≤ t,

t2(1 − s), max
{
2
5
, t

}
≤ s,

(4.3)

and g(s) = (1 + α)s(1 − s)/(1 − αη) = 15s(1 − s).
Letm1 = 5, m2 = 3000. By computing, we get

a1 =
1
4

(∫1

0
5g(s)ds

)−1
=

8
25
, a2 =

4
3125

(∫2/5

1/5
G

(
2
5
, s

)
ds

)−1
. (4.4)
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Above all, the conditions of Theorem 3.3 are satisfied. Then for any λ ∈ [a2,+∞) and μ ∈
(0, a1], BVP (4.1) has at least one positive solution.
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