Hindawi Publishing Corporation
Advances in Difference Equations
Volume 2011, Article ID 546038, 14 pages
doi:10.1155/2011/546038

Research Article

The Existence of Positive Solution to
a Nonlinear Fractional Differential Equation
with Integral Boundary Conditions

Meigiang Feng,' Xiaofang Liu,” and Hanying Feng?®

1 School of Applied Science, Beijing Information Science & Technology University, Beijing, 100192, China
2 Department of Mathematics, Shijiazhuang Mechanical Engineering College, Shijiazhuang 050003, China

Correspondence should be addressed to Meigiang Feng, meiqiangfeng@sina.com
Received 19 December 2010; Accepted 26 January 2011
Academic Editor: ]. J. Trujillo

Copyright © 2011 Meiqiang Feng et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

The expression and properties of Green’s function for a class of nonlinear fractional differential
equations with integral boundary conditions are studied and employed to obtain some results on
the existence of positive solutions by using fixed point theorem in cones. The proofs are based upon
the reduction of problem considered to the equivalent Fredholm integral equation of second kind.
The results significantly extend and improve many known results even for integer-order cases.

1. Introduction

Fractional calculus is an area having a long history, its infancy dates back to three hundred
years, the beginnings of classical calculus. It had attracted the interest of many old famous
mathematicians, such as L'Hospital, Leibniz, Liouville, Riemann, Griinward, Letnikov, and
so forth [1, 2]. As the old mathematicians expected, in recent several decades fractional
differential equations have been found to be a powerful tool in more and more fields, such
as materials, physics, mechanics, and engineering [1-5]. For the basic theory and recent
development of the subject, we refer the reader to a text by Lakshmikantham et al. [6]. For
more details and examples, see [7-24] and the references therein. However, the theory of
boundary value problems for nonlinear fractional differential equations is still in the initial
stages, and many aspects of this theory need to be explored. In [13], Bai and Lii used the fixed
point theorems to show the existence and multiplicity of positive solutions to the nonlinear
fractional boundary value problem

D u(t) + f(tu(t)) =0, 0<t<1,
1.1
u(0)=0, u(l)=0, -
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where 1 < a <2, D*is the standard Riemann-Liouville differentiation, and f : [0,1]x[0, c0) —
[0, 0) is a given continuous function.

In [15], Zhang showed the existence and multiplicity of positive solutions of the
fractional boundary value problem

DS u(t) = f(tu(t), 0<t<1,
1.2
u(0) +1/'(0) =0, u(l) +1/'(1) =0, (12

where 1 < a < 2is a real number, and D, is the Caputo’s fractional derivative. The function
f is continuous on [0, 1] x [0, o).

Recently, Ahmad and Nieto [11] investigated some existence results for a nonlinear
fractional integrodifferential equation with integral boundary conditions

Dix(t) + f(t,x(t), (xx)(#)) =0, 0<t<1, 1<q<2,

1

ax(0) + px'(0) = Io q1(x(s))ds, (1.3)
1

ax(1) + px'(1) = fo g2(x(s))ds,

where °D1 is the Caputo fractional derivative, f : [0,1] x X x X — X, for Y : [0,1] x [0,1] —
[0, 0),

1
(xx) = fo Y (t s)x(s), (1.4)

q1,92 : X — X, a >0, p >0 are real numbers, and X is a Banach space.
Being directly inspired by [11, 13, 15], we intend in this paper to study the following
boundary value problems of fractional order differential equation

Dg, x(t) + g(t) f(t,x) =0, 0<t<1,

1 (1.5)
x(0) =0, x'(1) = L h(t)x(t)dt,

where 1 <a <2, g € C((0,1),[0,+c0)) and g may be singular att = 0 or/and att = 1, Dy, is
the standard Riemann-Liouville differentiation, h € L![0, 1] is nonnegative, and f € C([0,1] x
[0, +00), [0, +0)).

In the case of h(t) = 0, for all t € [0,1], boundary value problem (1.5) reduces to the
problem studied by Kaufmann and Mboumi [19]. In [19], the authors used the fixed point
theorems to show sufficient conditions for the existence of at least one and at least three
positive solutions to problem (1.5). For the case of & = 2, boundary value problem (1.5) is
related to a boundary value problems of integer-order differential equation. Feng et al. [25]
considered the existence and multiplicity of positive solutions to boundary value problem
(1.5) by applying the fixed point theory in a cone for strict set contraction operators.
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The organization of this paper is as follows. We will introduce some lemmas and
notations in the rest of this section. In Section 2, we present the expression and properties of
Green’s function associated with boundary value problem (1.5). In Section 3, we give some
preliminaries about operator. In particular, we state fixed point theory in cones. In Section 4,
the main results of boundary value problem (1.5) will be stated and proved. In Section 5,
we offer some interesting discussion of the associated boundary value problem (1.5). Finally,
conclusions in Section 6 close the paper.

The fractional differential equations-related notations adopted in this paper can be
found, if not explained specifically, in almost all literature related to fractional differential
equations. The readers who are unfamiliar with this area can consult for example [1-6] for
details.

Definition 1.1 (see [4]). The integral

« L~ f®
IS, f(x) = (@) fo P dt, x>0, (1.6)

where a > 0 is called Riemann-Liouville fractional integral of order a.
Definition 1.2 (see [4]). For a function f(x) given in the interval [0, 1), the expression

D5,/ = o (1) | L e (17)

0 (x _ t)u—n+1 4

where n = [a] + 1, [a] denotes the integer part of number «, is called the Riemann-Liouville
fractional derivative of order a.

Lemma 1.3 (see [13]). Assume that u € C(0,1) N L(0, 1) with a fractional derivative of order a > 0
that belongs tou € C(0,1) N L(0,1). Then

I§,. DS u(t) = u(t) + Cit* 1 + Cot* 2 + - + Cnt* N, (1.8)

forsome C; € R, i=1,2,...,N, where N is the smallest integer greater than or equal to a.

2. Expression and Properties of Green’s Function

In this section, we present the expression and properties of Green’s function associated with
boundary value problem (1.5).

Lemma 2.1. Assume that fé h()t*tdt #a — 1. Then for any y € C[0,1], the unique solution of
boundary value problem

Di,x(t)+y() =0, O0<t<l,

1 (2.1)
x(0)=0, x(1)= L h(t)x(t)dt,
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is given by
1
x(t) = j G(t,s)y(s)ds, (2.2)
0
where
G(tr S) = Gl (tl S) + GZ(t/ S)/ (23)
t"“l(l—s)”‘_Z—(t—s)”‘_ll D<s<t<l
I'(a)
Gi(t,s) = PEPR , (2.4)
a-1(1 = g)%~
T, 0<t<s<l,
Ga(t,s) = il I h(t)Gy(t, s)dt. (2.5)
a-1- fo h(t)te-1dt

Proof. By Lemma 1.3, we can reduce the equation of problem (2.1) to an equivalent integral
equation

t
x(t) =I5, y(t) + it opt*? = —ﬁ f (t- s)“_ly(s)ds + ot 4 ot 2 (2.6)
0
By x(0) = 0, there is ¢; = 0, and
x'(t) = (t— $) 2y (s)ds + c1(a — 1)t°72, (2.7)

r()

By (2.7) and x'(1) = jé h(t)x(t)dt, we have
! -2
= —5)* 2.8
Jo h(t)x(t)dt F( ) J (1-9)"y(s)ds+c1(a—1), (2.8)
which yields that

1
€ =—— J‘o h(t)x(t)dt + — ) J‘ (1-5)"y(s)ds. (2.9)
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Therefore, the unique solution of BVP (2.1) is

1

1 t 1 1 1
x(t) = @ fo (t—s)"'y(s)ds + t*! { — fo h(t)x(t)dt + ) J; (1- s)“_2y(s)ds}

1 ta—l 1
:f Gi(t,s)y(s)ds + f h(t)x(t)dt,
0

a-1),

where G (t, s) is defined by (2.4).
Multiplying (2.10) with h(t) and integrating it, we can see

[y h(tyttat (1
e

1 1 1
f h(t)x(t)dtzf h(t)j Gi(t, s)y(s)dsdt + -
0 0 -

0

h(t)x(t)dt.
0

Therefore,

J‘1 h(t)x(t)dt = ! J‘l h(t) jl Gi(t, s)y(s)dsdt.
0 0

1- [y h(tt=1dt/ (a— 1) Jo

Substituting (2.12) into (2.10), we obtain

ta—l 1
) J'O h(t)x()dt

o —

1
x(t) = J‘o Gi(t,s)y(s)ds +

1 P 1 1
=f Gi(t,s)y(s)ds + e ! J‘ h(t)f Gi(t,s)y(s)dsdt
0 0

a=11_(Tht)te1dt/(a-1) Jo
1 1

= J‘ Gl (t, S)y(s)ds + J‘ Gz(t/ S)y(s)ds
0 0

= jl G(t, s)y(s)ds,
0

(2.10)

(2.11)

(2.12)

(2.13)

where G(t,s), G1(t, s), and G (¢, s) are defined by (2.3), (2.4), and (2.5), respectively. The proof

is complete.

O

From (2.3), (2.4), and (2.5), we can prove that G(t,s), Gi(t,s), and G,(t,s) have the

following properties.
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Proposition 2.2. The function G (t, s) defined by (2.4) satisfies the following.
(i) Gi1(t, s) > 0is continuous for all t,s € [0,1], Gi(t,s) >0, forall t,s € (0,1);
(ii) Gi(t,s) < Gi(s,s) = s V(1 —8)*?/T(a), forall t € [0,1], s € (0,1).

Proof. (i) It is obvious that G;(t, s) is continuous on [0,1] x [0,1]. For0<s <t <1,

a— a-1
ta-lu_s)“-z—(t—s)“‘l=(1—s)“‘1[f 1—(“—5) ]zo. (2.14)

-s 1-s
So, by (2.4), we have
Gi(t,s) >0, Vt,se]0,1]. (2.15)

Similarly, for ¢, s € (0,1), we have Gi(t,s) > 0.
(ii) Since a < 2, for given s € (0,1), s <t < 1, we have

t> i_ ° (2.16)
—S
a-2
152 < ( = S) . (2.17)
1-s

Therefore, from (2.17) and the definition of Gi(t, s), for given s € (0,1), s <t < 1, we have

0Gi(t,s) a-1
ot  T(a)

a1 wo [ nn t—s\*? (2.18)
_m(l—s) Z{t 2—<1_S> }

<0.

{ta—Z(l _ s)afz . S)a—2}

On the other hand, it is clear that

G (t,s) (a—1)tr2(1—s)">
= > <t<s<l. 2.19
o @) >0, V0<t<s<l1 (2.19)

Therefore, we have

s (1 -5)"2

maﬁ Gi(t,s) = Gi(s,s) = T@

te[0,

, s€(0,1). (2.20)

Let

1
Y= J h(t)t*dt. (2.21)
0



Advances in Difference Equations 7

Proposition 2.3. If p € [0, @ — 1), then one has
(i) Ga(t, s) > 0is continuous for all t,s € [0,1], Go(t,s) >0, forall t,s € (0,1);
(i) Go(t,s) < (1/(a—1-p)) jg h(t)Gi(t,s)dt, forall t € [0,1], s € (0, 1).

Proof. From the properties of Gi(t,s), and the definition of G,(t,s), we can prove that the
results of Proposition 2.3 hold. O

Theorem 2.4. If u € [0, a — 1), the function G(t, s) defined by (2.3) satisfies the following.

(i) G(t,s) > 01is continuous forall t,s € [0,1], G(t,s) >0, forall t,s € (0,1);
(ii) G(t,s) < As* (1 —s5)*2, forall t,s € [0,1], where

Ca-1-p- [ h(Hdt
© T(a)(a-1-p)

(2.22)

Proof. (i) From Propositions 2.2 and 2.3, we obtain that G(t,s) > 0 is continuous for all f, s €
[0,1], G(t,s) >0, forall t,s € (0,1).
(ii) From Proposition 2.2 and (2.3), we have

G(tl S) = Gl (t/ S) + GZ(tI S)

tafl 1
< -
<Gils,9)+ =, | MGG o)t

1
< G1 (S, S) (1 + a—i——l,l J‘O h(t)dt)

. (2.23)
a—-1-u+ |, h(t)dt
< Gl (S/ S) # IO ( )
a-1-u
s1(1-s)"2a—1-p— [) h(t)dt
I'(a) a-1-pu
= As* 1 (1-5)"2, Vt,s€][0,1].
O
Remark 2.5. From (i) of Theorem 2.4, we obtain that there exists T > 0 such that
G(t,s)>T, Vtsel6,1-0], (2.24)

where 0 € (0,1/2).

3. Preliminaries

In this section, we give some preliminaries for discussing the existence of positive solutions
of boundary value problem (1.5).
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Let J = [0,1]. The basic space used in this paper is E = C[0, 1]. It is well known that E
is a real Banach space with the norm || - || defined by ||x|| = maxo<<1|x(t)|. Let

K={x€eE:x(t)>0, te]},
(3.1)
K,={xeK:|x||<r}, O0K,={xeK:|x|=r},

where r > 0.
On the basis of Lemma 3.3 below we will establish in Section 4 the existence of positive
solution to the problem (1.5). Here we make the following hypotheses:

(H1) $€C((0,1), [0, +00)), g(t) #0 on any subinterval of (0,1) and j’; s“‘l(l—s)“_2g(t)dt <
+00;
(Hp) f € C([0,1] x [0,+00), [0, +00)) and f(t,0) = 0 uniformly with respect to t on [0, 1];
(H3) p € [0,a — 1), where yu is defined by (2.21).
DefineT : K — K by

1

(Tx) (1) =f G(t,5)g(5)f (s, x(s))ds, (32)

0

where G(t, s) is defined by (2.3).

Lemma 3.1. Let (H1)—(H3) hold. Then boundary value problems (1.5) has a solution x if and only if
x is a fixed point of T

Proof. From Lemma 2.1, we can prove the results of this Lemma. O
Lemma 3.2. Let (Hy)—(H3) hold. Then TK ¢ K and T : K — K is completely continuous.

Proof. For any x € K, by (3.2), we can obtain Tx > 0. Next by similar proof of Lemma 3.1 in
[12] and Ascoli-Arzela theorem one can prove T : K — K is completely continuous. So it is
omitted. O

Lemma 3.3 (see [26]). Let Q1 and Q, be two bounded open sets in a real Banach space E, such that
0€Qand Q C Q. Let operator A : PN (ﬁz \ Q1) — P be completely continuous, where P is a
cone in E. Suppose that one of the following two conditions is satisfied.

(i) There exists xq € P\ {0} such that x — Ax #txg, for all x € PN 0Ly, t > 0; Ax # ux, for
allx e PNoQq, u>1.

(ii) There exists xg € P\ {0} such that x — Ax #txo, for all x € PN 0Q, t > 0; Ax # px, for
allxePﬂ@Qz,‘uz 1.

Then, A has at least one fixed point in P 0 (Q, \ Q1).

4. Existence of Positive Solutions

In this section, we apply Lemma 3.3 to establish the existence of positive solutions for
boundary value problems (1.5).
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Theorem 4.1. Suppose (H1)— (Hz) and f satisfies the following conditions.

(Hy) There exists 0 < 6 < 1 such that 0 < lim infy_,o-mine[o,1](f (£, x) /x%) < +oo;

(Hs) There exists 0 < f < 1 such that 0 < limsup, _, , maX[o] (f(t,x)/xP) < +oo.

Then boundary value problems (1.5) has at least one positive solution.

Proof. For applying Lemma 3.3, we construct a function w : [0,1] — Rvia

1, te[6,1-0],
0 [ 1%,
t) = 4 [ 4.1
VOIS 0), e[, =
81219, e fiog1- )

Obviously, w is a nonnegative continuous function, that is, w € K, and [|w|| = 1.
Suppose that there is £; > 0 such that

x-Tx#0 (VxeK, 0<|x| <e1), (4.2)

if not, then the conclusion holds. The condition (Hy) and f(¢,0) = 0 imply that there exist
o >0, & > 0 such that

f(t,x) >0x® (0<x<e). (4.3)

1/(1-6) |

Let £3 = min{ey, &, (TO f;fe g(s)ds) ,and choose 0 < 7 < £3. We now show that

x-Tx#iw (Vx€0K,, ¢>0). (4.4)

In fact, if there exist x; € 0K, {1 > 0 such that x; — Tx; = {;w, then (4.4) implies that
¢1 > 0. On the other hand, x; = { 1w +Tx; > {w. So we can choose ¢* = sup{¢ | x1 > tw}, then
$1 < ¢* < +00, x1 > {*w. Therefore,

1-0 1/(1-6)
= lwll <llxll=r<es< <m g(s)ds> : (4.5)
0
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Consequently, for any t € [0,1 - 0], (2.24) and (4.3) imply

1
x1(t) = Io G(t,5)g(s)f(s,x1(s))ds + Grw(t)

1
> fo G(t,5)g(s)olx1(5)]°ds + Grw(t)

1-6
2 L G(t,5)(5)0/(¢")° [w(s)1°ds + o (t) (46)

-0
> 70(¢")° ; g(s)ds + {w(t)

2 (¢ +g)w(t),
thatis, x1(t) > (" + é1)w(t), t € [0,1 - 0]. Noticing the definition of w(t), we have
x1(t) 2 (& + G)w(t), te[0,1], (4.7)

which is a contradiction to the definition of {*. Hence, (4.4) holds.
Now turning to (Hs), there exist m > 0, ¢4 > 0, for t € [0,1], x > &4, such that f(f,x) <

_____

0< f(t,x) <mxP +1, Vte[0,1], x € [0,c0). (4.8)

Choosing R > &4 such that

IAM  mAM

el 4,
R + Ri7 <1, (4.9)

where M = J’S s (1 - s)“’zg(s)ds. Now we prove that

Tx#Ax, Yxe€0OKg, A>1. (4.10)

If not, then there exist xp € 0Kg, Ao > 1 such that Txg = Agxg. By (4.8) and (ii) of Theorem 2.4,
then for any ¢ € [0, 1], we have

1

Aoxo(t) = fo G(t,5)g(s)f(s,xo(s))ds
(4.11)

1
< (l + m||x0||ﬂ>A fo s7 (1 - 5)"g(s)ds.
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So R < AgR = Ag||xo| < (I +m]||xo/P)A J‘; s 1(1 - 5)* ?g(s)ds, that is,

IAM  mAM
o e 4.12
R TR 2l (4.12)

which is a contradiction to (4.9). So, (4.10) holds.

By (ii) of Lemma 3.3, (4.4) and (4.10) yield that T has a fixed point x € K, g, 7 < ||x|| <
R. Thus it follows that boundary value problems (1.5) has at least one positive solution x
with 7 < ||x|| £ R. The proof is complete. O

5. Discussion

In this section, we offer some interesting discussion associated with boundary value problems
(1.5).

Since the proof of the main theorem (Theorem 4.1) in this paper is independent of the
expression form of G(t,s) and only dependent on its continuity and nonnegativity, there are
similar conclusions by analogous methods for boundary value problems (1.5) subject to other
boundary value conditions, respectively, the following.

(i) We have
1
x(0)=0,  «'(1) :f h(t)x'(t)dt, (5.1)
0
then
G(t,s) = Gi(t,s) + Gi(t,s), (5.2)
where
G a WOC (L s)d
5(t,s) = HG,, (¢, t,
0 (a=1)(1- Jy h(tyt=-2dt) jo OEu(l:s)
(a-1t2(1-8)"2 = (a—-1)(t-5)"> D<s<icl (5.3)
) I'(a) oo T
Cult ) = (a - 1)t*2(1 - 5)*2
@) , 0<t<s<l1

Obviously G(t,s) is continuous on [0,1] x [0,1], and it is easy to see that G(t,s) >
0, t,s € [0,1] by u* € [0,1), where

1
u= J h(t)t*2dt. (5.4)
0
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(ii) We have

1
x(0) =0, x(1) +x'(1) = f h(t)x(t)dt, (5.5)
0
then
G(t,s) = Gi(t,s) + G (t,9), (5.6)
where
1 -s) " v (a-1)A-9) "2 —a(t- s)’“l 0<s<t<i,
’ al'(a)
B I
— S o — — S
oI (@) , 0<t<s<l. (57)

ta—l

Gy'(t,s) =
2 e (a- s (=t

> I: h(t)G(t, s)dt.

Obviously G(t, s) is continuous on [0,1] x [0,1], and it is easy to see that G(t,s) > 0,
t,s € [0,1] by p € [0, a), where p is defined by (2.21).

(iii) We have

1
x(0)=0,  x(1)+x(1)= f (D)X (Hdt, (5.8)
0
then
G(t,s) = Gi(t,8) + Gy (1, 5), (5.9)
where
Gy (L, 5) e f h(B)G.(t, s)dt
,S) = ,S)at,
? (a-1)(a/(a~1) - [y h(a-2ar) Jo "
(a-Dt"2(1 -9 = (a=1)a(t — 5)* > D<cscicl (5.10)
al(a) ’ - ’
Gi(t,9) = r
(@—1)2(1 - 5)" D<icoct

al'(a)

Obviously G(t,s) is continuous on [0,1] x [0,1], and it is easy to see that G(t,s) >
0, t,s€[0,1] by u* € [0,a/(a — 1)), where p* is defined in (5.4).



Advances in Difference Equations 13

6. Conclusions

In this paper, by using the fixed point theorem of cone, we have investigated the existence
of positive solutions for a class of nonlinear fractional differential equations with integral
boundary conditions and have obtained some easily verifiable sufficient criteria which extend
previous results. It is worth mentioning that there are still many problems that remain open
in this vital field other than the results obtained in this paper: for example, whether or not we
can study the fractional differential equations with integral boundary conditions at resonance
(see, e.g., [27]), and whether or not we can give a unified approach applicable to many BVPs
(see, e.g., [28-31]). More efforts are still needed in the future.
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