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We review recent developments in noncommutative deformations of instantons in R
4. In the

operator formalism, we study how to make noncommutative instantons by using the ADHM
method, and we review the relation between topological charges and noncommutativity. In
the ADHM methods, there exist instantons whose commutative limits are singular. We review
smooth noncommutative deformations of instantons, spinor zero-modes, the Green’s functions,
and the ADHM constructions from commutative ones that have no singularities. It is found
that the instanton charges of these noncommutative instanton solutions coincide with the
instanton charges of commutative instantons before noncommutative deformation. These smooth
deformations are the latest developments in noncommutative gauge theories, and we can extend
the procedure to other types of solitons. As an example, vortex deformations are studied.

1. Introduction

Instantons in commutative space are one of the most important objects for nonperturbative
analysis. We can overview them for example in [1] from the physicist’s view points or in
[2] from mathematical view points. See for example [3] for recent developments of them.
Noncommutative (NC for short) instantons were discovered by Nekrasov and Schwarz [4].
After [4], NC instantons have been investigated by many physicists and mathematicians.
However, many enigmas are left until now. Let us focus into instantons of U(N) gauge
theories in NC R

4 and understand what is clarified and what is unknown.
Instanton connections in the 4-dim Yang-Mills theory are defined by

F+ =
1
2
(1 + ∗)F = 0, (1.1)
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where F is a curvature 2-form and ∗ is the Hodge star operator. This condition says
that curvature is anti-self-dual. In this paper, we call anti-self-dual connections instantons.
The choice of anti-self-dual connection or self-dual connection to define instantons is not
important to mathematics but just a habit.

NC instanton solutions were discovered by Nekrasov and Schwartz by using the
ADHM method [4]. (See also [5] for the original ADHM method.) The ADHM construction
which generates the instanton U(N) gauge field requires a pair of the two complex vector
spaces V = C

k and W = C
N . Here −k is an integer called instanton number. Introduce

B1, B2 ∈ Hom(V, V ), I ∈ Hom(W,V ), and J ∈ Hom(V,W) which are called ADHM data that
satisfy the ADHM equations that we will see soon. In other words, B1 and B2 are complex-
valued k ×kmatrices, and I and J† are complex-valued k ×N matrices that satisfy (2.13) and
(2.14) in Section 2.2. Using these ADHM data, we can construct instanton [6–17]. We call it
NC ADHM instanton in the following. The NC ADHM construction is a strong method. A lot
of instanton solutions are constructed by using the NC ADHM construction [6–17]. The NC
ADHMmethod also clarifies some important features, for example, topological charge, index
theorems, Green’s functions, and so on. As a characteristic feature of NCADHMconstruction,
the NC ADHM instantons can be instantons that have singularities in the commutative
limit. On the other hand, we can study NC instantons from a point of view of deformation
quantization. Recently, NC instanton that is smoothly deformed from commutative instanton
is constructed [18]. The method in [18] makes success in analysis for topological charges,
index theorems, and themethod derives the ADHM equations fromNC instanton and proves
a one-to-one correspondence between the ADHM data and NC instantons [19]. We review
them in this article.

This paper is organized as follows. In Section 2, we review the NC ADHM instanton
and their natures (For example, we investigate topological charges of instantons. We
distinguish the terms “instanton number” from “instanton charge”. In this article, we define
the instanton number by the dimension of some vector space V ; on the other hand, the
instanton charge is defined by integral of the 2nd Chern class. We will soon see more details.)
. In Section 3, we construct an NC instanton solution which is a smooth deformation of the
commutative instanton [18]. We study the NC instanton charge, an index theorem, and the
correspondence relation with the ADHM construction for the smooth NC deformations of
instantons [19]. In Section 4, we apply themethod in Section 3 to a gauge theory inR

2, andwe
make NC vortex solutions which are smooth deformations of commutative vortex solutions
[20, 21].

2. Noncommutative ADHM Instantons

In this section, we review the NC ADHM instanton that may have singularities in
commutative limit. An NC U(1) instanton is a typical example that has a singularity in
commutative limit.

2.1. Notations for the Fock Space Formalism

Let us consider coordinate operators xμ (μ = 1, 2, 3, 4) satisfying [xμ, xν] = iθμν, where
θ is a skew symmetric real valued matrix and we call θμν NC parameter. We set the
noncommutativity of the space to the self-dual case of θ12 = −ζ1, θ34 = −ζ2, and the other
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θμν = 0 for convenience. By transformations of coordinates xμ, theNC parameters are possible
to be put in this form in general. Here we introduce complex coordinate operators

z1 =
1√
2

(
x1 + ix2

)
, z2 =

1√
2

(
x3 + ix4

)
. (2.1)

Then the commutation relations become

[z1, z1] = −ζ1, [z2, z2] = −ζ2, others are zero. (2.2)

We define creation and annihilation operators by

c†α =
zα√
ζα
, cα =

zα√
ζα
, (α = 1, 2); (2.3)

then they satisfy

[
cα, c

†
α

]
= 1,

[
cα, cβ

]
=
[
c†α, c

†
β

]
= 0

(
α, β = 1, 2

)
. (2.4)

The Fock space H on which the creation and annihilation operators (2.4) act is spanned by
the Fock state

|n1, n2〉 =

(
c†1
)n1(

c†2
)n2

√
n1!n2!

|0, 0〉, (2.5)

with

c1|n1, n2〉 =
√
n1|n1 − 1, n2〉, c†1|n1, n2〉 =

√
n1 + 1|n1 + 1, n2〉,

c2|n1, n2〉 =
√
n2|n1, n2 − 1〉, c†2|n1, n2〉 =

√
n2 + 1|n1, n2 + 1〉,

(2.6)

where n1 and n2 are the occupation number. The number operators are also defined by

n̂α = c†αcα, N̂ = n̂1 + n̂2, (2.7)

which act on the Fock states as

n̂α|n1, n2〉 = nα|n1, n2〉, N̂|n1, n2〉 = (n1 + n2)|n1, n2〉. (2.8)

In the operator representation, derivatives of a function f are defined by

∂αf(z) =
[
∂̂α, f(z)

]
, ∂αf(z) =

[
∂̂α, f(z)

]
, (2.9)
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where ∂̂α = zα/ζα and ∂̂α = −zα/ζα which satisfy [∂̂α, ∂̂α] = −1/ζα. The integral on NC R
4 is

defined by the standard trace in the operator representation,

∫
d4x =

∫
d4z = (2π)2ζ1ζ2TrH. (2.10)

Note that TrH represents the trace over the Fock space whereas the trace over the gauge group
is denoted by trU(N).

2.2. Noncommutative ADHM Instantons

Let us consider the U(N) Yang-Mills theory on NC R
4. Let M be a projective module over

the algebra that is generated by the operator xμ.
In the NC space, the Yang-Mills connection is defined by Dμψ = −ψ∂̂μ + D̂μψ,

where ψ is a matter field in fundamental representation type and D̂μ ∈ End(M) are anti-
Hermitian gauge fields [22–24]. The relation between D̂μ and usual gauge connection Aμ is
D̂μ = −iθμνxν + Aμ, where θμν is an inverse matrix of θμν. In our notation of the complex
coordinates (2.1) and (2.2), the curvature is given as

Fαα =
1
ζα

+
[
D̂α, D̂α

]
, Fαβ =

[
D̂α, D̂β

] (
α/= β

)
. (2.11)

Note that there is a constant term originated with the noncommutativity in Fαα. Instanton
solutions satisfy the antiself-duality condition F = − ∗F. These conditions are rewritten in the
complex coordinates as

F11 = −F22, F12 = F1 2 = 0. (2.12)

In the commutative spaces, instantons are classified by the topological charge Q =
(1/8π2)

∫
trU(N)F ∧ F, which is always integer −k and coincide with the opposite sign of

dimension of the vector space V in the ADHM methods, and −k is called instanton number.
In the NC spaces, the same statement is conjectured, and some partial proofs are given. (See
Section 2.4 and see also [18, 25–30].)

In the commutative spaces, the ADHM construction is proposed by Atiyah et al. [5]
to construct instantons. Nekrasov and Schwarz first extended this method to NC cases [4].
Here we review briefly on the ADHM construction ofU(N) instantons [22, 23].

The first step of ADHM construction on NC R
4 is looking for B1, B2 ∈ End(Ck), I ∈

Hom(Cn,Ck), and J ∈ Hom(Ck,Cn) which satisfy the deformed ADHM equations

[
B1, B

†
1

]
+
[
B2, B

†
2

]
+ II† − J†J = ζ1 + ζ2, (2.13)

[B1, B2] + IJ = 0. (2.14)

We call −k “instanton number” in this article. In the previous section, we denote V as the
vector space C

k. Note that the right-hand side of (2.13) is caused by the noncommutativity
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of the space R
4. The set of B1, B2, I, and J satisfying (2.13) and (2.14) is called ADHM data.

Using this ADHM data, we define operator D : C
k ⊕ C

k ⊕ C
n → C

k ⊕ C
k by

D† =
(
τ

σ†

)
,

τ = (B2 − z2, B1 − z1, I) =
(
B2 −

√
ζ2c

†
2, B1 −

√
ζ1c

†
1, I

)
,

σ† =
(
−B†1 + z1, B

†
2 − z2, J†

)
=
(
−B†1 +

√
ζ1c1, B

†
2 −
√
ζ2c2, J

†
)
.

(2.15)

The ADHM equations (2.13) and (2.14) are replaced by

ττ† = σ†σ ≡ �, τσ = 0. (2.16)

Let us denote by Ψ : C
n → C

k ⊕ C
k ⊕ C

n the solution to the following equation:

D†Ψa = 0 (a = 1, . . . , n), Ψ†aΨb = δab. (2.17)

Theorem 2.1. Let Ψa be orthonormal zero-modes defined in (2.17). Then NC U(N) instanton Aμ

with instanton number −k is obtained by

Aμ = Ψ†∂μΨ = −iΨ†θμν[xν,Ψ]. (2.18)

Here θμν is inverse of θμν, that is, θμνθνρ = δ
ρ
μ.

Proof. The curvature two-form determined by this connection is given as follows.

F = dA +A ∧A

= d
(
Ψ†dΨ

)
+
(
Ψ†dΨ

)
∧
(
Ψ†dΨ

)

= dΨ† ∧ dΨ − (dΨ)ΨΨ† ∧ dΨ

= dΨ†
(
1 −ΨΨ†

)
∧ dΨ.

(2.19)

Here we use dΨ†Ψ +Ψ†dΨ = 0 that follows from the differentiating of (2.17). Note that

ΨΨ† = I − D 1
D†DD

†, (2.20)
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since

I =
(D Ψ

)(D Ψ
)−1((D Ψ

)†)−1(D Ψ
)†

=
(D Ψ

)(D†D 0
0 1

)−1(D Ψ
)†

= D 1
D†DD

† + ΨΨ†.

(2.21)

From (2.19) and (2.20),

F = dΨ†
(
D 1
D†DD

†
)
∧ dΨ = Ψ†(dD) ∧ 1

D†D
(
dD†
)
Ψ, (2.22)

where we use (dD†)Ψ+D†dΨ = 0 that follows from differentiatingD†Ψ = 0. If the coordinates
(x1, x2, x3, x4) are renamed (x2, x1, x4, x3) for convenience, we obtain

∂μD† = 1√
2

(−σμ 0
)
, ∂μD =

1√
2

(−σμ
0

)
. (2.23)

Here, we define σμ and σμ by

(σ1, σ2, σ3, σ4) := (−iτ1,−iτ2,−iτ3, 12×2),
(σ1, σ2, σ3, σ4) := (iτ1, iτ2, iτ3, 12×2),

(2.24)

where τi are the Pauli matrices and 12×2 is an identity matrix of degree 2. Note that D†D =(� 0
0 �
)
owing to (2.16), and D†D and its inverse commute with σμ. Then we find (2.22) is in

proportion to

σμσνdx
μ ∧ dxν. (2.25)

σμσν − σνσμ is a component of anti-self-dual two-form, that is easily checked by direct
calculations. This fact and (2.22) show that the curvature F is anti-self-dual and the
connections given by (2.18) are instantons.

With the complex coordinate zα, NC instanton connections are given by

D̂α =
1
ζα

Ψ†zαΨ, D̂α = − 1
ζα

Ψ†zαΨ. (2.26)

One of the most important feature to understand the origin of the instanton charges is
existence of zero-modes of ΨΨ†.

Theorem 2.2 (Zero-mode of ΨΨ†). Suppose that Ψ and Ψ† are given as above. The vector |v〉 ∈
(Ck ⊕ C

k ⊕ C
n) ⊗H satisfying

ΨΨ†|v〉 = 〈v|ΨΨ† = 0, |v〉/= 0 (2.27)
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is said to be a zero-mode of ΨΨ†. The zero-modes are given by following three types:

|v1〉 =

⎛
⎜⎜⎜⎝

(
−B1 +

√
ζ1c1
)
|u〉

(
B2 −

√
ζ2c2
)
|u〉

J |u〉

⎞
⎟⎟⎟⎠, |v2〉 =

⎛
⎜⎜⎜⎝

(
B†2 −

√
ζ2c

†
2

)
|u′〉

(
B†1 −

√
ζ1c

†
1

)
|u′〉

I†|u′〉

⎞
⎟⎟⎟⎠,

|v0〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(
exp
∑
α

B†αc
†
α

)
|0, 0〉vi0

(
exp
∑
α

B†αc
†
α

)
|0, 0〉vi0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

(2.28)

Here |u〉 (|u′〉) is some element of C
k ⊗ H (i.e., |u〉 is expressed with the coefficients unmi ∈ C as

|u〉 =∑i

∑
n,m u

nm
i |n,m〉ei, where ei is a base of k-dim vector space). vi0 is a element of k-dim vector.

The proof is given in [25]. We will see the fact that zero-modes |v0〉 play an essential
role, in the following subsections.

2.3. U(1) N.C. ADHM Multi-Instanton

One of the most characteristic features of NC instantons is found in regularizations of the
singularities. In commutative R

4, we cannot construct a nonsingular U(1) instanton. On the
other hand, there exist in NC R

4. Let us see how to construct them as typical NC ADHM
instantons.

At the beginning, we review the methods in [23]. Let B1, B2, I, J be constant matrices
satisfying (2.13) and (2.14). We consider ζ = ζ1 + ζ2 > 0; then we can put J = 0 in general by
using a symmetry. B1 and B2 are k × k matrices, and I is k × 1 matrices:

B1 =

1 · · · k
1

...

k

⎛
⎜⎜⎜⎝

B1
11 · · · B1

1k

...
. . .

...

B1
k1 · · · B1

kk

⎞
⎟⎟⎟⎠

, B2 =

1 · · · k
1

...

k

⎛
⎜⎜⎜⎝

B2
11 · · · B2

1k

...
. . .

...

B2
k1 · · · B2

kk

⎞
⎟⎟⎟⎠

,

I =

1

1

2

...

k

⎛
⎜⎜⎜⎜⎜⎜⎝

I1

I2

...

Ik

⎞
⎟⎟⎟⎟⎟⎟⎠

, J = 0.

(2.29)
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We define βα, c
†
α and cα by

Bα =
√
ζαβα (α = 1, 2). (2.30)

We introduce Δ̂ as

Δ̂ =
∑
α

ζα
(
βα − c†α

)(
β†α − cα

)
, (2.31)

and we define a projection operator P as a projection onto 0-eigenstates of Δ̂ by

P = I†e
∑

α β
†
αc
†
α |0, 0〉G−1〈0, 0|e

∑
α βαcαI, (2.32)

where

G = 〈0, 0|e
∑

α βαcαII†e
∑

α β
†
αc
†
α |0, 0〉. (2.33)

We define shift operators S and S† and a operator Λ by

SS† = 1, S†S = 1 − P,

Λ = 1 + I†
1

Δ̂
I.

(2.34)

Theorem 2.3 (Nekrasov). U(1) instantons are given by

Dα = −
√

1
ζα
SΛ−1/2cαΛ1/2S†, Dα =

√
1
ζα
SΛ1/2c†αΛ−1/2S†. (2.35)

Proof. At first, we check that the inverse of Δ̂ in (2.34) is well defined. Δ̂ has k zero-modes:

e
∑

α β
†
αc
†
α |0, 0〉 ⊗ ei (i = 1, . . . , k) (2.36)

which satisfy Δ̂e
∑

α β
†
αc
†
α |0, 0〉 ⊗ ei = 0. Here ei = (δ1i, δ2,i, . . . , δki)

t is a base of V . Note that
S · · ·S† = S(1 − P) · · ·S†. This implies that S removes the zero-modes, and Hilbert spacesH
is projected on to a space that does not include the zero-modes. Therefore, the inverse of Λ
exists if it is sandwiched between S and S† and (2.35) is well defined.

Next, we check that (2.35) is an instanton. Let us see how the equation D†Ψ = 0 is
solved under orthonormalization condition Ψ†Ψ = 1. ψ± and ξ are introduced as

Ψ =

⎛
⎝
ψ+

ψ−
ξ

⎞
⎠, ψ± ∈ V ⊗H, ξ ∈ H. (2.37)
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The orthonormalization condition is expressed as

ψ†+ψ+ + ψ
†
−ψ− + ξ

†ξ = 1. (2.38)

We put anzats for the solution by

ψ+ = −
√
ζ2
(
β†2 − c2

)
v, ψ− =

√
ζ1
(
β†1 − c1

)
v, (2.39)

and substitute them into D†Ψ = 0; then we get

Δ̂v + Iξ = 0. (2.40)

The orthonormalization condition is rewritten as

v†Δ̂v + ξ†ξ = 1. (2.41)

If there exist the inverse of Δ̂,

v = − 1

Δ̂
Iξ. (2.42)

0-eigenstates of Δ̂ are (2.36) and we define the projection operator to project out the 0-
eigenstates by

P = I†e
∑

α β
†
αc
†
α |0, 0〉G−1〈0, 0|e

∑
α βαcαI. (2.43)

Shift operators S, S† satisfying

SS† = 1, S†S = 1 − P (2.44)

are determined by the definition of P . Then the inverse of Δ̂ is well defined at the left side of
S† or the right side of S.

Using the orthonormalization condition, we obtain

ξ = Λ−1/2S†, Λ = 1 + I†
1

Δ̂
I. (2.45)
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Through these processes, Ψ is determined by the ADHM data, and after substituting this Ψ
into (2.26) we obtain the instantons.

Dα = − 1
ξα
ψ†ẑαψ = − 1

ξα
SΛ−1/2

(
I†

1

Δ̂
Δ̂ẑα

1

Δ̂
I − ẑα

)
Λ−1/2S†

= − 1√
ξα
SΛ−1/2cαΛ1/2S†.

(2.46)

Dα is given similarly.

This expression (2.35) is useful, but there exist other issues to get concrete expression
of instantons. For example, it is not easy to obtain the explicit expression of Δ̂−1.

As an example, let us construct an NC U(1) multi-instanton having concrete
expressions with the instanton number −k [31, 32], which is made from the ADHM data:

B1 =
k−1∑
l=1

√
lζele

†
l+1 =

√
ζ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
√
1 0 · · · · · · 0

0 0
√
2 0 · · · 0

...
. . . . . . . . .

...

0 · · · · · · 0
√
k − 2 0

0 · · · · · · 0
√
k − 1

0 · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, B2 = 0,

I =
√
kζek =

√
ζ

⎛
⎜⎜⎜⎜⎜⎜⎝

0

...

0
√
k

⎞
⎟⎟⎟⎟⎟⎟⎠
, J = 0,

(2.47)

where ζ = ζ1 + ζ2. It is easy to check that this data satisfies the ADHM equations (2.13) and
(2.14), and substituting them into definition of P derives

P =
k−1∑
n1=0
|n1, 0〉〈n1, 0|. (2.48)

To construct an instanton, it is necessary to obtain Δ̂ or Λ. By definition,

Δ̂(k) = ζ1n̂1 + ζ2n̂2 + ζ
k−1∑
i=1

ieie
†
i −
√
ζ1ζ

k−1∑
i=1

√
i
{
c1eie

†
i+1 + c

†
1ei+1e

†
i

}
,

Λ(k) = 1 + ζkΔ̂−1kk(k).

(2.49)
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Δ̂ and Λ depend on k, so we denote them Δ̂(k) and Λ(k), respectively. Δ̂−1kk(k) is (k, k) entry
of matrix Δ̂−1(k). To obtain Δ̂−1

kk
(k), it is enough to calculate the kth row vector of Δ̂−1(k). The

kth row vector of Δ̂−1(k) is determined by Δ̂−1Δ̂ = 1. We denote the kth row vector of Δ̂−1(k)
by (u1, . . . , uk), that is, Δ̂−1ki (k) = ui. Then, we obtain the following recurrence equation from
the kth row of Δ̂−1Δ̂ = 1

u2c
†
1 −

1√
θ̃

u1
(
1 + θ̃n̂1 +

(
1 − θ̃

)
n̂2
)
= 0,

√
iui+1c

†
1 −

1√
θ̃

ui
(
i + θ̃n̂1 +

(
1 − θ̃

)
n̂2
)
+
√
i − 1ui−1c1 = 0 (1 ≤ i ≤ k − 2),

(2.50)

where θ̃ = ζ1/(ζ1 + ζ2). We change variables as

ui = wi−1
c
†(k−i)
1√
(i − 1)!

; (2.51)

then we can rewrite the above recurrence relation by wi as

w1 − 1√
θ̃

(
1 + θ̃(n̂1 − k + 1) −

(
1 − θ̃

)
n̂2
)
w0 = 0,

wi+1 −

⎧
⎪⎨
⎪⎩
i

⎛
⎜⎝ 1√

θ̃

+
√
θ̃

⎞
⎟⎠ +

1√
θ̃

(
θ̃(n̂1 − k) +

(
1 − θ̃

)
n̂2
)
+

⎛
⎜⎝ 1√

θ̃

+
√
θ̃

⎞
⎟⎠

⎫
⎪⎬
⎪⎭
wi

+ i((i − 1)n̂1 − k + 2)wi−1 = 0, (2 ≤ i ≤ k − 1).

(2.52)

Note that n̂1 and n̂2 are commutative to each other, so we can treat them like C-
numbers in the following. We introduce an anzats for the generating function F(t; k) by

F(t; k) = ef(t)(1 − at)α =
∞∑
i=0

wi

i!
ti,

f(t) =
∫
dt

ct

(1 − at)(1 − bt)

=
c

2ab

{
ln
(
1 − (a + b)t + abt2

)
+
a + b√
D

ln

∣∣∣∣∣
2abt − (a + b) −

√
D

2abt − (a + b) +
√
D

∣∣∣∣∣

}
,

(2.53)

where a, b, c, and α are real parameter determined by the request that wi satisfy (2.52), and
D = (a − b)2. From the differentiation of F(t; k), we obtain

(1 − at)(1 − bt)
∞∑
i=1

w1

(i − 1)! t
i−1 = {−aα + (c + abα)t}

∞∑
i=0

wi

i!
ti, (2.54)
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and we find that wi satisfy the following relation:

wi+1 − (i(a + b) − aα)wi + i(ab(i − 1) − c − abα)wi−1 = 0. (2.55)

From (2.52) and (2.55), we obtain

a =
√
θ̃ or

1√
θ̃

, b =
1
a
,

α = −
h
(
θ̃, n1, n2

)

a
, c = −n1 + k − 2 +

h
(
θ̃, n1, n2

)

a
,

(2.56)

where

h
(
θ̃, n1, n2

)
=

1√
θ̃

{
θ̃(n1 − k) +

(
1 − θ̃

)
n2
}
+ θ̃ +

1√
θ̃

. (2.57)

Thus the generating function F(t; k) is determined as an elementary function for each
instanton number −k. Using this F(t; k), we obtain wi, and Δ−1kk(k) is determined as

Δ−1kk(k) = uk =

(
1 +
√
ζ1ζ

√
k − 1√
(k − 2)!

wk−2n̂1

)
(ζ1n̂1 + ζ2n̂2)

−1. (2.58)

Using them, G, P , S, and Λ are determined as

G = ζk!
k∑
i=1

{
i!(k − i)!θ̃k−i

}−1
eie
†
i ,

P = I†e
∑

α β
†
αc
†
α |0, 0〉G−1〈0, 0|e

∑
α βαcαI =

k−1∑
n1=0
|n1, 0〉〈n1, 0|,

S† =
∞∑
n1=0
|n1 + k, 0〉〈n1, 0| +

∞∑
n1=0

∞∑
n2=1

|n1, n2〉〈n1, n2|,

Λ = 1 + ζkuk.

(2.59)

Finally we obtain instanton gauge fields with instanton number −k as

D1 =

√
1
ζ1

∞∑
n1=0

∞∑
n2=0
|n1, n2〉〈n1 + 1, n2|d1(n1, n2; k),

D2 =

√
1
ζ2

{ ∞∑
n1=0
|n1, 0〉〈n1 + k, 1|d2(n1, 0; k) +

∞∑
n1=0

∞∑
n2=1

|n1, n2〉〈n1, n2 + 1|d2(n1, n2; k)
}
,

(2.60)
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where

d1(n1, n2; k) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
n1 + k + 1

[
Λ(n1 + k + 1, 0)
Λ(n1 + k, 0)

]1/2
, (n2 = 0),

√
n1 + 1

[
Λ(n1 + 1, n2)
Λ(n1, n2)

]1/2
, (n2 /= 0),

d2(n1, n2; k) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
Λ(n1 + k, 1)
Λ(n1 + k, 0)

]1/2
, (n2 = 0),

√
n2 + 1

[
Λ(n1, n2 + 1)
Λ(n1, n2)

]1/2
, (n2 /= 0).

(2.61)

Therefore, we obtain NC multi-instanton solutions expressed completely by elementary
functions. This solution is one of the examples of the many kinds of the NC multi-instantons
discovered until now [6–17].

2.4. Some Aspects

In this section, we overview some facts and important aspects of NC instantons without
detailed derivations.

2.4.1. Instanton Charges and Instanton Numbers

Let us see a rough sketch of how to define instanton charges by using characteristic classes.
The instanton charge in commutative space is determined (1/8π2)

∫
trF ∧ �F and coincides

with the instanton number defined by the dimension of the vector space V in the ADHM
construction. A naive definition of the instanton charges in NC R

4 is given by replacement of∫
d4x by (2π)2ζ1ζ2TrH, but it is conditionally convergent in general. In [25, 26], we introduce

cut-offNC for the Fock space and make the instanton charge be a converge series. The region
of the initial and final state of the Fock space with the boundary is

|n1, n2〉 (n1 = 0, . . . ,N1(n2), n2 = 0, . . . ,N2(n1)), (2.62)

where N1(n2) (N2(n1)) is a function of n2 (n1) and we suppose that the length of the
boundary is orderNC � k, that is,N1(n2) ≈N2(n1) ≈NC � k.

Using this cut-off (boundary), we define the instanton charge by

Q = lim
NC→∞

QNC,

QNC = ζ2
∑
n1=0

N1(n1)∑
n2=0
〈n1, n2|

(
F11F22 − F12F21

)|n1, n2〉.
(2.63)

As described in [25, 26], the regions for summations of intermediate states are shifted. This
phenomenon is caused by the existence of the ΨΨ† zero-mode 〈v0|.
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The following terms appear in the instanton charge QNC :

−trU(N)TrNC

(
1
2

[
Ψ†c†2Ψ,Ψ

†c2Ψ
]
+
1
2

[
Ψ†c†1Ψ,Ψ

†c1Ψ
])
. (2.64)

We denote TrNC as trace over some finite domain of Fock space characterized byNC which is
the length of the Fock space boundary. Using the Stokes’ like theorem in [25], only trace over
the boundary is left, then TrNC[Ψ

†c†2Ψ,Ψ
†c2Ψ] becomes

−trU(N)

∑
boundary

(N2(n1) + 1) = −trU(N)TrNC1 − k. (2.65)

The same value is obtained from TrN[Ψ†c†1Ψ,Ψ
†c1Ψ], too. The first term in (2.65) and the term

from the constant curvature in (2.11) cancel out. The second term −k is occurred by zero-
modes |v0〉. Finally the second term of (2.65) is understood as the source of the instanton
charge. The origin of the instanton charge is shift of intermediate states caused by k zero-
modes |v0〉. After all, we get

QN = −k +O
(
N−1/2

)
, Q = lim

N→∞
QN = −k. (2.66)

Theorem 2.4 (Instanton number). Consider U(N) gauge theory on NC R
4 with self-dual θμν. The

instanton charge Q is possible to be defined by limit of converge series and it is identified with the
dimension k that appears in the ADHM construction and is called “instanton number”.

The strict proof is given in [25].
Note that the proof of the equivalence between the topological charge defined as the

integral of the second Chern class and the instanton number given by the dimension of the
vector space in the ADHM construction is not completed in NC space. In [27], Furuuchi
shows how to appear zero-modes in the NC ADHM construction, and he shows that zero-
modes project out some states in Fock space. In [28, 29], the geometrical origin of the
instanton number for NC U(1) gauge theory is clarified. In [25], the identification between
the topological charge and the dimension of the vector space in the ADHM construction is
shown for a U(1) gauge theory. In [26], this identification is shown when the NC parameter
is self-dual for aU(N) gauge theory. In [30], the equivalence between the instanton numbers
and instanton charges is shownwith no restrictions on the NC parameters, but an NC version
of the Osborn’s identity (Corrigan’s identity) is assumed. Until now, the relation between
the instanton numbers and the topological charges in NC spaces had not been clarified
completely. Moreover, the calculation in [25, 26] shows that the origin of the instanton
number is deeply related to the noncommutativity. These results make us feel anomalous,
because the instanton number of course exists for the instanton in the commutative space but
|v0〉 zero-modes or some counterparts of them do not exist in the commutative space. From
these observations, we might wonder if there is a deep disconnection between commutative
instantons and NC instantons. To clarify the connection between the NC instantons and
commutative instantons, let us consider the smooth NC deformation from the commutative
instanton in the next section.
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Propagators and the Index Theorems

The zero-modes of the Dirac operator in the ADHM instanton background are studied in
[33]. They show that the Atiyah-Singer index of the Dirac operator is equal to the instanton
number. In [34], Green functions are constructed for a field in an arbitrary representation of
gauge group propagating in NC ADHM instanton backgrounds.

Other Kinds of Solutions

We have reviewed the ADHM method. There are some other methods to construct NC
instantons.

In [35], Lechtenfeld and Popov study the NC generalization of ’t Hooft’s multi-
instanton configurations for the U(2) gauge group. They solve the problem in the naive
application of Nekrasov and Schwarz method to the ’t Hooft instanton solution. The problem
originates from the appearance of a source term in the equation in the Corrigan-Fairlie-’t
Hooft-Wilczek ansatz. They generalize the method of [36] to naive NC multi-instantons.

In [37], Horváth et al. use the method of dressing transformations, an iterative
procedure for generating solutions from a given solution, and they generalize Belavin and
Zakharov method to the NC case.

In [38], Hamanaka and Terashima construct NC instantons by using the solution
generating technique introduced by Harvey et al. [39].

More details and an embracive list including other kinds of NC space and other kinds
of BPS states are found in [40] for example.

Another approach that is smooth deformation of commutative instanton is given in
the last few years. We will see it in the next section.

3. Smooth NC Deformation of Instantons

In this section, we construct NC instantons deformed smoothly from commutative
instantons, and we study their natures.

We defineNC deformations by formal expansions in a deformation parameter �. So, let
us pay attention to the mathematical meaning of the formal expansion. We introduce our star
products by using formal expansions in �, as we will see soon. Such products are not closed
in the set of all smooth functions in general, so one of the simple ways to define the star
products is using formal expansion. The star product is defined by putting some conditions
on each order of � expansion to be a smooth bounded function or a square integrable function
and so on. Therefore, we have to check their conditions for all quantities represented by
using the star product. Someone might wonder how can we manage such difficulties when
the Fock space formalism is used. The Fock space formalism itself is regarded as a formal
expansion by complex coordinates of C

2 ∼= R
4. For example, an integrable condition of a

function in the star product formulation is replaced by a convergence of the corresponding
series. Space integrations are replaced by the trace operations (2.10). When we estimate
topological charges like instanton charges by mathematically rigorous calculation, we have
to use the Stokes’ like theorem in the Fock space, as mentioned in Section 2.4. Therefore, the
complexities of calculations are essentially same as the ones in star product formalism. One
of the merits of using the star product formalism is that it does not require some specific
representation. In calculations in the operator formalism, we have to introduce some basis
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like the Fock basis, but in the star product formalism, we can obtain physical values without
introducing any representation.

3.1. Smooth NC Deformations

In this section, to easy understand that NC instantons smoothly connect into commutative
instantons, we use a star product formulation. In the previous section, we use an operator
formalism. Formally, there is a one-to-one correspondence between the operator formalism
and the star product formalism, and the Weyl-transformation connects them with each other.
Commutation relations of coordinates are given by

[xμ, xν]� = x
μ � xν − xν � xμ = iθμν, μ, ν = 1, 2, . . . , 4, (3.1)

where (θμν) are a real, x-independent, skew-symmetric matrix entries, called the NC
parameters. � is known as the Moyal product [41]. The Moyal product (or star product) is
defined on functions by

f(x) � g(x) := f(x) exp
(
i

2
←−
∂μθ

μν−→∂ν
)
g(x). (3.2)

Here
←−
∂μ and

−→
∂ν are partial derivatives with respect to xμ for f(x) and to xν for g(x),

respectively.
The curvature two form F is defined by F := (1/2)Fμνdxμ ∧ �dxν = dA+A∧ �A, where

∧� is defined by A ∧ �A := (1/2)(Aμ � Aν)dxμ ∧ dxν.
To consider smooth NC deformations, we introduce a parameter � and a fixed constant

θ
μν

0 <∞ with θμν = �θ
μν

0 .We define the commutative limit by letting � → 0.
Formally we expand the connection as

Aμ =
∞∑
l=0

A
(l)
μ �

l. (3.3)

Then,

Aμ � Aν =
∞∑

l,m,n=0

�
l+m+n 1

l!
A

(m)
μ

(
Δ
)l
A

(n)
μ ,

Δ ≡ i

2
←−
∂μθ

μν

0
−→
∂v.

(3.4)

We introduce the self-dual projection operator P by

P :=
1 + ∗
2

; Pμν,ρτ =
1
4
(
δμρδντ − δνρδμτ + εμνρτ

)
. (3.5)
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Then the instanton equation is given as

Pμν,ρτF
ρτ = 0. (3.6)

In the NC case, the lth order equation of (3.6) is given by

Pμν,ρτ
(
∂ρA

(l)
τ − ∂τA(l)

ρ + i
[
A

(l)
ρ ,A

(0)
τ

]
+ i
[
A

(0)
ρ ,A

(l)
τ

]
+ C(l)

ρτ

)
= 0,

C
(l)
ρτ :=

∑
(p;m,n)∈I(l)

�
p+m+n 1

p!

(
A

(m)
ρ

(
Δ
)p
A

(n)
τ −A(m)

τ

(
Δ
)p
A

(n)
ρ

)
,

I(l) ≡
{(
p;m,n

) ∈ Z
3 | p +m + n = l, p,m, n ≥ 0, m/= l, n /= l

}
.

(3.7)

Note that the 0th order is the commutative instanton equation with solution A
(0)
μ being a

commutative instanton. The asymptotic behavior of commutative instanton A(0)
μ is given by

A
(0)
μ = gdg−1 +O

(
|x|−2
)
, gdg−1 = O

(
|x|−1
)
, (3.8)

where g ∈ G and G is a gauge group. (See, e.g., [2].) We introduce covariant derivatives
associated to the commutative instanton connection by

D
(0)
μ f := ∂μf + i

[
A

(0)
μ , f

]
, DA(0)f := df +A(0) ∧ f. (3.9)

Using this, (3.7) is given by

Pμν,ρτ
(
D

(0)
ρ A

(l)
τ −D(0)

τ A
(l)
ρ + C(l)

ρτ

)
= 0. (3.10)

In the following, we fix a commutative instanton connection A(0). We impose the
following gauge fixing condition for A(l) (l ≥ 1) [18, 42]

A −A(0) = D∗
A(0)B, B ∈ Ω2

+, (3.11)

where D∗
A(0) is defined by

(
D∗
A(0)

)μν
ρ
Bμν = δνρ∂

μBμν − δμρ∂νBμν + iδνρ
[
Aμ, Bμν

] − δμρ
[
Aν, Bμν

]

= δνρD
(0)μBμν − δμρD(0)νBμν.

(3.12)

We expand B in � as we did with A. Then A(l) = D∗
A(0)B

(l). In this gauge, using the fact that
the A(0) is an anti-self-dual connection, (3.10) simplified to

2D2
(0)B

(l)μν + Pμν,ρτC(l)
ρτ = 0, (3.13)
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where

D2
(0) ≡ D

ρ

A(0)DA(0)ρ. (3.14)

We consider the Green’s function for D2
(0):

D2
(0)G0

(
x, y
)
= δ
(
x − y), (3.15)

where δ(x−y) is a four-dimensional delta function.G0(x, y) has been constructed in [43] (see
also [44, 45]). Using the Green’s function, we solve (3.13) as

B(l)μν = −1
2

∫

R4
G0
(
x, y
)
Pμν,ρτC

(l)
ρτ

(
y
)
d4y (3.16)

and the NC instanton A =
∑
A(l)

�
l is given by

A(l) = D∗
A(0)B

(l). (3.17)

In the following, we call NC instantons smoothly deformed from commutative instantons
SNCD instantons. The asymptotic behavior of Green’s function ofD2

(0) is important, which is
given by

G0
(
x, y
)
= O
(∣∣x − y∣∣−2

)
. (3.18)

We introduce the notation O′(|x|−m) as in [2]. If s is a function of R
4 which is O(|x|−m)

as |x| → ∞ and |Dk
(0)s| = O(|x|−m−k), then we denote this natural growth condition by s =

O′(|x|−m).

Theorem 3.1. If C(l) = O′(|x|−4), then B(k) = O′(|x|−2).

We gave a proof of this theorem in [18].
In our case, C(1)

ρτ = O′(x−4) by (3.8), and so B(1) = O′(|x|−2), A(1) = O′(|x|−3) as A(l) =
D∗
A(0)B

(l). Repeating the argument l times, we get

∣∣∣A(l)
∣∣∣ < O′

(
|x|−3+ε

)
, ∀ε > 0. (3.19)

3.2. Instanton Charge

The instanton charge is defined by

Q� :=
1

8π2

∫
trU(N)F ∧ �F. (3.20)
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We rewrite (3.20) as

1
8π2

∫
trU(N)d

(
A ∧ �dA +

2
3
A ∧ �A ∧ �A

)
+

1
8π2

∫
trU(N)P�, (3.21)

where

P� =
1
3
{F ∧ �A ∧ �A + 2A ∧ �F ∧ �A +A ∧ �A ∧ �F +A ∧ �A ∧ �A ∧ �A}. (3.22)

∫
trU(N)P� is 0 in the commutative limit, but it does not vanish in NC space, because the cyclic

symmetry of trace operation is broken by the NC deformation.
The terms in

∫
trU(N)P� are typically written as

∫

Rd

trU(N)

(
P ∧ �R − (−1)n(4−n)R ∧ �P

)
, (3.23)

where P and R are some n-form and (4 − n)-form (n = 0, . . . , 4), respectively, and let P ∧ R be
O(�k). The lowest order term in � vanishes because of the cyclic symmetry of the trace, that
is,
∫
trU(N)(P ∧ R − (−1)n(4−n)R ∧ P) = 0. The term of order � is given by

i

2

∫

R4
trU(N)

{
�θ

μν

0

(
∂μP ∧ ∂νR

)}

=
i

2

∫

R4
(n!(4 − n)!)εμ1μ2μ3μ4 trU(N)d

{
(∗θ) ∧ (Pμ1···μndRμn+1···μ4

)}
,

(3.24)

where ∗θ = εμνρτθ
ρτdxμ ∧ dxν/4. These integrals are zero if Pμ1···μndRμn+1···μ4 is

O′(|x|−(4−1+ε)) (ε > 0) and this condition is satisfied for SNCD instantons. Similarly, higher-
order terms in � in (3.23) can be written as total divergences and hence vanish under the
decay hypothesis. This fact and (3.19) imply that

∫
trU(N)P� = 0.

Because of the similar estimation, we found the other terms of
∫
trU(N)F ∧ �F −∫

trU(N)F
(0) ∧ F(0) vanish, where F(0) is the curvature two form associated to A(0).

Summarizing the above discussions, we get following theorems [18].

Theorem 3.2. LetA(0)
μ be a commutative instanton solution inR

4. There exists a formal NC instanton

solutionAμ =
∑∞

l=0A
(l)
μ �

l (SNCD instanton) such that the instanton numberQ� defined by (3.20) is
independent of the NC parameter �:

1
8π2

∫
trU(N)F ∧ �F =

1
8π2

∫
trU(N)F

(0) ∧ F(0). (3.25)
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3.3. Index of the Dirac Operator and Green’s Function

Dirac(-Weyl) operators DA : Γ(S+ ⊗ E) → Γ(S− ⊗ E) and DA : Γ(S− ⊗ E) → Γ(S+ ⊗ E) are
defined as

DA := σμDμ, DA := σμD†μ. (3.26)

Here, σμ and σμ are defined by (2.24). Consider � expansion of ψ ∈ Γ(S+⊗E) and ψ ∈ Γ(S−⊗E)
as

ψ =
∞∑
n=0

�
nψ(n), ψ =

∞∑
n=0

�
nψ(n). (3.27)

In [19], the zero-modes of DA and DA, which are defined by

DA � ψ = 0, DA � ψ = 0, (3.28)

are investigated, and the following theorem is obtained.

Theorem 3.3. Let DA and DA be the Dirac(-Weyl) operators for an SNCD instanton background
with its instanton number −k. There is no zero-mode for DA � ψ = 0, and there are k zero-modes for
DA � ψi = 0 (i = 1, . . . , k) that are given as

ψi =
∞∑
n=0

⎛
⎝

k∑
j=1

a
j

n,iηj

⎞
⎠�

n +O′
(
|x|−5+ε

)
, ηj = O′

(
|x|−3
)
, (3.29)

where ajn,i is a constant matrix and ηj is a base of the zero mode of D(0)
A .

Note that it is a well-known fact as an index theorem in commutative space that the

dimension of kerD(0)
A is equal to k the instanton number (of opposite sign), and there exists

k zero-mode ηi (i = 1, 2, . . . , k). Theorem 3.3 says that zero-modes deformed from the ones in
commutative space are obtained, but there is no new zero-mode appearing. Then we get the
following theorem [19].

Theorem 3.4. If Ind��D
0 := dimkerD(0)

A − dimkerD(0)
A = −k, then Ind��D := dimkerDA −

dimkerDA = −k.

Next, we construct the Green’s function of ΔA ≡ Dμ � D
μ,

ΔA � GA

(
x, y
)
= δ
(
x − y). (3.30)
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We expand (3.18) by �, for n > 0, then �
n order equation is given as

Δ(0)
A G

(n)
A

(
x, y
)
+

[
ΔA

∑
0≤k<n

�
kG

(k)
A

(
x, y
)](n)

= 0, (3.31)

where G(n)
A is defined by GA(x, y) =

∑∞
k=0G

(k)
A �

k. We solve them recursively

G
(n)
A

(
x, y
)
=
∫
d4wG

(0)
A (x,w)

[
ΔA

∑
0≤k<n

�
kG

(k)
A

(
w,y
)](n)

. (3.32)

Note that G(0)
A (x,w) was constructed in [43–45]. Using property of G(0)

A (x,w) and A(n), we
obtain the following decay condition in [19]:

G
(n)
A

(
x, y
)
= O′
(
|x|−3
)
. (3.33)

3.4. From an Instanton to the ADHM Equations

Let us see how to derive the ADHM equations from an SNCD instanton.
Let ψi (i = 1, . . . , k) be orthonormal zero-modes of DA and ψ = (ψi), which are

introduced in Section 3.3.
At first we define Tμ by

Tμ :=
∫

R4
d4x

1
2

(
xμ � ψ† � ψ + ψ† � ψ � xμ

)
. (3.34)

Next we introduce an asymptotically parallel section g−1S of S+ ⊗ E by

ψ̃ = −g
−1Sx†

|x|4
+O′
(
|x|−4
)
, (3.35)

where x† := σμxμ and ψ̃ : =tψσ2. This tmeans transposing spinor suffixes.
Using various properties and decay conditions of A(n), G

(n)
A , ψ(n), and theorems in the

previous subsections, we finally obtain the following theorem.

Theorem 3.5. Let Aμ be an SNCD instanton and ψ the zero-mode of DA determined by Aμ as in
Section 3.3. Let Tμ, S be constant matrices defined by (3.34) and (3.35), respectively. Then, they satisfy
the ADHM equations:

[Tμ, Tν]+ =
1
2
tr
(
S†Sσμν

)
− iθμν+1k×k. (3.36)

Here σμν := (1/4)(σμσν − σνσμ) and 1k×k is an identity matrix.
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Rough sketch of the proof

Let us see the essence of the proof. Let us introduce �x as � associated with variable x. The
completeness of ψ(x) is written as

�xψ(x)ψ
†(y)�y = �xδ

(
x − y)�y − �xDA�xGA

(
x, y
)
�y
←−
DA�y. (3.37)

From the definition of the Tμ,

TμTν =
∫

R4
d4x

∫

R4
d4y
(
xμ�xψ

†(x)�xψ(x)
)(
ψ†
(
y
)
�yψ
(
y
)
�yy

ν
)
. (3.38)

Using Theorem 3.3, (3.37), and integration by parts, (3.38) becomes

TμTν =
∫

R4
d4xxμ � ψ† � ψ � xν

+
∫

S3
dS

ρ
x

∫

R4
d4y
(
xμ�xψ

†(x)σρ
)
�xGA

(
x, y
)
�y
←−
DA�y

(
ψ
(
y
)
�yy

ν)

−
∫

R4
d4x

∫

R4
d4y
(
ψ†(x)σμ

)
�xGA

(
x, y
)
�y
←−
DA�y

(
ψ
(
y
)
�yy

ν),

(3.39)

where dSμx = |x|2xμdΩ and dΩ is the solid angle. The first term is deformed as follows.

∫

R4
d4xxμ � ψ† � ψ � xν

=
∫

R4
d4x
(
ψ† � ψ � xν � xμ +

[
xμ, ψ† � ψ

]
�
� xν + ψ† � ψ � [xμ, xν]�

)

=
∫

R4
d4x
(
ψ† � ψ � xν � xμ + iθμρ∂ρ

(
ψ† � ψ

)
� xν + iθμνψ† � ψ

)

=
∫

R4
d4xψ† � ψ � xν � xμ.

(3.40)
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Here ψ = O′(|x|−3) given in Theorem 3.3 is used in the third equality. By integration by parts
again, we get

TμTν =
∫

R4
d4xψ† � ψ � xν � xμ (3.41)

+
∫

S3
dS

ρ
x

∫

S3
dSτy

(
xμ�xψ

†(x)σρ
)
�xGA

(
x, y
)
�y
(
στψ
(
y
)
�yy

ν) (3.42)

−
∫

S3
dS

ρ
x

∫

R4
d4y
(
xμ�xψ

†(x)σρ
)
�xGA

(
x, y
)
�y
(
σνψ
(
y
))

(3.43)

−
∫

R4
d4x

∫

S3
dSτy

(
ψ†(x)σμ

)
�xGA

(
x, y
)
�y
(
στψ
(
y
)
�yy

ν) (3.44)

+
∫

R4
d4x

∫

R4
d4y
(
ψ†(x)σμ

)
�xGA

(
x, y
)
�y
(
σνψ
(
y
))
. (3.45)

Equations (3.42) and (3.44) vanishwhenRy → ∞, whereRy is a radius of S3
y. Equation

(3.45)will vanish on the self-dual projection [Tμ, Tν]+ := Pμν,ρτ[Tρ, Tτ], because σμσ
ν−σνσμ is

anti-self-dual with respect to the μ, ν. Thus only (3.41) and (3.43) remain. By the asymptotic
behaviors of ψ and some calculations, we can prove that (3.43) becomes

1
8
tr
(
S†Sσμσν

)
, (3.46)

where the trace tr is taken with respect to the spinor indices. In the [Tμ, Tν]+ combination,
(3.41) becomes −iθμν+ = −iPμν,ρτθρτ . Therefore, we get (3.36). The complete proof is given in
[19].

These ADHM equations (3.36) are coincident with the ones provided byNekrasov and
Schwarz [4]. After identification of

S† =
(
I
J†

)
, Tμσμ =

(
−B2 −B1

B†1 −B†2

)
, (3.47)

and setting the NC parameter as in (2.2), we find that (3.36) is identified with (2.13) and
(2.14).

Similar to the commutative case, we obtain the following theorem.

Theorem 3.6. There is a one-to-one correspondence between ADHM data satisfying (3.36) and
SNCD instantons in NC R

4.

The proof is given in [19].

4. Smooth NC Deformation of Vortexes

In the previous section, we investigate the smooth deformation of instantons. This method is
applicable to gauge theories in other dimensions. In this section we study NC deformation of
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the vortex solutions [46, 47]. We consider the Abelian-Higgs model in commutative R
2 and

deform the Taubes’ vortex solutions into NC vortexes [48].
Let coordinates of NC Euclidean space R

2 be xμ, μ = 1, 2, with commutation relations

[xμ, xν]� = i�ε
μν (

μ, ν = 1, 2
)
, (4.1)

where εμν = −ενμ (ε12 = 1) is an antisymmetric tensor.
The curvature components of the connection A are given by

Fzz = Fzz = 0,

Fzz = iF12 = ∂zAz − ∂zAz − i[Az,Az]� =: iB.
(4.2)

Using these complex coordinates, the covariant derivatives of the Higgs fields are

D � φ = (∂ − iA) � φ, D � φ =
(
∂ − iA

)
� φ,

D � φ = ∂φ + iφ � A, D � φ = ∂φ + iφ � A.
(4.3)

The vortex equations are defined by

D � φ =
(
∂ − iA

)
� φ = 0, B + φ � φ − 1 = 0. (4.4)

We call solutions of these equations NC vortexes.
The formal expansions of the fields are

φ =
∞∑
n=0

�
nφn(z, z), A =

∞∑
n=0

�
nAn(z, z). (4.5)

The kth order equations for (4.4) are

−i
(
∂Ak + ∂Ak

)
+ φkφ0 + φ0φk − δk0 + Ck(z, z) = 0, (4.6)

∂φk − iAkφ0 − iA0φk +Dk(z, z) = 0. (4.7)

Here Ck(z, z) is the coefficient of �
k in −[A,A]�+φ�φ−(φkφ0+φ0φk), so Ck(z, z) is a function

of {Ai,Aj, φm, φn | 0 ≤ i, j,m, n ≤ k − 1}. Similarly, Dk(z, z) is the coefficient of �
k in −iA � φ −

(−iAkφ0 − iA0φk) and a function of {Ai,Aj, φm, φn | 0 ≤ i, j,m, n ≤ k − 1}.
In the case of k = 0, (4.6) and (4.7) coincide with the commutative U(1) vortex

equations Dφ0 = (∂ − iA0)φ0 = 0 and B0 + φ0φ0 − 1 = 0, where B0 = −i(∂A0 − ∂A0). In
the following, we consider the case that A0, A0, and φ0 are smooth finite vortex solutions. We
call it Taubes’ vortex solution.
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In the region φ0 /= 0, substituting (4.7) into (4.6) for Ak and Ak, we get

{
∂φ0

φ2
0

(
∂φk − iA0φk +Dk

)
− 1
φ0

(
Δφk − i∂A0φk − iA0∂φk + ∂Dk

)}
+ {c.c.}

+ φkφ0 + φ0φ0 − δk0 + Ck = 0.

(4.8)

Here {c.c.} is the complex conjugate of preceding terms and Δ = ∂∂.
Setting

ϕk =
φk
φ0

+
φk

φ0

= 2Re
(
φk
φ0

)
, dk =

Dk

φ0
. (4.9)

Equation (4.8) is simplified to

(
−Δ +

∣∣φ0
∣∣2)ϕk = Ek, (4.10)

where

Ek := −Ck + ∂dk − ∂dk. (4.11)

To show that there exists a unique NC vortex solution deformed from the Taubes’
vortex solution, we consider the stationary Schrödinger equation

(−Δ + V (x))u(x) = f(x) (4.12)

in R
2, where V (x) is a real-valued C∞ function. We impose the following assumptions for

V (x).

(a1) V (x) ≥ 0, for all x ⊂ R
2.

(a2) There exist K ⊂ R
2 and ∃c > 0 such that K is a compact set and for x ∈ R

2 \ K,
V (x) ≥ c.

(a3) There exist x1, . . . , xN ∈ R
2 such that V (xi) = 0 and V (x) > 0 for x /∈ {x1, . . . , xN}.

(a4) For any α = (α1, α2) ∈ Z
2
+, There exists a positive constant c such that |∂αx(V − c)| ≤

c for any x ∈ R
2.

Note that the system (4.10) satisfies the assumptions (a1)–(a4). We set

Hl(n) :=

{
f | ∥∥f∥∥ := sup

x∈R2

(
1 + |x|n)∣∣∂αxf(x)

∣∣ <∞ for any |α| ≤ l
]

(4.13)

for n ∈ Z+. Then we obtain the following theorem.
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Theorem 4.1. Under the assumptions (a1)–(a4), there exists a unique solution u ∈ Hl(n) of (4.12)
for any f ∈ Hl(n).

This theorem’s proof is given by using standard techniques of Green’s function [20].
Equation (4.10) is a particular example of (4.12). Theorem 4.1 and some asymptotic

analysis derive the following theorem.

Theorem 4.2. Let A0 and φ0 be a Taubes’ vortex solution, in other words, (A0, φ0) is a finite and
smooth solution of the commutative vortex equations. Then there exists a unique solution (A,φ) of the
NC vortex equations (4.4) with A|�=0 = A0, φ|�=0 = φ0, and its vortex number is preserved

1
2π

∫
d2xB =

1
2π

∫
d2xB0. (4.14)

The proof is given in [20].

5. Conclusions

We have reviewed developments for the last dozen years in NC instantons in R
4. The

ADHM methods made great progress and broke ground to make strict solutions of the NC
soliton equations. A lot of kinds of NC instanton solutions have been made by the ADHM
method. Using the solutions and ADHM data, many aspects have been investigated. For
example, topological charges, Dirac zero-modes, index theorems, and Green’s functions in
the NC ADHM instanton backgrounds. However, we could not understand the relation with
commutative instantons and how instantons deform from commutative ones rigorously. In
recent few years, the smooth NC deformation method has been investigated. For the smooth
NC deformed instantons, many features are clarified. For example, the instanton charge, the
number of the spinor zero-modes, and the index of the Dirac operator in the NC deformed
instanton backgrounds coincide with the ones in commutative instanton backgrounds. The
ADHM equations are derived from the NC deformed instantons and we find the ADHM
equations coincide with the ones by Nekrasov and Schwarz. A one-to-one correspondence
between smooth NC deformed instantons and the ADHMdata are also obtained. Thus, about
instantons in NC R

4, a lot of features have been investigated. The smooth NC deformation
method is useful for other dimensional gauge theories. As an example, smooth deformations
of vortexes are studied similarly. Their vortex numbers also coincide with the ones in
commutative R

2.
We have considered gauge theories in R

n. One of the essences to prove some theorems
of NC instantons or NC vortexes is in infinity of size of the space. So, some of the theorems are
changed when we consider finite size spaces. For example, topological charges are deformed
under NC deformations of the spaces and they depend on the NC parameters in general
[18]. The generic investigations of such changes from the point of view of smooth NC
deformations are left for future subjects. Most NC instantons or some other solitons in gauge
theories are still in deep mist.
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