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We study the initial value problem for the quadratic nonlinear Klein-Gordon equation Lu =

(iax)flﬁz, (t,x) € Rx R, u(0,x) = up(x), x € R, where £ = 8; +i(id,) and (id,) = 1 - 9%. Using the
Shatah normal forms method, we obtain a sharp asymptotic behavior of small solutions without
the condition of a compact support on the initial data which was assumed in the previous works.

1. Introduction

Let us consider the Cauchy problem for the nonlinear Klein-Gordon equation with a
quadratic nonlinearity in one dimensional case

Lu = Mid) W%, (t,x) e RxR,
(1.1)
u(olx) = MQ(.X), x €R,

where A € C, £ = 9; +i(id, ), and (i0,) = \/1 - 32.

Our purpose is to obtain the large time asymptotic profile of small solutions to the
Cauchy problem (1.1) without the restriction of a compact support on the initial data which
was assumed in the previous work [1]. One of the important tools of paper [1] was based on
the transformation of the equation by virtue of the hyperbolic polar coordinates following to
paper [2]. The application of the hyperbolic polar coordinates implies the restriction to the
interior of the light cone, and therefore, requires the compactness of the initial data. Problem
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(1.1) is related to the Cauchy problem

Uy + 0 — Uy = ‘uvz, (t,x) e RxR,
(1.2)
v(0,x) =v9(x), ©v:(0,x)=v1(x), x€R,

where vy and v; are the real-valued functions, and y € R. Indeed we can put u = (1/2)(v +
i <i6x>_1vt), then u satisfies

Lu = sp(idy)  (u+)?,  (tx) eERxR,
2 (1.3)

u(or .X') = MQ(X), X € Rr

where 1y = (1/2)(vg +i(idy) ' v1).
There are a lot of works devoted to the study of the cubic nonlinear Klein-Gordon
equation

Uy + U — Ugy = ‘uUS, (t,x) e RxR,
(1.4)
v(0,x) =v9(x), v:(0,x) =vi1(x), x€R

with g € R. When u < 0, the global existence of solutions to (1.4) can be easily obtained in
the energy space, which is, however, insufficient for determining the large-time asymptotic
behavior of solutions. The sharp L*- time decay estimates of solutions and nonexistence of
the usual scattering states for (1.4) were shown in [3] by using hyperbolic polar coordinates
under the conditions that the initial data are sufficiently regular and have a compact support.

The initial value problem for the nonlinear Klein-Gordon equation with various cubic
nonlinearities depending on v, vy, Uy, Uxx, U and having a suitable nonresonance structure
was studied in [4-6], where small solutions were found in the neighborhood of the free
solutions when the initial data are small and regular and decay rapidly at infinity. Hence
the cubic nonlinearities are not necessarily critical; however the resonant nonlinear term v°
was excluded in these works. In paper [4], the nonresonant nonlinearities were classified into
two types, one of them can be treated by the nonlinear transformation which is different from
the method of normal forms [7] and the other reveals an additional time decay rate via the
operator x0; +10, which was used in [2]. This nonlinear transformation was refined in [8] and
applied to a system of nonlinear Klein-Gordon equations in one or two space dimensions with
nonresonant nonlinearities. It seems that the method of normal forms is very useful in the
case of a single equation; however it does not work well in the case of a system of nonlinear
Klein-Gordon equations. Some sufficient conditions on quadratic or cubic nonlinearities were
given in [1], which allow us to prove global existence and to find sharp asymptotics of small
solutions to the Cauchy problem including (1.2) with small and regular initial data having
a compact support. Moreover it was proved that the asymptotic profile differs from that of
the linear Klein-Gordon equation. See also [9, 10] in which asymptotic behavior of solutions
to (1.4) was studied as in [1] by using hyperbolic polar coordinates. Compactness condition
on the data was removed in [11] in the case of the cubic nonlinearity v and a real-valued
solution. Final value problem with the cubic nonlinearity was studied in [12] for a real-valued
solution. As far as we know the problem of finding the large-time asymptotics is still open
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for the case of the cubic nonlinearity v® and the complex valued initial data. When the initial
data are complex-valued, global existence and L*-time decay estimates of small solutions to
the Klein-Gordon equation with cubic nonlinearity |v|*v were obtained in paper [13] under
the conditions that the initial data are smooth and have a compact support.

The scattering problem and the time decay rates of small solutions to (1.4) with super-
critical nonlinearities |v]’ v and |v|P with p > 3 were studied in papers of [14, 15]. Finally,
we note that the Klein-Gordon equation (1.4) with quadratic nonlinearities in two space
dimensions was studied in [16], where combining the method of the normal forms of [7]
and the time decay estimate through the operator x0; + t0, of [17], it was shown that every
quadratic nonlinearity is nonresonant.

We denote the Lebesgue space by L¥ = {¢ € S’;||pll;, < oo}, with the norm [|¢p||;, =
(le(,b(x)lpdx)l/p if1 <p<ocoand @]l .. =sup,glP(x)|if p = oo. The weighted Sobolev space

is

H™ = {$ € L}

(2)°(i0)" P ||y < o0}, (1.5)

for m,s € R, 1 < p < oo, where (x) = v1+ x2. For simplicity we write H™* = H}"*. The
index 0 we usually omit if it does not cause a confusion. We denote by ¢ = Fr_:p =
(f = 1/V2x[ge"™P(x)dx the Fourier transform of the function ¢. Then the inverse Fourier
transformation is 1¢ = %ELX‘P =1/« ZJr)fRelx§¢(§)d§.

Our main result of this paper is the following.

Theorem 1.1. Let ug € H*! and the norm |{ug||ys: = €. Then there exists &g > 0 such that for all
0 < € < g9 the Cauchy problem (1.1) has a unique global solution

u(t) e c([o, oo);H3’1> (1.6)
satisfying the time decay estimate
l[(B)llggo < Ce(1+1)7% (1.7)

Furthermore there exists a unique final state W, € HY nH! such that

. — 2T 2
u(t) - e 017 =2iAQIW. | logt

where y € (0,1/4), Q(8) = (§)°/(28)(2(&) +(28)).

An important tool for obtaining the time decay estimates of solutions to the nonlinear
Klein-Gordon equation is implementation of the operator

< Ce¥/2pr-1/
—_ 4
HL0

(1.8)

;ei<iax>tu(t) _ W+e‘2i|AIZQ|W+|2 logt < CHArrp14

HY!

2 = (10, )e 0 x i)t = g=1( 2y p=iOip, O = (ip Y x + itd,, (1.9)
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which is analogous to the operator x + itd, = ei#/2%xe(#/29% in the case of the nonlinear
Schrodinger equations used in [18]. The operator 2 was used previously in paper of
[15] for constructing the scattering operator for nonlinear Klein-Gordon equations with
a supercritical nonlinearity. We have [x, (i0,)"] = a(idy )" ?dy; therefore the commutator
[£,2] =£2-22L =0, where £ = 0; +i(i0y) is a linear part of (1.1). Since 2 is not a purely
differential operator, it is apparently difficult to calculate the action of 2 on the nonlinearity
in (1.1). So, instead we use the first-order differential operator

D = 13y + x3; (1.10)

which is closely related to 2 by the identity ) = £Lx —i2 and acts easily on the nonlinearity.
Moreover, it almost commutes with 2, since [ £, P] = —i(iax>_1ax,£.

Also we use the method of normal forms of [7] by which we transform the quadratic
nonlinearity into a cubic one with a nonlocal operator. We multiply both sides of equation
(1.1) by the free Klein-Gordon evolution group FU(~t) = Fe(i®%) = &g and put v(t,¢) =
e¢)ii to get

vi(t, &) = /\eit<‘§>?<<iax>’1ﬂz> = @i@ Re”Av(t,q —&)o(t,—n)dy, (1.11)

where A(¢,7) = (&) + (& — 1) + (7). Integrating (1.11) with respect to time, we find

o(t,8) = v(0,8) + @%«;J;‘” [ o= Deln ) (1.12)

Then we integrate by parts with respect to 7, taking into account (1.11),

. itA - — L
v(t,§)+l.)LJ‘R€ U(t,ﬂ é)’v(t, q)\/ﬂ(g)A(é[;«l)

=v(0,¢) +iAva(O,11—§)U(O,—n) (1.13)

_dn
V2 (EYA(E, 1)

—2i|A|2fthf Le”m*m))vﬁ - &) Fros ((ia )_1u2>.
0 JrV2m(2)A(8, 1) ’ T

Returning to the function u(t, x) = M(t)?glxv = ?;Lx(e‘“<§>v(t, ¢)), we obtain the following
equation:

L(u+iAG (U, 1)) = —2i|)L|ZG<ﬁ, (iax)_1u2>, (1.14)

with the symmetric bilinear operator

Gy) =L, BE-nwbE-nFman 119)
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where

1
V2 (G + ) ((G+ ) + (8) + ()

2L n) = (1.16)

and ¢ = ¢ — 7. Our main point in this paper is to show that the right-hand side of (1.14) can
be decomposed into two terms; one of them is a cubic nonlinearity

—2i|)»|2%M(t)?’lﬁ(é)l??/l(—f)u(t,é)lziﬂ(—t)u(fﬂi)/ (1.17)

and the other one is a remainder term with an estimate like O (t>/*||FU(~t)u(t)[I5)-

Remark 1.2. We believe that all quadratic nonlinear terms u?, 0, [u* of problem (1.3) also
could be considered by this approach. In the same way as in the derivation of (1.14) we get
from (1.3)

ﬂ(u + %#(q(ﬁ,ﬁ) +Gi(u,u) + 2G2(u,ﬁ))>

= ip2G (T, (id.) " (u+ 7)?)

(1.18)
+ G <u, (i0) " (u + ﬁ)2>
+il2Gy <u +72, (i0:) T u+ a)2>,
where
Gy(04) = FL.[ §E-nmdE-)FO)dn
(1.19)
g, = !
! V2 Aj(§+1,m) (¢ +1)

with A1 (¢, 1) = (&) —(E—1)— (1), A2(¢, 1) = (¢)—({—1)+(n). Some more regularity conditions
are necessary to treat the bilinear operators G;. Also we have to show that

G(m (o) (@ +2ul)),  Gi(w (o) (12 +7)),
(1.20)
Go <u, (i0,) ! <u2 + a2)>, Go (a, (i0,) ™" (aZ + 2|u|2>>

are the nonresonant terms (i.e., remainders) and to remove the resonant terms
G( (0:0)"w?),  Ga(u, (0)WP), Ga(u (i) uP), Ga(T (ide)'W?)  (121)

by an appropriate phase function. We will dedicate a separate paper to this problem.
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We prove our main result in Section 3. In the next section we prove several lemmas

used in the proof of the main result.

2. Preliminaries

First we give some estimates for the symmetric bilinear operator
G = %[ SE-nbE-Fn

where

1
Vam G+ m) (G +m) + () +(m)

2(&n) =

Denote the kernel as follows:

eiygﬂ'zq

1
202 = g [ e o s

Lemma 2.1. The representation is true
G(¢y) = ”Rzg(y,Z)qb(x ~Y)¢x - 2)dydz,
where the kernel g(y, z) obeys the following estimate:

(v, 2)| < c<y>‘3<z>‘3h‘2<1 ’ |1—y|>

forall y,z € R, y # z. Moreover the following estimates are valid:

1G(P )l < Clipllallolle
12G(¢ @)l < ClPPIallelle + ClPElla Il

+Clladllu Mol +Cllowlllill

2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

forl1<p<oo,l<qg<p/al<r<p/(1-a),ac|0,1], provided that the right-hand sides are

bounded.
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Proof. To prove representation (2.4), we substitute the direct Fourier transforms

$() = i (x - y)dy,

)
TR 2.7)

1 .
= ——| e y(x-z)dz
¢ (n) mfR glx-2)
into the definition of the operator G. Then changing ¢ = ¢ — 77, we find

6@p) =0 [ gG-yw-a([[ F@merranas)aya:
(2.8)

= ”RZg(yr 2)¢(x - y)y(x - 2)dydz,
where the kernel g(y, z) is

g(y,z) = (2m)™ ZHRﬁ(é, 1) eV dyde

eiy§+izq (29)

1
vl e

Changing the variables of integration { = ¢/2 -7’ and n = ¢/2 + 1’ (the prime we will omit),
we get

el yo+izn

1
g(y,z) = mHR (G +m)+(2) + () (¢ + ’1>dnd§

1 [ dE .
L[ e i J‘ Bz, m)elC-dy
) @) e

(2.10)

where B(¢,7) =1/({(¢) + (¢/2—-1) + (¢/2+1)). Wechange s =y +z/2 and p = (z— y) and
denote

~ 1 d¢ .
g(s,p) = @J‘Rée’ﬁJ‘RB(;q)elmdq. (2.11)

For the case of [p| < 1,|s| < 1 we integrate by parts using the identity e’ = A(#)d,(ne'"),
where A(rn) =1/ (1 +ipn). Then we get

~ d¢ .
§(0) =gz | Toe| oy (AG)B( m)dn 212)
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Note that
1 n-¢/2 n+§/2>
0,B(¢,1) = . 2.13
OB (<§>+<§/2—n>+<§/2+n>)2<<71—§/2>+<§/2+11> (213)
Then
C
150, (A(n)B(¢, < . 2.14
[ nouAmBE )| < e T (219
Hence we can estimate the kernel g(s, p) as follows:
- dg dn
7 _C Te\
ol <[ G| pm
C =C In —=— d
- L 1+ |pln)1 é(m+¢) f 1+|p|1171<n71+§)1 ¢
© h,”,l 1/1pl dﬂ © d?’[ (215)
——F——dn<C Inyp— + — Inn—
1 (L+]plmn "~ L i +IPI R

< Cln2<l + i>
Yl

for the case of |p| < 1,|s| < 1. For the case of |p| < 1,|s| > 1 we integrate three times by parts
with respect to ¢

3(s,p) = C|s|_SIRd§ei55IReiP"ag<(g)_lqan(A(n)B(cj,q)»dq. (2.16)

Note that

C
@+ 1plln) (&) + <))

|83 ((0) " md(A(m)B(Em))) | < (217)

Hence we can estimate the kernel g(y, z) as follows:

dn 3
B“P”<q“J~@>Ra+wwm«@+m»—cmln< ||> 219

for all |p| £1,|s| > 1. For the case |p| > 1, |s| < 1 we integrate by parts three times with respect
ton

~ _ dé . .
g(s,p) =Clp| 3J‘Réels§fRelP“6le(§,n)dq. (2.19)
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Note that [93B(¢, 7)| < C((¢) + (1)) Hence

18(s,p)] SCIPI_BI ) f 5 <Clp|™ (2.20)

Finally for the case of |p| > 1,|s| > 1 we integrate by parts three times with respect to ¢ and 5
3(s,p) = C|sp|3IRdgeiséfReima§a§l((g)‘lB(g,q))dq. (2.21)

Since

C
0303 ((&)'B(¢,n — 2.22
e (e )| < (@2((8) + (m))? 22
then we can estimate the kernel g(s, p) as follows:
18(s.p)] SCISPI'SI e f e <Clsp|” (2.23)

for all |p| > 1,|s| > 1. Hence estimate (2.5) is true.
By virtue of estimate (2.5) applying the Holder inequality with 1/p = 1/p1 +1/p> and
the Young inequality with 1/p1 +1=1/g+1/qrand 1/po +1 =1/r +1/r1, we find

2 ! | 42
. <1+|z—yl>|"’(x Ny

fotwll =|f poce-1 %]

2Ly (2.24)

< Clipllallglle-

where1<p<o,1<gq<p/al<r<p/(1-a),acl01].
We now estimate the operator ) = t0, + x0; as follows:

PG(d,¢) =GP ¢) + ffRzyg(yr 2)¢(x — 2)0ip (x - y)dydz
(2.25)

6@ )+ [[ 28020 y)ouptx - )y
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Then by virtue of estimate (2.4) applying the Holder and Young inequalities, we get

1PG (9, )l < 1G (PP, ¢) |1y + 1G (D, Pg) [l

+ HRzyg(yIZ)qf(x - 2)ap(x - y)dydz)
+ URzzg(y, 2)9(x - y)owp(x - 2)dydz| (220)
<CllPgllaliwlle + Cllowllilielle +Cllollllel.
+ Cllowlullel-
Lemma 2.1 is proved. O

We now decompose the free Klein-Gordon evolution group %(t) = e @)t = F71E()F,
where E(t) = (%) similarly to the factorization of the free Schrodinger evolution group. We
denote the dilation operator by

1 x _ .
D = \/ij(;), (2w)™ = iD1/w- (2.27)

Define the multiplication factor M(t) = e *(*)0() where 0(x) = 1 for |x| < 1 and 8(x) = 0 for
|x| > 1. We introduce the operator

B¢ = qu(%)- (2.28)

 (ix)¥?

The inverse operator B! acts on the functions ¢(x) defined on (-1,1) as follows:

a1 5

forall { € R,since ¢ = x/(ix) € Rand x = ¢/(¢) € (-1,1). We now introduce the operators

V() = BIM()D; 1F e ),

o . (2.30)
W(t) = M(H(1-0)D;'F e,
so that we have the representation for the free Klein-Gordon evolution group
UHF ' = e M0IF T = g1 = @ M(#)(BU(H) + W(t))
(2.31)

= DMH)B +DMBBO() - 1) + DM (1) W(H).
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The first term D, M (t)B¢ of the right-hand side of (2.31) describes inside the light cone
the well-known leading term of the large-time asymptotics of solutions of the linear Klein-
Gordon equation £Lu = 0 with initial data ¢. The second term of the right-hand side of
(2.31) is a remainder inside of the light cone, whereas the last term represents the large time
asymptotics outside of the light cone which decays more rapidly in time. We also have

FU(~t) = Fe0) = HOF =V HBTM@H)D + W7 (1) D]

o o (2.32)
=B M®H)D + <Z)‘1(t) - 1)73‘1M(t)%t‘1 +07 (1),
where the right-inverse operators are
vTH(t) = EHFDM()B,
(2.33)

107 (t) = E()FDi(1 - 0),

where E(t) = &), o
In the next lemma we state the estimates of the operators U(t) = B~'M (t)%;l?‘le‘”@).

Lemma 2.2. The estimates hold as follows:

[o®]l,= < Cllgllr

L (2.34)
1000 ]l,- < Cll&)dllys +C[[ &9 .
where p < a,a € [1,2], and
oo mg| , <cl@ap|,, +cl@ "¢ . (2.35)
where p < a, a € [0, 1], provided the right-hand sides are finite.
Proof. Changing the variable of integration x = &(&), we see that
a2 5 2£ 3 ! 2, 2
5190l = [ oo )| o = [l Pete = Ul v 236)

Hence [[U(H)@|l;> = ||l -
Consider the estimate for the derivative 9;U(t)$. Define S(¢, 1) = () — &n + 1)/(¢).

Note that 05/0m = n/(n) —¢/(§) = (1 + (n)(&) —né)/(5) () (1) + (§)))(n - §) and 65/0§ =
E-n)/ (&)°. Hence integrating by parts one time yields

54 e "¢ (n)dn = —it<é>’3f eS¢ (1) (& - mn)dn
R R (2.37)

=7 @) Pz m)dn
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where g(¢, 1) = (5 =1)/(6/(8) =n/{m)) = (&) ) ((m) + (§))/ (1 + (1) (§) = ng). Also we have

(&)(n)

(1 + <71><§> - 7’l§) < Cm-

Hence the estimate is true

G+ @) _ @)’

sEn =@ -n S

Since 9;(¢)” = a&(¢)* 2, we get

(&)P0: V(¢ = <§>P\/gag<é>B/ZJRe'“%(n)dn

=2 + <«;>P9/2\/g [ e imsman

(@) Z@he”%m)gﬂ(é/ﬂ)dﬂ-

Consider the L*-estimate of the integral

Vi) j 161/ @D g (1) g (&, 1) .
R

We have
. 2
||\/;f elt<§n/<g>>¢(,1)g(§ln)<§>p-9/zdn“
R L2
=tf )| agp@ O TOs@ s 0@
R R R
=f dw(n)f diy(9)G(n,8),
R R

where the kernel

G(n,2) = tJ‘Reit(é/@))(Tlé)g(g’ g (&) az

- t<q><§>IReit(§/(§))(n€) (n) + (&) O+ @) gy

(L+(m) (&) —ng) L+ (5)(&) &)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)
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After a change ¢ = x/(ix), we find

(n) +1/(ix) () +1/ (ix)
(1+ (n)/(ix) —nx/ (ix)) (L + () / (ix) - ¢x/ (ix))

(ix)*P dx.

1 .
G(n2) =) (@) emrd
(2.44)

We now change the contour z = x + iy € I of integration in G as y = sign(7 — ¢) (ix)%; then

(n) +1/(iz) () +1/(iz)
(1+ (n)/(iz) - nz/(iz)) A+ (¢)/(iz) - ¢z/(iz))

(iz)* % dz.

G(1) = ) (@) [ ey
(2.45)

Since |(iz)| = (((ix)* + ]/2)2 +4x2y2)1/4 ~ (ix), using (2.38) and the inequality ({77) + (¢)) >
()" 1(&)* " for a € [1,2], we get |((n) +1/(iz))/ (L +(n)/(iz) - nz/(iz))| < C(m)* '(ix)*>;
also we have

C(ix)™2°

o200 | = o= ()4l < (2.46)
| (1+tln =g’
for 6 > 1. Therefore we obtain the estimate
CHm™(8)" (. \2ap-s CH{m)" (0"
IG(n,0)| < ———] (ix)** P Odx < — 2 (2.47)
(1+t|rz—€I)‘Sf—1 (L+tln—¢))"
if we choose p <a,a € [1,2] and 1 < 6 <1+ a — p. Thus we get
. 2 —
“\/ff e Ny (1) g (&,m) (&) dn =f dw(n)j gy (©)G(1,¢)
R z JRr R
<l sl || aw@e———
R (L+tln-¢)" Nl
dTl 2
<CHl ()¢l <Cll¢)Y gl
1609l s < cllorwl
(2.48)

since 6 > 1.
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In the same manner we consider the estimate of the integral

. 2
H\/ff e VN 45 (1) g (8, 1) (8)" quH
R L2
~tf anp(n) [ dig@ [ YOI EmgEO@TA @49
R R R
= f dw(n)j iy ()G (n,¢),
R R

where the kernel

G(n,2) = tJ‘Reit(é/@))(’l—@)gq(g/n)gg(élg)<§>2p_9d§

(2.50)
_ tf &/ () 01-0) (+&+ (n/{(M)E)) G +E&+(5/(5)(E) ()7 dg
R I+ (&) -né) 1+ (5} () —68) ’
since by a direct calculation
) (m) +(0) _n+é+m/(m)&) 251)
A -ng) 1+ ()8 - )
In the same way as in (2.47) we have
_ C a-1 a-1
|G(’l/ €)| < (0" (2.52)

1+t -¢])°

if we choose p < a,a € [1,2],and 1 < 6 <1+ a — p. Therefore we get

td 2

2 J‘ n _ gC“(-)“_l(,u ‘

12 L2
R (1+t|n])

[Vif ey mygaemier=an] <cllon i

(2.53)

Hence [[(£)70:U(t)dll;2 < ClI(E) 0ePll;2 + C||(§>“_1¢||L2. Thus we have the second estimate of
the lemma.

Consider the estimate for the derivative 3;U~!(t)¢. Note that 0S(r,¢)/0¢ = ¢/(¢) -
1/ (m) = (L+ ()& = n&) /(&) (m) ((m) + (&) (& = 1) and 8S(1,¢) /01 = (- &)/ (n)°. Hence

integrating by parts one time yields

(§)Po, 07 () = —\/Zil%(é)”_lf

L+ (n)(é) —né

1/2 eitS(q,)
) e

(2.54)

Vit

- E@V*L{effﬂw (@ ()81 ) + $(m) g (& 1)),
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where S(1,¢) = (§) = (¢n+1)/(n) and g1 (&, 1) = (1 + () (&) = 1))/ () + () ()% The

estimate is true

<n>3”<g>
“r@

1+ (m)(§) —ng

1/2
(1) +(¢) ()" <

g1(§m) =
Consider the L?-estimate of the integral
&yt ﬁJRe—it(éﬂ/<ﬂ>)¢(n)gl (&,1)dn.

We have, changing r1/(1) = y and {/({) = z,

H<§>p1\/gJ'Re—it<§rz/<n>> o ()&

=t gl dig@f eV Dg @ mn @Y
—ff dy<1y>4f<<i>>f )3 (&)

e < > (lz>><§>2p 2d¢
f dy<1y>tp< )f dz(iz) qf<< >>G1(y z),

where the kernel

Gi(y, 2)

_ —ité(y-2) vy z 20-2
=tf e g1<§, <iy>>g1<g o )@

_ <72, <172 ite(y-z) LT (8)/(iy) - y§/<1y> 1+ (§)/(iz) — z§/(iz)
= t(iy) "(iz) J‘R Y- i)+ EEG,

(2.55)

(2.56)

(2.57)

(&)%2dg.

(2.58)

We now change the contour ¢ = ¥ + ifj € T of integration in G as 7 = sign(y — z) (¥)?; then

Gi(v,2)

=ty 2 iy 12 gt o1+ (5 /iy) —yé/(iy) 1+ (&) /(iz) - 28/ (iz)
= t(iy) "“(iz) L Y- /i) + (&) 1/(iz) + (&)

(§)%72ds.

(2.59)
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Since |(¢)| = (((¥)* - ]72)2 +4§2?2)1/2 ~ (X) and by (2.55) [(1+(¢) /(iy) —yé/(iy))/(1/(iy) +
(NN < C<§>1_a(iy)_a for a € [0,1], and also

< < _< < - (2.60)
(A+:&)|y-z)* (% °ly-=|"(y-2)

|e—it§(y—z>

for 6 < 1, we obtain the estimate

Ccli -1/2-a ;. \-1/2-a
Gy, )] < BT gy et
ly—="(y-=2) Jr
(2.61)
. C<iy>*1/2*a<iz>—1/2—a
- 6
|y -2y~ =)
if we choose p <&, and 1 > 6 > 1 —2a + 2p. Therefore we get
“ \/i,[Relt(éﬂ/@))q,(n)g(g, 1) &y’ dn”Lz
! dylin)¥* y ! dz(iz)%/2 Z C
= i — z(iz -
f—l yiy) qj<(iy>>J‘_1 tiz) q}<<lz>>| —z|6< - z)
Y Y
(2.62)

2

1
< CJ dy<l.y>5/2—2a
-1

(@)

1
= Cf1d§<§>”2+z“|q:<«;>|2 < ¢y

2

2
In the same manner we consider the estimate of the integral with ¢(77)g1,(¢, 7). Hence

, (2.63)

12

|0, 07 (9

<C(@) o

LHCf e

12

where a > p. Thus we have the second estimate of the lemma. Lemma 2.2 is proved. O
In the next lemma we prove an auxiliary asymptotics for the integral [ e (¢, z)dz.

Lemma 2.3. The estimate holds as follows:

‘<§>“<f:°e-”*®@, 2)dz —®<§,0>\/4§>

provided the right-hand side is finite, where a € R.

< CH34|[ (&) D, (¢, 2) ||L§°L§ (2.64)
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Proof. We represent the integral
f e 1D, z)dz = D, O)I e " dz + R=D(,0)/ 4% +R, (2.65)
0 0
where the remainder term is
R= f e (D(E, z) - D(¢,0))dz. (2.66)
0
In the remainder term we integrate by parts via identity &= = (1/(1 - 2itz2))d,(ze *=’)
* 1
a < a _
1Rl <[ @@ -0 o ;
S (EH = XL
0 1+ tZz = Lgo
N -1 2.67
< Cll&) =& 2) e Vz(1+12%) | (267)
-1
+ CIE D= ) [z [ 2(1 + £22)
[t L2
< CEVH(EY D=8, 2) |z
since
|D(§, z) - D(¢,0)] < j |D=(8, 2)ldz < C\/[z[|D= (5, 2) lperz- (2.68)
0

Thus we have the estimate for the remainder in the asymptotic formula. Lemma 2.3 is proved.

O
In the next lemma we obtain the asymptotics for the operator U(t) =
BIM(H)D;'F e ) and the right-inverse operator U~ (t) = E(t)FD: M (t)B.
Lemma 2.4. The estimates hold as follows:
@ -ng|| < cot(@r o, + @] )
(2.69)

o (-1l <o

L@ e

L2)’

forallt > 1, where 0 < B <3/2, provided the right-hand sides are finite.
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Proof. We have the identities

1+ (n)(&) - ng
((n) +(2))*(2)

_n & 1+ (n)(&) —né ~
Sim) = T8 5 T D = ey Y

S(&n) = (n) - <§>—@< ¢) = (n-¢)°,

(2.70)

and S;;(¢,7) = (1])_3. We now change z = 1/S(¢,77). We denote The inverse functions by
1nj(z), so that 71 (z) : (0,00) — (¢, 00) and 72(2) : (0,00) — (~0,§).

Thus the stationary point z = 0 transforms into 7 = ¢. Hence we can write the
representation

vty = <§>S/Z@IRe‘ifs@'"’qS(n)dn
:2<§>73/2 i_tij‘we—itzz(l)(rl ( ) V (g 71] ) dz.
Var ), TSk @ m(2)]
By a direct calculation we find

dz _|Sq(¢m)| _ VI+ (&) —ng 07
s ey’ '

(2.71)

Therefore we obtain
V()¢ = J e (¢, z)dz, (2.73)
0

where

(2.74)

O 2) =2 (m¢(n)
S \/7 14/1+ (&) (1) —én

n=1;(z)

Application of Lemma 2.3 yields

VP = $@) + O (0. ) g1z )- (2.75)
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By a direct calculation we have

iz [it 2(n)**¢' ()
D, (¢, = \5_

(2.76)
it &+ (g +&m)/ () + (&)
\or (1)
2”];1 @421+ (m)(8) -m)™*
By (2.38) we get the estimate
B _ i dZ
[@fe.@ 2., = @215
L 1 LeL}
@rm" @F ()"
< CVH|———"—>¢'(n) CVH|——"—7¢(n)
((m) + ()™ LrL ((m) + (&)™ LrL}
< V|| L+ v
(2.77)

for 0 < p < 3/2since ({(n) + (¢&)) > C(§>(2/3)ﬂ(11)1_(2/3)ﬁ. This yields the first estimate of the
lemma.
We now prove the second estimate. We have

g e VE (T gico-tv-tinn 32 (Y
(¢ (t)¢—Mfle Y= Gy g i) dy, (2.78)
then changing y = 7(n) ", we find
U = «%I () (), (2.79)

where

gn+1 _ 1+ m)(g)-né

W (e Y (250

S(n,¢) = (&) -
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As above we change z = 1/5(7, ¢) and represent

U (O (x) = \/% f 08 ) e

2 (% 2 VS(i(2),4)
i ng Py (2) (i) e
i=1

- d
1S, (12, )]~

By a direct calculation we find S, (1,¢) = (11— ¢)/(n)® and

dz _ |Si(mé)l _ (m) + (&)

o\ fsne) 21+ (@ -ng

Therefore we obtain
U (D) = f D, 2)dz,
0

where

2 T+ (m)(g) —né
(D@’Z):z\/zftzmh/ (1) 1

Vi j=1 (1) + ()

$(n)

n=1;(z)

Application of Lemma 2.3 yields
U (HP(x) = $@) + O(FH@- (¢, 2z )-
By a direct calculation we have

dz 22t & (1+ (@) - n8)*"
(I)Z(élz) d?’l - \/l; P ((Tl) + <§>)3/2

("¢’ (n)

(1) + (&)

S22 j; ()" (1 + (m)(&) - ng)""* <<’1>v1 + (m)(§) —né

Vim 5 V() + (&)

(2.81)

(2.82)

(2.83)
(2.84)

(2.85)

> ¢(n),

(2.86)
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Since

)™ (1 + ()& - ne)"*

‘<<n>\/1+ (e - >

() +(¢) V(1) + (&)
:‘<§>ﬂ<n>m(1+<n><§> )" | ()™ (n(8) - &(n)) (287)
((m) + (&))" T2+ @A+ e )
co @Mt
(&) + (1))

therefore we get the estimate

[dz
wp2 <'§>ﬂ_3/4®2(§12) 3.
L H dr LrLy

<o | gl

< vi(|[ )

(&) ¢, 2)

(&) (n)*
” (@) <n>>3”¢(")

v)

ooy 2
L Lv)

(2.88)

+[|(m)

for 0 < B <2/3, since ({(1n) + (¢&)) > C(§>2/3ﬂ(q>1_2/3ﬁ. This yields the second estimate of the
lemma. Lemma 2.4 is proved. O

In the next lemma we find the estimates for the operator J0(t) = (1—9)M(t)%{ Ig-Te-ité),

Lemma 2.5. The estimates hold as follows:

”w(t)gb”Lr < Ct71/2+(175)(1,1/r)<

1+26)(1-1 1+26)(1-1/r)-1
|<§>(+ )( /r)a§¢||Ll+||<§>(+ )(1-1/r) (i)

u) (2.89)

forallt > 1, wherel <r < 00,6 € [0,1], provided the right-hand side is finite.
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Proof. Note that 10(t)¢ = 0 for |x| < 1. To prove the estimate, we integrate by parts via the
identity e(4=() = (1/it(x — &/(Z))) O (eC-(2))

Witp = L[ 1Oy

1 ; 1 )
- j AL (2.90)

I S T S ()
i R

for all |x| > 2. Since 1/|x — ¢/(&)| < C(x)™" for all |x| > 2, then we get

[0(t)¢| < Ct*1/2<x>‘1f (|¢’(§)| + <§>‘3|¢(§)|)d§
R (2.91)

< Ct’1/2<x)_l<||ag¢”u + C”<§>_3¢“Ll>'

For the case of 1 < |x]| < 2 we integrate by parts via the identity Gt = (1/(&/(8) +
it(&) (x = &/(8))))0e ((&)exé{e))

(¢
/(&) +it(¢) (x = ¢/(¢8))

Vit e ,
W) = mfRe P (E)de -
ey /(&) + () (@x/(2) — 1 '

— dé.
’ mff . @) +iHe) (- %

Since |x=&/(&)| > [lx[=1[+[1-I¢|/ (&) and [éx/(§) = 1] < [§]/(E)||x| = 1|+ [1=[5]/(E)] < [x=E/(4)]

for 1 < |x|, therefore

(&) 9@+ 9@
RI81/€8) + (&) ([lx] =1 + [T = [¢]/(5)])

< C\/ff O] +19@)]
B R1+H(E) 2+ 1) |lx] - 1]

|0(t)¢| < c\/if dé

(2.93)
dg
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for 1 < |x| < 2. Hence we get

o0#ll,, < 2|07 (1ol + €[l )

OO+ 166)] 1
*C*/ifRdg s H1 O/ (A K —2)) ) I~ 1]

<cr(Jlall + <@ ,)

L (|x[>2) <

L7 (1<|x|<2)

+CH/E f (@@ @ Ip@1) (1 + o ?)

— — — 1+26)(1-1 1+26)(1-1/7)-1
< Ct 1/2+(1-6)(1 1/r)<||<§>( +26)( /r)agd) . + ”(g)( +26)(1-1/r) 4,”Ll>

(2.94)

for 6 € [0,1]. This yields the estimate of the lemma. Lemma 2.5 is proved. O
We next prove the time decay estimate in terms of the operator 2.

Lemma 2.6. The estimate is valid

il < COO 2 ualyge (el + 120l (2.95)
forall t >0, provided that the right-hand side is finite.

Proof. Since |jullx < C ||xu||¥2||u||¥2, by applying the L*-L! time decay estimate of the free
evolution group e )t (see paper of [19, Lemma 1]), we get

[l = ||e—i(iax)tei(ibx)tu”L < Ct—1/2||<iax>3/28i<i6x)tu”

1
. 1/2 L 1/2
< Ct—l/Z”x<iax>3/261(lax>tu s <iax>3/2el(lax)tu o (296)

_ 1/2 1/2
< CEV2)| 2ul 2, Nlull 2

for all t > 0. Then by the Sobolev inequality we have |lu||;.. < C|lully:. Thus the desired
estimate follows. Lemma 2.6 is proved. O

Next we obtain the asymptotics for the integral

[ eengiepay, (2.97)
R

where A(¢,y) = (§) +(0) —2(n),and (= ¢+ 2y, n=§+y.
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L?Li) (2.98)

Lemma 2.7. The following asymptotics is true:

J‘ eitA(g,y)d)(g,y)dy — \/%<§>3/2¢(§/0) +O<t3/4
R

002 () + (1) *9(e )

() (n)*”
@y Y

Lg°L§>

for t > 1 uniformly with respect to & € R, provided the right-hand side is finite.

Proof. Denote { = ¢ +2y,n =¢ +y, so that y = { — 17 = 7 — {. We have the identities

L+ (m)(8) —ng+ (§)() - &+ (&) {n) —én_,
(&) + (EN &) + (m)) ({8} + (n))

o8 Y\, 1 me)y —ng
Ay(é'y)_2<<€> <11>> 2(§><’1>((§>+<q>)y'

and Ay, (¢,y) = 2(2/(¢)°® —1/(n)* ). We now change z = \/A(¢, y). We denote the inverse
functions by y;(z), so that y1(z) : (0,0) — (0,00) and y2(z) : (0,00) — (-o0,0). Thus the
stationary point z = 0 transforms into y = 0. Hence we can write the representation

VAGY; () (2.100)

14,y

A(gy) =2

(2.99)

2 o)
[ ey =23 9@y @)
R j=170

By a direct calculation we find

dz _[AGy)| 1
Y n Ay Q&L (2100
where
V2(3) (&) + T+ (m)() —ng+(§)(6) — &6+ (é)(n) — ¢
0.en) = (MAQ) + (m/1+ (1)) -1 (1) L,

(1+ (M) (&) =10/ (&) + (G (&) + (m))

Therefore we obtain

f NP2, y)dy = f “e 2z, (2.103)
R 0
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where

D(¢, z) = \[fo’(é vIQE M|,y )

j=1

Since Q(&,¢,¢) = (2)*?, then the application of Lemma 2.3 yields

J‘ eitA(g,y)¢(§, }/)dy _ \/?<§>3/2¢(§, 0) + O(t‘3/4“¢)z(§/ Z)“L?Lg)
R

By a direct calculation we have

©.(2,2) Zr])y(é »(QE &)

y=y;(2)

+ Z;qb(é,y)\/Q(é, &) (2Qe(&,6m) +Qu(& ¢,m))

y=yj(z)

By (2.38)
(&)(n)
Q& ¢m) < C———""57,
() + ()"
4m)] <€) s > P
Qe ml<c) Q(één)<1+<ﬂ>+<§>+<§>+<§> S )"
c@)
S—.
|Q71(§/€/Tl)| (<§>+<n>)1/2

Therefore we get the estimate
(@)

el Z)\F @y ey

+C[[ ()" (@) + () & y)

P2 2)llerz = ‘

ooy 2 o1 2
LL LLy

w72
LFLy

This yields the estimate of the lemma. Lemma 2.7 is proved.

25

(2.104)

(2.105)

(2.106)

(2.107)

(2.108)

O

In the next lemma we obtain the asymptotics for the nonlinear term F%(—t)G(u,

(i0,) 'u?) in (1.14).
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Lemma 2.8. Let v € H'. Then the asymptotic formula holds as follows:
a1 )
&) (Fu-06 (3 (10 102) - 10D H ) [ <ol @109

for t > 1 uniformly with respect to ¢ € R, where v(t, &) = e ©1i(t, &), Q) = (£)2/(2&) (2(&)+(2¢)).

Proof. We first find the representation for FU(-1) ((i0x ) "42(t)). We introduce the operator
Q(t) =BU{) + W(t) = ﬁ%f%l‘le‘i“@, so that the representation for the free evolution group
is true U(H)F ' = e MOIFT = Fle8) = ,MQ(t). We also have Fel'i%) = Q1 (H)MD;?,
where the right-inverse operator Q7! (t) = U™ (1)B~! + W1 (t) = &) FD; M.

Since Dyt = ViDw Dy, D' = iD1/0, and FD1 /0 = D F, we find

QT (MY = MO FD,MY = VietD D FD . MY
(2.110)
= Vie"HD,e Q7 (wt)

with w > 0. Applying this formula with w = 2 and putting u(t) = U()F v = DMQ(t)v, we
get

Fu(-H((io:) A1) = ()7 Q7 (HMBT(2MQ(t)v)’

__ 1 4 ) et guitd) CERY
= (g)\/ﬁQ HM(Q(H)v)" = VG D, 28 Q1 (2H(Q(t)v)>.

Since FU(—t) = Fe'(i0:)!t = ¢HEF we can write

—2it(n)

Frn((i0:) 12 () = %992 ¢ a0 Q1 (2)(Q(H)v)>

(2.112)
1

_ Ee‘Zif<“/2>®(t, g)/

where @(t,77) = (271)’1Q‘1 (21)(Q(#)v)*. Hence we obtain

FU1G(T, (100) %) = e"OFG(T, (i0) 24

et fﬁ<t’”_‘§)q:Xen((iax>1u2(t)>d11 (2.113)
CVam() e (&) +(&-n)+(n)



Advances in Mathematical Physics 27

Since ii(t, 1 — &) = e v(t,n - &), we get

B — 12\ 1 eitgv(tlﬂ_é)q)(trn/z) 2.114
FUCHG(E 0 ) = m e @ e e

with A = (&) + (7-¢) —2(n/2).
Since Q(t) = BU(t) for |x| < 1 and Q() = W(¢) for |x| > 1, we then have

(Q(Hv)* = (BUH)v)? + (W(H)v)? (2.115)
for all x € R. In the same manner applying the identity B~ (Bv)? = (8)¥202(¢), we obtain

O(t,17) = (27)" 0 20)B(BU(E)©) + (27)” 107 (24) (W0 (t)v)
= 2n) U 20 (@) VAU (1)) + (21) 071 (2 (W0(E)v)? (2.116)

=@y (t, 1) + Do (t,17).

After a change 7 = 2¢ + 2y, we find

gcu(—t)c;(ﬁ, (i0,)! u2> _ J ) AN G, (&, y)dy + I ReitA(g,y>¢2(§,y)dy, (2.117)
where
_ o(t,E+29) i (4, +y)
P& y)= m<§>((§)+<§+2y>+<2<§+y)>)l (2.118)
j@ 3 '
(o) = v(t,E+2y) Do (L ¢+ y)

VEIHE) ((5) + 5+ 20) + &+ )

and A(¢,y) = (&) + (¢ +2y) —2(& + y). Note that

o @ng|| . = |[EeHFR2(1-0)¢

= o1 - 09l

(2.119)
=11 -0l < ([Pl
Hence by Lemma 2.5 with 6 =5/6,r =4
Pomglly. < ce?([[@ag|| , + 1)l ) (2.120)

forallt>1,and

10 @ 00|, <l0ttyoli < ¥4 ([|@ro]|  + ol ) (2121)
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Thus

[ g nar| <o w0 @noomer

-5/4 3
L2 <Ct™ ol

(2.122)

We apply Lemma 2.7 to find

[(FUEDG(7, (10.) ) - (8 2Q@)0(E )V (25)(6) V()|

120(8¢E+2y) D1 (L ¢+ )
(¢+2y) +(2(¢+y))

< Ct*5/4

E+2y) 2+ y) P (B +2y) + (E+ )

2
LPL}

(@+29)" @ +y)"” | o(Er2)Di(tEty)

+Cto/4 y
((E+2y)+(&+y))* T8 +(e+2y) +(2(6+V))

+ Ct 50| 2

2
LyL}

< CEVA (0l 1O lggoass + 1P lges [0l ggors
3
Hlollgo 1P llgss + 0]l 1P flgops + ||U||H1,3>

< CE (Il 01 o+ o1y2)

(2.123)
since
v(t,E+2y)D1(tE+y)
,Y) = . (2.124)
©nCy) = o+ 2w~ 2 )
By Lemma 2.2 we have
I Bl < CJJ() 3, (T @0(8)*@B)0)) ||,
(2.125)
<c| @ o mor|| , + @ @mo)|| , < Clloll.
We now write the representation for ¥(t, ¢) as
wi,p - —— " i nen @ 2@y
T RE @ 28 (2.126)

= (H)Q@)[vfv +R,
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where the remainder is

R=(2)2(22)Q)v(t,&)(2¢)™"

) (2.127)
< ((07@) - 1)@ (©®) + (V1) -2*)).

By the second estimate of Lemma 2.4 with f = 5/4 and the first estimate of Lemma 2.4 with
p =3/4, we obtain

|2a (o en -1)@> > ©mor|

<crVi(|ler ool | @revme

L+ l@vwell) (2.128)

<crV @ @) - || Iollz + CE ol < CEV Aol

forallt > 1. Also

[ (@mo? -2)|| |, <c([|@ @m-vo|  +|@"|| )@ @b -10|

L

< Ct_1/4||U”12qL2-

(2.129)
Thus we find the estimate for the remainder R(t) as
IROIe- < C[[ @700 || (v en -1)@>* ©mor| .
(2.130)
|l ene@e| @ (@m0 -2?)| < ol
Hence
¥(t,8) = ()QE)oPo+ O(F o2, (2.131)

Therefore the asymptotics of the lemma is true. Lemma 2.8 is proved. O
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3. Proof of Theorem 1.1

We introduce the function space
Xr = {¢€C<[O,T];L2>;|I¢|IXT <oo}, (3.1)

where

I 9llx, = ts;;g](<t>‘yll¢(t)llﬂs (O 2¢ Ol + O TN29O e + (O N6O 1, ),
(3.2)

and y > 0 is small.
The local existence in the function space Xr can be proved by a standard contraction
mapping principle. We state it without a proof.

Theorem 3.1. Let ug € H>! and the norm ||ug |1 = €. Then there exist g > 0 and T > 1 such that
forall 0 < & < g the initial value problem (1.1) has a unique local solution u € C([0, T]; H*!) with
the estimate |lullx, < /€.

Let us prove that the existence time T can be extended to infinity which then yields
the result of Theorem 1.1. By contradiction, we assume that there exists a minimal time T > 0
such that the a priori estimate ||u||y, < /¢ does not hold; namely, we have |Ju||x, < /.

We apply the energy method to (1.14) L(u + iAG (1, %)) = -2i|\|*G (@, (id,) "u?), (i.e.,
multiplying both sides of the above equation by (iax)é(u +1i0G(u,u)), taking the real part,
and integrating over the space) to obtain

L+ MG D < C|G(7 (o) )

w (3.3)
< Cllulify l[ullge < Ce¥/2(6)"

since by Lemma 2.1

fo(a o), < claiad), +clo(a )

,+C||6(a%,2)

H L L2

(3.4)
+ C”G(Bxﬂ,uz) ||LZ < Cll””iﬂﬁ”””m

and |[ullg < VEBT ullgs < Vet by the estimate ||ully, < +/¢. Hence by Theorem 3.1
we have ||u +i\G (W, U) ||y < Ce(t)' and

lullge < llu+iG(w, w)llgs + G, w) ||

< Ce(t) + Cllullp, llullgs < Ce(t)'.

(3.5)
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Next we use the commutator relations [x,(i0x)*] = a(idy)* 20y, [D(i0x)*] =

a(id, ) 20,0y, 0 = —i(id,)u + i(idy) (W), and LP = (P — i(idy) '0x) L, to get L(u +
iG(u,m)) = -2ilA*G(, (idc ) 'u?). Hence

LD(u+iAG(u, 1)) = 21| \P0G (a, (iax>_1u2> + 2|A|2<iax>—1axc;(a, (iax)_1u2>. (3.6)

Then by the energy method (i.e., multiplying both sides of the above equation by
(iax)4ﬁ(u - G(u,u)), taking the real part, and integrating over the space), by Lemma 2.1,
using Ou = —i(i0x)U + i(iax)*1 (ﬂz), we obtain

|pG(m ¢iv.) )

2
o S CUDullge + 10l el

(37)
< CllPullgge + 1]l ggo) 24l -
Hence
d o — e — a1 2
DG+ 1G@ @)l < C||PG (3, 00 ) |+ Cl|a(@ o)) | o8
< C(I1Pullge + lullg) 1ullfy < Ce(t) ™ |Dullgye + Ce* ()
Therefore by Theorem 3.1 it follows that
[Dullge < Ce(t)). (3.9)
The energy estimate and the identity £x = x.£ — i(id,) ' 0, imply that
D+ idG@ D) e < Cllxa(m o))+ llu+iG By
At 4 H> = % x - , H
< Clluliy llxullye + Clluliy llullye + Ce(t) (3.10)

< Ce(t) ™ |xullge + Ce(t)?,

which yields

llxullg < Ce(t)*. (3.11)
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Then by the identity 2 = i) —ix.£ - <iax>‘1ax we obtain

12(u +iAG(w, w))||ge < 10 (u +iAG(w, u))||ge + [l0L(u + MG (@, u)) ||g2 + [Ju +IAG (1, 1) || g2

< Ce(t) + c||xq(a, <iax>*lu2)

H2

< Ce(t)' + Cllullilgcllxullnz + Cllullﬁéllullﬂz < Ce(t).
(3.12)

We use Lemma 2.8 to obtain for the new variable v(t) = e™(¢)i(t, )
— a2\ 1 2 ~5/411..113
OFUDG(T, (i) w) = 2ot v (t,¢) + O (£ lols) (3.13)

for t > 1 uniformly with respect to ¢ € R, where Q(¢) = <g>2/<2§) (2(¢) + (2¢)). Hence for the
new function ¢ = e F (u + i\G(u, u)) we get

(¢)p = —2i|)c|2%<é>s2<§>|¢<t,§>|2¢(t,§> +O(1 4 (1)) (3.14)
in L7, 2 <7 < oo. Then integrating, we obtain sup,,,[[(¢)$(#)[| . < Ce. Hence

sup||o(f) ||y < Ce. (3.15)
t>1

By the decomposition of the free evolutions group we have the identity
(0 )u(t) = (DMOBU(E) + DI(1)) (&) Fe' ™ u(t)

= D, M(t)B(&)Fe' )ty (t) (3.16)

+ (DMBBE (U1 - 1) + D) ) (&) Fe P ut).

By Lemmas 2.4 and 2.5 we find that the last term of the right-hand side of (3.16) is a
remainder. Indeed we have the estimate

el < Cl@M@OBEFE D u|| +Cetty™ || @) F @ uiw) .
(3.17)

< C(t) " ?supllo(t) lgor + C(EY" | 2u(t) g,
t>1

which yields

su}o<t>”2||u<t>||H; < Ce. (3.18)
>
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From (3.15) and (3.18) it follows that

l[ullx, < Ce <+,

33

(3.19)

which implies the desired contradiction. Thus there exists a unique global solution u €

C([0, o0); H*!) to (1.1) with the time decay estimate.

We now prove the asymptotics of solutions. By (3.14) as in the proof of Lemma 2.7 we

have

t
[l () =g (8) gz + lgr (D) = () [l gpon < Cem[ T4 dr < Ce¥2sr 1

S
with y € (0,1/4), where
y(t) = pe-2iMPQlol logt _ ?ei@'@x)tu(t)e—ZiM\zQ\?e"“bx”u(t)|2 log#
Thus we see that there exists a unique final state ¢, € H% N H®! such that
3/24y-1/4

”(P(t) - (P‘*'”Hg’,1 + ”(P(t) - (P+||H0,1 <Ce

We consider the asymptotics of the phase function
() - i f o™ - o)) zﬂf g - lgoF) 2

By a direct calculation we have
(1) - O(s) 9<j (e P~ lp@F) = + (I - lo(s)] )logs>,

where 1 < s < T < t. Hence

t dr
| D(t) - D(s)[|r < Cf (@) =4Ol (Ul @l + o @®l) —
+Cllg(s) =g @O|lgo (g @) |- + lg®]l.) logs

t
< C55/2f V5447 1+ Ce¥2s7 V4 log s,

S
from which it follows that there exists a unique real valued function @, such that

[D(t) = D, ||gor < Ce¥/2071/4,

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)
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Similarly, we find || ®(t) — i@, |l < Ce¥?#"1/4, Therefore we have the asymptotics of the
phase function

2dr

T

t t
of e L = iaf geru)
1 T 1

= i, +iQ|y. | logt + (D(F) — id,) + iQ<|§Cei<ia*>‘u(t)|2 - |qr+|2) log t.

(3.27)
We also find
i(i0, )t _ 2|AL (i, +iQ|g, * log £)
e u(t) - ¢.e
= Feil00ty (1) — g5, Py ()P (dr/7)
. <ezwziﬂf N @PEr/T) _ 2 APio,+2A iy 1ogt> (3.28)
- 2DFIQf (O (dr/T) _ o\ L2 g (r) (dr/7)
= q;(t)e 1 e 1
+ . < R2MFIQL Iy ()P (dr/7) _ P +2A iRy 1ogt)>_
Collecting these estimates, we obtain
i(i0 )t _ AP, +2|A2iQ g, |* log ¢
|Fe @ () - grre "
< Cllg®) = grelgor + Cllge | goa |1O() — i ]| (329)
e s [l (®) = gl e (Nl [l + [l (B[]2) log £
S C€3/2tY—1/4,
and similarly
||?ei(iax>tu(t) _ q}+eZ|MZi(I)++2|)L|2iQ\qf+‘Zlogt| o < Ced/2p1/4, (3.30)
Therefore we have
FeHtide)ty () W+eiQ\W+|2 log ! < Ce2p1/4
Ho1
(3.31)

< C£3/2ty—1/4,

L 2
qez(zb,()tu(t) _ W+elQ\W+| log t
HY'
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where W, = . exp(2|A|2i®+). Estimate (3.31) means that

u(t) - e—i(iax)t?—lW+62|,\|2iQ|W+|2 logt < Cgd/2pr-1/4, (3.32)

Hl,O

Theorem 1.1 is proved.
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