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When surface wave propagating over the two layer system usually induces internal wave in three
different modes: they are external, internal and combination. In the present study, the nonlinear
response of an initially flat sea bed, with two muddy sections, to a monochromatic surface
progressive wave was investigated. From this theoretical result, it shows that a surface water wave
progressing over two different muddy sections, the surface wave will excite two opposite-traveling
short interfacial waves, forming a nearly standing wave at the interface of the fresh water and the
muddy layer. Meanwhile, two opposite-outgoing “mud” waves each with very long wavelength
will be simultaneously induced at the interface of two muddy sections. As a result, the amplitudes
of the two short internal waves are found to grow exponentially in time. Furthermore, it will be
much difficult to excite the internal waves when surface water wave progressing over two muddy
sections with the large density gap.

1. Introduction

Generally, wave propagating over the two layer system usually induces internal wave in
three different modes: they are external, internal, and combination, as shown in Figure 1.
These internal waves dissipate rapidly with imaginary and real wave numbers of a similar
magnitude and remove energy from the surface waves. Also, nonlinear damping mechanisms
have been proposed based on wave-wave instabilities and interactions.

The present work is motivated by recent studies on the interaction between a
progressive surface wave and the nearly standing subharmonic internal waves in a two-
layer system. It is well known that the loading of progressive surface waves, a silty sediment
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Figure 1: Schematic diagram of the two layer system showing (a) the external wave mode with the same
frequency and wavelength for both the air-water and water-mud interface waves, (b) the internal wave
mode with the same frequency, but much shorter wavelength for the water-mud interface waves, and (c)
the combination of the two. The arrows in panel (c) indicate shear across the mud water interface, which
could lead to a shear instability mechanism to generate the internal mode waves in each half cycle of the
surface wave.

bed was repeatedly and extensively fluidized. The broad-based interest in understanding
this phenomenon induces from the application to studies in sediment transport, wave
attenuation, and the design of marine structures. The nonlinear response of an initially flat
sea bed to a monochromatic surface progressive wave was studied by Wen [1] for using
the multiple scale perturbation method. She found that two opposite-traveling subliminal
internal “mud” waves are triggered and form a resonant triad with the surface wave. The
resonant generation of internal waves on sediment bed was presented as a new mechanism
of sediment suspension. Nonlinear wave interactions are considered to be as an important
aspect of the dynamics of the oceans and the atmosphere. Of particular interest are resonant
interactions, which are important in the redistribution of energy among wave modes with
different spatial and temporal scales. Ball [2] used a second-order nonlinear resonance theory
to analyze that linear growth of an internal wave could result from the interactions between
two finite-amplitude surface waves. Watson et al. [3] extended the investigation by analyzing
how a spectrum of surface waves could generate a corresponding spectrum of internal
waves. Wen’s [1] work was followed by Hill and Foda [4], who treated the problem in
two dimensions for both an inviscid and a viscous lower layer. Hill and Foda [5] and
Jamali [6] have presented theoretical and experimental studies of the resonant interaction
between a surface wave and two oblique interfacial waves. Despite many similarities between
the findings, there is one seemingly major difference. Hill and Foda’s [5] analysis predicts
only narrow bands of frequency, density ratio, and direction angle within which growth
is possible. However, Jamali [6] predicted and observed wave growth over wide ranges of
frequency and direction angle, and for all the density ratios that he investigated. Therefore,
Jamali et al. [7] presented the study to investigate the contradictory results between the
findings of Hill and Foda [5] and Jamali [6]. From their result, it is showed that the crucial
difference between the two studies is in the dynamic interfacial boundary condition. The
boundary condition used by Hill and Foda is missing a term proportional to the time
derivative of the square of the velocity shear across the interface. When this missing term is
included in the analysis, the theoretical predictions are consistent with the results of Jamali’s
[6] laboratory experiments. Both of the Hill and Foda’s [5] and Jamali’s [6] study found that
the interfacial waves are short, have a frequency of nearly half that of the surface wave, and
propagate in nearly opposite directions. The nonlinear response of an initially flat sea bed,
with two muddy sections, to a monochromatic surface progressive wave was investigated
in the present study. Based on an analysis similar to that of Hill and Foda’s paper [5], the
multiple-scale perturbation method was adopted, and the boundary value problem was
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Figure 2: Configuration of the problem in the two-layer system with two muddy sections.

expanded in a power series of the surface-wave steepness. The linear harmonics and the
conditions for resonance were obtained by the leading order, while the temporal evolution
equations for the internal-wave amplitudes were investigated by a second-order analysis. It
was found that result for equal density of two muddy sections is similar to that of Hill and
Foda’s paper [5]. Two opposite-traveling internal “mud” waves are selectively excited and
form a resonant triad with the progressive surface wave. However, for a surface water wave
progressing over two different muddy sections, the surface wave will also excite only two
opposite-traveling short interfacial waves, forming a nearly standing wave at the interface of
the fresh water and the muddy layer. Meanwhile, two opposite-outgoing “mud” waves each
with very long wavelength will be simultaneously induced at the interface of two muddy
sections. As a result, the amplitudes of the two short internal waves are found to grow
exponentially in time.

2. Formulation

As shown in Figure 2, the origin of a two-dimensional Cartesian coordinate system is placed
on the undisturbed interface between a surface layer of depth H and density p and a lower
depth h at the interface between two different density sections, p and p”. The y-coordinate
is defined as pointing vertically upward, and the density rations, y = p/p and y = p/p’, are
assumed to be less than unity. To the leading order, the wave field is assumed to be made
up of a linear progressive surface wave of amplitude A, wave number k, and frequency w,
propagating in the positive x-direction. Firstly, we assumed that the perturbation internal
waves at left muddy section have amplitudes a; and a,, wave numbers A1 and \,, frequencies
o1 and 07, and propagate in the positive and negative x-directions, respectively. Then for the
right muddy section, there are also the perturbation internal waves with amplitudes a; and
as, wave numbers A3 and A4, frequencies 03 and oy, and move in the positive and negative
x-directions, respectively. It is noted that aj, az, as, a4, and A are taken to be complex and
M ~ A4 and 01 ~ 0y are all defined to have positive real values. For resonant interactions to
occur in two muddy sections, the following resonance conditions are imposed on the four-
handed wave numbers and frequencies:

M-l-M =k,
.)L1+.)L3_)L4=k,

(2.1)
01 —02—034 =W,

01 +03—04 =wWw.
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Expressing the flow-field in the two-layer inviscid system in terms of a velocity poten-
tial @, we assume that @ satisfies Laplace’s equation throughout the depth of the fluid

V2D =0, ~h<y<H-+¢ (2.2)
The displacement ¢ of the free surface from its static elevation y = H is given by
¢ =A™ (23)

in which the phase function 6y = (kx —wt). The free surface will oscillate synchronously with
¢, with an amplitude A in response to the passage of the surface wave.
At the free surface, the usual kinematic and dynamic conditions are given by

g—f =0Qy, y=H+g,
(2.4)

(I)t+g§+%V<I)-V(D:0, y=H+¢.

At the interface between the water and the slurry, there are similar conditions of con-
tinuity of pressure and vertical velocity. Therefore, on the left muddy section we have

+ 1 -
p<®?+$f+évmkvmv =p<¢%+$f+ivmkv®0 YT

D !
B ==, y=r.

(2.5)

Similar conditions of continuity of normal velocities and traction stresses are imposed
at the disturbed interface on the right muddy section

* 1
p<(I>{ +gn"+ %V(I)r . Vd)r) =p" <(I)i +gn" + EV(I)r : V(Dr) ,y=1,

D//
Br == y=r

(2.6)

Meanwhile at the interface between two muddy mass of sections, conditions of conti-
nuity of pressure and continuity of water and mud are shown as followed

[P((Dl)x]z;?)r§ = [p(®;),] zzi+g, at x =0, (forwater),

(2.7)

@35 = [ @.]55, atx=0, (formud).
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Note that the ] and r superscripts denote the tiny interface between left muddy section
and right muddy section, and + and — superscripts show evaluation just above and just below
the interface between the water and the fluid-mud, respectively. And finally, at the bottom of
mud layer, we have the no flux condition

®,=0, y=-h (2.8)

With the system for the interface and free surface being assumed to be only weakly
nonlinear interaction, Taylor’s expansion at the interface and free surface is used to eliminate
¢, 7', and ". And by using the method of successive approximations, we have three free wave
harmonics in the velocity potential @' for left side (x < 0), that is we assume the following
expansion for @':

@ = g(p(y)ei(kx*“’t) + gz{qf(y)ei()”x“"t) + X(y)ei()‘zx*"zt)} + (I)fM +c.c. (2.9)

The first three terms of the above expansion represent the three free harmonics; first
term is the surface wave, and the following two terms are for the internal waves, @' , repre-
sents the harmonics, and c.c. denotes complex conjugate. The expansion parameter is taken
to be the steepness of the surface wave, € = kA. Our analysis is restricted to the case of small
internal waves, only so the internal wave harmonics appear at O(e ?) and not at O(e).

Similarly, the velocity potential ®” for fight side (x > 0) is expanded as follows:

D" = egp(y)eFh + sz{qr(y)ei()‘3x“’3t) + x(y)ei()‘4x+"4t)} +@ +cc (2.10)

3. Perturbation Solution

For the solution procedure, a standard perturbation analysis for a weakly nonlinear wave-
field system is used. The solution procedure involves solving the above boundary value
problem in an ordered sequence, by separating terms in the governing equations and the
boundary conditions according to their order in € and their phase. Substituting (2.9) and
(2.10) in the governing equations and collecting the leading O(¢) order, the approximate
linear solutions for the interacting harmonics are obtained. For the dispersion relationship of
surface wave,

w4{ (Y’Y”)l/z Coth(kh) COth(kH) + 1} _ w2 (Yly_u)l/Z
(3.1)
x{coth(kH) + coth(kh)} gk + {(Y’Y")l/z B 1}g2k2 o,
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For the dispersion relationship for internal waves of two muddy sections, the follow-
ing is obtained

gf1- )"

- Jasll / !
(y")'?

+ coth(A1h)
g{l _ (Y/Y/l)l/Z}

0] x <0,

2

o2 = , X < O/
2 (Y;Yn)l/z + COtthh + )t4h|
(3.2)
1 o\1/2
. g{1- 07"
O3 = 1/2 o 0,
(Y,Y”) + coth(A1h + A3h)
1\ 1/2
g{1- )"}
o x> 0.

4= ,
(YIY”)l/z + Coth|()t4h)|

Quadratic interactions between the above linear harmonics are analyzed at the second
order, O(&?). Since the homogeneous version of the boundary value problem had a nontrivial
solution, the inhomogeneous problem has a solution only if the forcing terms are orthogonal
to the homogeneous solution. Invoking solvability, through the use of Green’s theorem, the
desired evolution equations via the internal wave amplitudes are obtained. For simplicity,
the amplitude equations—via solvability—may be straightforwardly shown as follows:

% =ima,A,

(3.3)
% =ia,q A"
dt = lard] ’

in which a; = a; + a, + a4 and a, = a; + az + a4. a; and a, are the interaction coefficients. Taking
cross differentiation of (3.3), the growth for amplitudes of the internal waves is governed by
exponentials:

ai, a, o exp{+/—ma, At},

_ = _1 i _ 1
a =/ altx,—2|A|{H<1 2(y'y")

1/202 + Oy k >

01 + 03 /\1 + .)L3 (34)

)1/20'1+O'3_ k
Op + 04 )L2+)L4

x <1 —2(y'y" )(A1 +)L3)(A2+/\4)}1/2.

Under the condition of a being purely imaginary, then the amplitudes a; and a, are not
able to grow with time. Equivalently, the surface water wave will be stable to these internal
wave perturbations. Only when « is real, the growth of the internal wave amplitudes will
occur.
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Figure 3: Two internal wave frequencies as functions of surface wave frequency w, H = 4m, y’ = y” = 0.83,
and h =0.1m.
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Figure 4: Two internal wave frequencies as functions of surface wave frequency w, H = 4m, y' = y” = 0.83,
and h = 0.3m.

4. Results and Discussion

In an effort to develop a mechanism of the generation for internal waves of two muddy
sections by surface wave, an inviscid second-order nonlinear resonant interaction has been
analyzed. An example of the same density for two muddy sections, the internal-wave
parameters as functions of w for the cases of y/ = y” = 0.83, H = 4m, h = 0.1m and
Y =y" =083, H =4m, h = 0.3m is shown in Figures 3 and 4. The result of the present
study is similar to that of Hill and Foda’s paper [5]. It is obvious that there is a surface-
wave frequency, a cut-off frequency, below which resonant triads do not exist. The cut-off
frequency is a function of H, h, y, and y”. Furthermore, the critical frequency corresponds
to these cases in which the internal waves in muddy layer are nearly subharmonic to the
surface wave, thatis, 01 = 04 = w/2, and are propagating in the same and opposite directions
to the surface wave. Figure 5 shows the growth rate of internal waves as a function of the
surface wave frequency for y” = 0.83, H = 4m, and h = 0.1m and 0.3m. The growth
rate of internal waves will be suppressed when the depth of mud layer increases. That is
because if the mud layer depth being too thick, the interaction among surface and interfacial
internal waves weakens. Internal waves are also subdued. However, for a surface water
wave progressing over two different muddy sections (y' #7"), the surface wave will also
excite only two opposite-traveling interfacial short waves, forming a nearly standing wave
at the interface of the fresh water and the muddy layer. Meanwhile, two opposite-outgoing
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Figure 5: Theoretical determined internal wave growth rates as functions of surface wave frequency w,
H=4m,y =y"=0.83,(a) ¥ =0.1m, and (b) h = 0.3m.
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Figure 6: Two internal wave frequencies as functions of surface wave frequency w, H =4m, h = 0.1m (a)
Y =y"=0.83,(b)y =0.83,y" =0.77,and (c) y’ = 0.83, y" = 0.71.

“mud” waves each with very long wavelength will be simultaneously induced at the interface
between two muddy sections. The wave numbers of these two long internal waves will be of
the order 10 ~ 10~* and have opposite value; A, = —\3 = 10> ~ 10~ for the cases of different
mud layer depth. Figure 6 shows that if the density of the right muddy section becomes
increasingly larger than that of left side, then the right resonant internal wave frequency
will also have increasingly higher value than the left. Meanwhile if the density difference
between two muddy sections increases, the growth rate of the two resonant short internal
waves will be suppressed. This result can be seen in Figure 7. The result means that it will
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Figure 7: Growth rate of internal short waves for different density ratios of the right muddy section (y" =
0.83, 0.78), water depth H = 4m, mud layer depth & = 0.1 m, and density ratio of the left muddy section
y' =0.83.

be much difficult to excite the internal waves when surface water wave progressing over two
muddy sections with the large density gap.

5. Conclusions

The resonant generation of internal waves on a sediment bed was presented as a new
mechanism of sediment suspension. In this study, the corresponding theoretical analysis
for equal density of two muddy sections is similar to that of the previous studies. A
progressive surface wave simultaneously generates two opposite-traveling short internal
waves. However, for a surface water wave progressing over two different muddy sections,
the surface wave will also excite only two opposite-traveling interfacial short waves, forming
the triad resonance with the surface wave. Meanwhile, two opposite-outgoing long internal
waves will be also triggered at the interface between two muddy sections. Furthermore, it
will be much difficult to excite the internal waves when surface water wave is progressing
over two muddy sections with the large density gap.
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