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The symmetry algebra of asymptotically flat spacetimes at null infinity in four dimensions in
the sense of Newman and Unti is revisited. As in the Bondi-Metzner-Sachs gauge, it is shown
to be isomorphic to the direct sum of the abelian algebra of infinitesimal conformal rescalings
with bms4. The latter algebra is the semidirect sum of infinitesimal supertranslations with the
conformal Killing vectors of the Riemann sphere. Infinitesimal local conformal transformations
can then consistently be included. We work out the local conformal properties of the relevant
Newman-Penrose coefficients, construct the surface charges, and derive their algebra.

1. Introduction

The definitions of asymptotically flat four dimensional spacetimes at null infinity by Bondi et
al. [1, 2] (BMS) and Newman-Unti (NU) [3] in 1962 merely differ by the choice of the radial
coordinate. Such a change of gauge should not affect the asymptotic symmetry algebra if, as
we contend, this concept is to have a major physical significance.

The problem of comparing the symmetry algebra in both cases is that, besides the
difference in gauge, the very definitions of these algebras are not the same. Indeed, NU
allow the leading part of the metric induced on Scri to undergo a conformal rescaling.
When this generalization is considered in the BMS setting, it turns out that the symmetry
algebra is the direct sum of the BMS algebra bms4 [4] with the abelian algebra of
infinitesimal conformal rescalings [5, 6]. There are two novel and independent aspects in
this computation.
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(i) The first concerns the fact that the BMS algebra in 4 dimension involves
the conformal Killing vectors of the unit, or equivalently, the Riemann sphere and can
consistently accommodate infinitesimal local conformal transformations. The symmetry
algebra bms4 then involves two commuting copies of the noncentrally extended Virasoro
algebra, called superrotations in [7], and simultaneously the supertranslations generators
are expanded in Laurent series. The standard, globally well-defined symmetry algebra
bms

glob
4 consists in restricting to the globally well-defined conformal Killing vectors of the

sphere which correspond to infinitesimal Lorentz transformation, while the supertranslation
generators are expanded into spherical harmonics.

This local versus global versions of the symmetry algebra are of course not related to
the BMS gauge choice, but will also occur in alternative characterizations of the asymptotic
symmetry algebra where the conformal Killing vectors of the sphere play a role. Examples of
this are the geometrical approach of Geroch [8] based on Penrose’s definition of null infinity
[9] and also, as we will explicitly discuss in this paper, the asymptotic symmetries in the NU
framework.

(ii) The second aspect is related to the modified Lie bracket that should be used
when the vector fields parametrizing infinitesimal diffeomorphisms depend explicitly on
the metric. Indeed, when using the modified Lie bracket, the spacetime vectors realize the
asymptotic symmetry algebra everywhere in the bulk and furthermore, even on Scri, this
bracket is needed to disentangle the algebra when conformal rescalings of the induced metric
on Scri are allowed. Similarly, in the context of the AdS/CFT correspondence, this bracket
allows one to realize the asymptotic symmetry algebra in the bulk and to disentangle the
symmetry algebra at infinity when considering transformations that leave the Fefferman-
Graham ansatz invariant only up to conformal rescaling of the boundary metric [10]. From
a mathematical point of view, the modified Lie bracket is the natural bracket of the Lie
algebroid that is associated to any theory with gauge invariance [11].

What we will do in this paper is to rederive from scratch the asymptotic symmetry
algebra in the NU framework by focusing on metric aspects and on the two novel features
discussed above. As expected, the symmetry algebra is again the direct sum of bms4 with the
abelian algebra of infinitesimal conformal rescalings of the metric on Scri and thus coincides,
as it should, with the generalized symmetry algebra in the BMS approach. A related analysis
of asymptotic symmetries in the NU context from the point of view of Scri and emphasizing
global issues instead can be found in [12, 13].

Even though the results presented here are not really surprising in view of those
in the BMS framework and the close relation between the NU and BMS approaches, the
exercise of working out the details is justified because the NU framework is embedded in
the context of the widely used Newman-Penrose formalism [14] so that explicit formulae in
this context are directly relevant in many applications, see for example, the review article
[15].

As a first application, we study the transformation properties of the Newman-
Penrose coefficients parametrizing solution space in the NU approach. Our main focus
is on the inhomogeneous terms in the transformation laws that contain the information
on the central extensions of the theory. We then discuss the associated surface charges
by following the analysis in the BMS gauge [16] and briefly compare with standard
expressions that can be found in the literature. The algebra of these charges is derived
and shown to involve field dependent central charges in the case of bms4 which vanish for
bms

glob
4 .
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2. NU Metric Ansatz for Asymptotically Flat Spacetimes

The metric ansatz of NU is based on a family of null hypersurfaces labelled by the first
coordinate, x0 ≡ u = const. The second coordinate x1 ≡ r is chosen as an affine parameter
for the null geodesic generators lμ of these hypersurfaces, so that lμ = −δμr . Up to a change
of signature from (+,−,−,−) to (−,+,+,+), a renumbering of the indices, and the tetrad
transformation that makes the conformal factor real, the line element considered in section 4
of NU [3] can be written as

ds2 =Wdu2 − 2dr du + gAB
(
dxA − VAdu

)(
dxB − VBdu

)
, (2.1)

with associated inverse metric

gμν =

⎛
⎝

0 −1 0
−1 −W −VB

0 −VA gAB

⎞
⎠, (2.2)

where

gABdx
AdxB = r2γABdx

AdxB + rCABdx
AdxB + o(r), (2.3)

with γAB conformally flat. Below, we will use standard stereographic coordinates ζ =
cot(θ/2)eiφ, ζ, γABdx

AdxB = e2ϕ̃dζ dζ, ϕ̃ = ϕ̃(u, x). In particular, we use the notation e2ϕ̃

for the conformal factor. In Section 4, we will give the explicit dictionary that allows one
to translate to the quantities originally used by NU.

In addition, the choice of origin for the affine parameter of the null geodesics is
fixed through the requirement that the term proportional to r−2 in the expansion of the spin
coefficient −ρ = Dρlνm

ρmν is absent.
When expressed in terms of the metric, one finds

ρ = −1
4
gABgAB,r = −14∂r ln

∣∣g∣∣ = −r−1 + 1
4
CA
Ar
−2 + o

(
r−2
)
, (2.4)

where g = det gρν and the index has been raised with the inverse of γAB. The requirement is
thus equivalent to the condition

CA
A = 0. (2.5)

In the following we denote by DA the covariant derivative with respect to γAB and by Δ the
associated Laplacian and by R the scalar curvature. In complex coordinates ζ, ζ, Cζζ = 0 and
we define for later convenience Cζζ = e2ϕ̃c, Cζ ζ = e

2ϕ̃c. Finally,

VA = O
(
r−2
)
, W = −2r∂uϕ̃ + Δϕ̃ +O

(
r−1
)
, (2.6)

where Δϕ̃ = 4e−2ϕ̃∂∂ϕ̃with ∂ = ∂ζ, ∂ = ∂ζ.
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The more restrictive fall-off conditions in [3] are relevant for integrating the field
equations but play no role in the discussion of the asymptotic symmetry algebra.

3. Asymptotic Symmetries in the NU Approach

The infinitesimal NU transformations can be defined as those infinitesimal transformations
that leave the form (2.2) and the fall-off conditions (2.3)–(2.6) invariant, up to a rescaling of
the conformal factor δϕ̃(u, xA) = ω̃(u, xA). In other words, they satisfy

Lξguu = 0, LξguA = 0, Lξgur = 0, (3.1)

∂r

⎡
⎢⎣ 1√∣∣g∣∣

∂ρ

(√∣∣g∣∣ξρ
)
⎤
⎥⎦ = o

(
r−2
)
, (3.2)

LξgrA = O
(
r−2
)
, LξgAB = −2ω̃gAB +O

(
r−3
)
,

Lξgrr = 2r∂uω̃ + 2ω̃Δϕ̃ −Δω̃ +O
(
r−1
)
.

(3.3)

Equations (3.1) are equivalent to

∂rξ
ν = gνρ∂ρξu ⇐⇒

⎧
⎪⎪⎨
⎪⎪⎩

∂rξ
u = 0,

∂rξ
A = ∂BξugBA,

∂rξ
r = −∂uξu − ∂AξuVA,

(3.4)

and are explicitly solved by

ξu = f,

ξA = YA + IA, IA = −∂Bf
∫∞
r

dr ′gAB,

ξr = −r∂uf + Z + J, J = ∂Af
∫∞
r

dr ′VA,

(3.5)

with ∂rf = 0 = ∂rYA = ∂rZ. Equation (3.2) then implies

Z =
1
2
Δf. (3.6)

The first equation of (3.3) requires ∂uYA = 0, the second that YA is a conformal Killing vector
of γAB, which amounts to

Yζ ≡ Y = Y (ζ), Y ζ ≡ Y = Y
(
ζ
)
, (3.7)
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in the coordinates ζ, ζ, and also that

∂uf = f∂uϕ̃ +
1
2
ψ̃, (3.8)

with ψ = DAY
A, or more explicitly in ζ, ζ coordinates, ψ = ∂Y + ∂Y + 2Y∂ϕ̃ + 2Y∂ϕ̃, and

ψ̃ = ψ − 2ω̃. Finally, the last equation of (3.3) implies

2
(
∂uZ + Z∂uϕ̃

)
= YA∂AΔϕ̃ + ψΔϕ̃ + 2∂Afγ

AB∂B∂uϕ̃ + fΔ∂uϕ̃ −Δω̃, (3.9)

which is identically satisfied when taking the previous relations into account.
One approach is to consider that (3.8) fixes ω̃ in terms of f and Y , ω̃ = (1/2)ψ +f∂uϕ̃−

∂uf . Consider Scri, the space I with coordinates u, ζ, ζ and metric

ds2I = 0du2 + e2ϕ̃dζ dζ. (3.10)

The NU algebra is then defined as the commutator algebra of the vector fields

ξ = f
∂

∂u
+ YA ∂

∂xA
, (3.11)

with f = f(u, xA) arbitrary and YA(x) conformal Killing vectors of a conformally flat metric
in 2 dimensions, or equivalently, the algebra of conformal vector fields of the degenerate
metric (3.10).

This is not the symmetry algebra of asymptotically flat spacetimes in the sense of NU
however. Indeed, ϕ̃ is arbitrary, it can for instance be considered as the finite ambiguity related
to Penrose’s conformal approach [9, 17, 18] to null infinity. One can then interpret ϕ̃ as part
of the background structure, or in other words, of the gauge fixing [8], and compute the
asymptotic symmetries for a fixed choice of ϕ̃, that is, ω̃ = 0 in the formulae above, or ask
the more general question of how the asymptotic symmetries depend on changes in ϕ̃ by an
arbitrary infinitesimal amount ω̃. In both cases, one has to consider (3.8) as a differential
equation for f . As we now show, the symmetry algebra will then be isomorphic to the
trivially extended bms4 algebra by the abelian algebra of infinitesimal conformal rescalings,
as it should, and as a consequence, the Poincaré algebra is embedded therein in a natural
way. Furthermore, there is a natural realization of the asymptotic symmetry algebra on an
asymptotically flat 4 dimensional bulk spacetime. Note also that, for ω̃ = 0, (3.8) has been
interpreted from the point of view of Penrose’s conformal approach to null infinity in [12]
following [19] and related to the preservation of null angles, which is the standard way
[9, 17, 20, 21] to recover the BMS algebra from geometrical data on Scri.

The general solution for (3.8) reads

f = eϕ̃
[
T̃ +

1
2

∫u
0
du′e−ϕ̃ψ̃

]
, T̃ = T̃

(
ζ, ζ
)
, (3.12)
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and the general solution to (3.1)–(3.3) defining the asymptotic symmetries is given by ξρ as
in (3.5)where Z, YA, f satisfy (3.6), (3.7), (3.12)with ω̃ arbitrary. Asymptotic Killing vectors
thus depend on YA, T̃ , ω̃ and the metric, ξ = ξ[Y, T̃ , ω̃; g].

For such metric-dependent vector fields, consider on the one hand the suitably
modified Lie bracket taking the metric dependence of the spacetime vectors into account,

[ξ1, ξ2]M = [ξ1, ξ2] − δgξ1ξ2 + δ
g

ξ2
ξ1, (3.13)

where δg
ξ1
ξ2 denotes the variation in ξ2 under the variation of themetric induced by ξ1, δ

g

ξ1
gμν =

Lξ1gμν.
Consider on the other hand the extended bms4 algebra, that is, the semidirect sum

of the algebra of conformal Killing vectors of the Riemann sphere with the abelian ideal of
infinitesimal supertranslations, trivially extended by infinitesimal conformal rescalings of the
conformally flat degenerate metric on Scri. More explicitly, the commutation relations are

given by [(Y1, T̃1, ω̃1), (Y2, T̃2, ω̃2)] = (Ŷ , ̂̃T, ̂̃ω)where

ŶA = YB
1 ∂BY

A
2 − YB

2 ∂BY
A
1 ,

̂̃T = YA
1 ∂AT̃2 − YA

2 ∂AT̃1 +
1
2

(
T̃1∂AY

A
2 − T̃2∂AYA

1

)
,

̂̃ω = 0.

(3.14)

It thus follows the following.

Theorem 3.1. The spacetime vectors ξ[Y, T̃ , ω̃; g] realize the extended bms4 algebra in the modified
Lie bracket,

[
ξ
[
Y1, T̃1, ω̃1; g

]
, ξ
[
Y2, T̃2, ω̃2; g

]]
M

= ξ
[
Ŷ , ̂̃T, ̂̃ω; g

]
, (3.15)

in the bulk of an asymptotically flat spacetime in the sense of Newman and Unti.

Note in particular that for two different choices of the conformal factor ϕ̃which is held
fixed, ω̃ = 0, the asymptotic symmetry algebras are isomorphic to bms4, which is thus a gauge
invariant statement.

Proof. The proof follows closely the one in [6] for the BMS gauge. In order to be self-contained
we recall the different steps here. In a first stage, one shows that on I, the vectors fields
ξ[Y, T̃ , ω̃; γ] given in (3.11) with f as in (3.12) realize the extended bms4 algebra in terms
of the modified Lie bracket. Indeed, this is obvious for the A components which do not
depend on the metric so that the modified bracket reduces to the standard Lie bracket for
these components. For the u component, taking into account that

δ
g

ξ1
f2 = ω̃1f2 +

1
2
eϕ̃
∫u
0
du′e−ϕ̃

[
−ω̃1
(
ψ2 − 2ω̃2

)
+ 2YA

2 ∂Aω̃1

]
, (3.16)
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we have [ξ1, ξ2]
u
M|u=0 = eϕ̃|u=0T̂ . Direct computation then shows that ∂u([ξ1, ξ2]

u
M) = f̂∂uϕ̃ +

(1/2)DAŶ
A with f̂ given by (3.12) with T̃ , Y, ω̃ replaced by their hatted counterparts,

implying the result for the u component.

For the spacetime vectors, direct computation gives [ξ1, ξ2]
u
M = [ξ1, ξ2]

u
M = f̂ . Using

the defining property (3.4), one then finds that ∂r([ξ1, ξ2]
ρ

M) = gρν∂νf̂ . For the A components
the result then follows from the one on I, limr→∞[ξ1, ξ2]

A
M = ŶA. This is due to the fact that

IA goes to zero at infinity, that the nonvanishing term at infinity does not involve the metric,
and that the correction term in the bracket does not change the asymptotic behaviour. Finally,
for the r component, we still need to check that the r independent component of [ξ1, ξ2]

r
M is

given by (1/2)Δf̂ , which follows by direct computation.

For completeness, let us also stress here that, if one focuses on local properties and
expands the conformal Killing vectors YA∂A and the infinitesimal supertranslations T in
Laurent series,

ln = −ζn+1 ∂
∂ζ
, ln = −ζn+1 ∂

∂ζ
, n ∈ Z,

T̃m,n = ζmζ
n
, m, n ∈ Z,

(3.17)

the commutation relations for the complexified bms4 algebra read

[lm, ln] = (m − n)lm+n,
[
lm, ln
]
= (m − n)lm+n,

[
lm, ln
]
= 0,

[ll, Tm,n] =
(
l + 1
2
−m
)
Tm+l,n,

[
ll, Tm,n

]
=
(
l + 1
2
− n
)
Tm,n+l.

(3.18)

The bms4 algebra contains as subalgebra the Poincaré algebra, which we identify with the
algebra of exact Killing vectors of the Minkowski metric equipped with the standard Lie
bracket. It is spanned by the generators

l−1, l0, l1, l−1, l0, l1, T̃0,0, T̃1,0, T̃0,1, T̃1,1. (3.19)

Nontrivial central extensions of the algebra (3.18) have been studied in [7]: the
computation ofH2(bms4) reveals that there is only the standard ones for the Virasoro algebra
extending the first two commutation relations.

4. Explicit Relation between the NU and the BMS Gauges

The definition of asymptotically flat spacetimes in the BMS approach [1, 2, 4] as reviewed in
[5, 6] amounts to replacing guu = 1/guu = −1 by

guu = 1/guu = −e2β, β = O
(
r−2
)

(4.1)
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in (2.1) and (2.2) while imposing the additional requirement that

det gAB = r4 det γAB. (4.2)

Both definitions then differ just by a choice of radial coordinate. Indeed, replacing the
radial coordinate by a function of the 4 coordinates preserves the zeros in (2.1) and (2.2)
(see e.g., the discussion in [22]). Furthermore, for first nontrivial order in r, the determinant
condition leads to the same restriction (2.5) as the choice of the origin of the affine parameter.
It follows that the relation between the two radial coordinates does not involve constant terms
and is of the form

r ′ = r +O
(
r−1
)
. (4.3)

More explicitly, starting from the NU approach, BMS coordinates are obtained by defining
the new radial coordinates as [23]

rBMS =
(
det gAB
det γAB

)1/4

. (4.4)

Conversely, starting from the BMS approach with radial coordinate r, NU coordinates are
obtained by changing the radial coordinate to

rN = r −
∫∞
r

dr ′
(
e2β − 1

)
. (4.5)

These changes of coordinates only affect lower-order terms in the asymptotic expansion of the
metric that plays no role in the definition of asymptotic symmetries and explains a posteriori
why the asymptotic symmetry algebras in both approaches are isomorphic.

At this stage, the dynamics of the theory comes into play. The Einstein equations are
solved order by order in r. In the first orders, there are integrations “constants” that appear
as free data characterizing asymptotically flat solutions. We will now work out the explicit
relation between these data in both approaches. The inverse metric in the BMS gauge (as
discussed in [6]) is given by

g
μν

BMS =

⎛
⎜⎜⎝

0 −e−2β 0

−e−2β −e−2β V
r
−e−2βUB

0 −e−2βUA gAB

⎞
⎟⎟⎠,

gAB = r2γAB + rCAB +
1
4
γABC

C
DC

D
C +O

(
r−1
)
.

(4.6)
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For simplicity, we assume here that there is no trace-free part DAB at order 0 and that the
conformal factor is time-independent, ∂uϕ̃ = 0, in which case the news tensor is simplyNAB =
∂uCAB and f = T + (1/2)uψ̃ with T = eϕ̃T̃ . Writing

Cζζ = e2ϕ̃c, Cζ ζ = e
2ϕ̃c, Cζζ = 0, (4.7)

we have

β = −1
4
r−2cc +O

(
r−4
)
,

Uζ = − 2
r2
e−4ϕ̃∂

(
e2ϕ̃c
)
− 2
3r3
[
Nζ − 4e−4ϕ̃c∂

(
e2ϕ̃c
)]

+O
(
r−4
)
,

V

r
= 4e−2ϕ̃∂∂ϕ̃ + r−12M +O

(
r−2
)
,

(4.8)

which implies in particular that

rN = r +
cc

2r
+O
(
r−3
)
. (4.9)

The only consequence of Einstein’s equations on the angular momentum and mass aspects
Nζ =Nζ(u, ζ, ζ), M =M(u, ζ, ζ) is the evolution equations

∂uM = −1
8
NA

BN
B
A +

1
8
ΔR +

1
4
DADCN

CA, (4.10)

∂uNA = ∂AM +
1
4
CB
A∂BR +

1
16
∂A
[
NB

CC
C
B

]
− 1
4
DAC

C
BN

B
C

− 1
4
DB

[
CB
CN

C
A −NB

CC
C
A

]
− 1
4
DB

[
D
B
DCC

C
A −DADCC

BC
]
.

(4.11)

Consider now the “eth” operators [24] defined here for a field ηs of spin weight s
according to the conventions of [25] through

ðηs = P 1−s∂
(
Psηs
)
, ðηs = P 1+s∂

(
P−sηs

)
, P =

√
2e−ϕ̃, (4.12)

where ð,ð raise, respectively, lower the spin weight by one unit and satisfy

[
ð,ð
]
ηs =

s

2
Rηs. (4.13)

The spin weights of the various quantities are summarized in Table 1. Note that the P used
here differs from the one used in [3], which we will denote by PN below. It also no longer
denotes the particular function (1/2)(1 + ζζ), contrary to the notation used in [6, 16].

In order to compare with the notation used in [3], we use ζ = x3 + ix4. With
x
′α = u, rN, x3, x4 and xμ = u, r, ζ, ζ, computing gαβN (x′) = −((∂x′α/∂xμ)gμνBMS(∂x

′β/∂xν))(x(x′)),
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Table 1: Spin and conformal weights.

σ0 σ̇0 Ψ0
4 Ψ0

3 Ψ0
2 Ψ0

1 Y T

s 2 2 −2 −1 0 1 −1 0
w −1 −2 −3 −3 −3 −3 1 1

where the overall minus sign takes the change of signature into account, then gives the
following dictionary by comparing with [3]:

PN =
1√
2
e−ϕ̃ =

1
2
P, ∇ = 2∂, μ0 = −P 2∂∂ lnP =

1
2
Δϕ̃ = −1

4
R,

Ψ0
2 + Ψ

0
2 = −2M − ∂u(cc), σ0 = c , ω0 = ðσ0,

Ψ0
1 = −PNζ − σ0

ðσ0 − 3
4

ð

(
σ0σ0
)
.

(4.14)

For convenience, let us also use

Ψ0
3 = −ðσ̇

0 − 1
4

ðR, Ψ0
4 = −σ̈

0
. (4.15)

In these terms,

Ψ̇0
3 = ðΨ0

4, Ψ̇0
2 = ðΨ0

3 + σ
0Ψ0

4, Ψ̇0
1 = ðΨ0

2 + 2σ0Ψ0
3. (4.16)

Indeed, the first equation holds by definition and the assumed time-independence of P . The
evolution equation (4.10) is equivalent to the real part of the second equation. Taking into
account the on-shell relation of the NU framework,

Ψ0
2 −Ψ

0
2 = ð

2
σ0 − ð

2σ0 + σ0σ̇0 − σ0σ̇
0
, (4.17)

we find

M = −Ψ0
2 − σ0σ̇

0
+
1
2

ð
2
σ0 − 1

2
ð
2σ0, (4.18)

in terms of which (4.10) is fully equivalent to the second equation of (4.16) and (4.11) is
equivalent to the last equation of (4.16), in agreement with [3].
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5. Transformation Laws of the NU Coefficients Characterizing
Asymptotic Solutions

Let Y = P−1Y and Y = P−1Y . The conformal Killing equations and the conformal factor then
become

ðY = 0 = ðY, ψ =
(
ðY + ðY

)
. (5.1)

It follows for instance that

ððY = −R
2
Y, ð

2ψ = ð
3Y − 1

2
YðR, ððψ = −1

2

[
ð

(
RY
)
+ ð

(
RY
)]
. (5.2)

Using the notation S = (Y, T̃ , ω̃), we have −δSγAB = 2ω̃γAB for the background metric and

[
−δS,ð

]
ηs = −ω̃ðηs + sðω̃ηs, [−δS,ð]ηs = −ω̃ðηs − sðω̃ηs. (5.3)

To work out the transformation properties of the NU coefficients characterizing
asymptotic solution space, one needs to evaluate the subleading terms inLξgαβN on-shell. This
can also be done by translating the results from the BMS gauge, which yields

− δSσ0 =
[
f∂u + Yð + Y ð +

3
2

ðY − 1
2

ðY − ω̃
]
σ0 − ð

2f,

− δSσ̇0 =
[
f∂u + Yð + Y ð + 2ðY − 2ω̃

]
σ̇0 − 1

2
ð
2ψ̃,

− δSΨ0
4 =
[
f∂u + Yð + Y ð +

1
2

ðY +
5
2

ðY − 3ω̃
]
Ψ0

4,

− δSΨ0
3 =
[
f∂u + Yð + Y ð + ðY + 2ðY − 3ω̃

]
Ψ0

3 + ðfΨ0
4,

− δSΨ0
2 =
[
f∂u + Yð + Y ð +

3
2

ðY +
3
2

ðY − 3ω̃
]
Ψ0

2 + 2ðfΨ0
3,

− δSΨ0
1 =
[
f∂u + Yð + Y ð + 2ðY + ðY − 3ω̃

]
Ψ0

1 + 3ðfΨ0
2.

(5.4)

Following for instance the terminology in [26] Section 3, but now for general infinitesi-
mal transformations ζ′ = ζ+εY (ζ), ζ′ = ζ+εY (ζ) instead of those associated to linear fractional
transformations on the sphere and also considering ζ as the holomorphic coordinate instead
of ζ, a field η has spin weight s and conformal weight w if it transforms as

−δY,Yη =
[
YA∂A +

s

2

(
∂Y − ∂Y

)
− w

2
ψ
]
η. (5.5)
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Table 2: Rank and density weights.

P−1σ0 P−2σ̇0 P−3Ψ0
4 P−3Ψ0

3 P−3Ψ0
2 P−3Ψ0

1 Y T̃

s 2 2 −2 −1 0 1 −1 0
n −1/2 0 1/2 1 3/2 1 −1 −1/2

A tensor density of rank s � 0 and weight n transforms as

−δY,YAζ···ζ =
[
YA∂A + s∂Y + n

(
∂Y + ∂Y

)]
Aζ···ζ, (5.6)

while for rank s � 0 and weight n, we have

−δY,YAζ···ζ =
[
YA∂A − s∂Y + n

(
∂Y + ∂Y

)]
Aζ···ζ. (5.7)

It then follows that a tensor density of weights (s, n) defines a field of weights (s,−(2n + |s|))
and conversely, a field of weights (s,w) defines a tensor density of weights (s,−(1/2)(w+|s|)).
For s � 0, this is done through η = Aζ···ζP

2n+s and Aζ···ζ = Pwη. For s � 0, we have η =
Aζ···ζP 2n−s and Aζ···ζ = Pwη. Note that complex conjugation gives rise to opposite spin weight
and rank but leaves the conformal and density weights unchanged. Alternatively, (5.5) can
be written as

−δY,Yη =
[
Yð + Y ð +

s −w
2

ðY − s +w
2

ðY
]
η. (5.8)

When focusing on T = 0 = ω̃ at the surface u = 0 and on the homogeneous part of
the transformations, this gives the weights summarized in Tables 1 and 2. These tables are
extended to the Lie algebra elements, which are passive in all our computations, by writing
[Y, T̃] = −δY,Y T̃ and [Y, Y ′]A = −δY,YY

′A.

6. Surface Charge Algebra

In this section, ω̃ = 0 so that f = T + (1/2)uψ and we use the notation s = (Y,Y, T) for
elements of the symmetry algebra, which is given in these terms by [s1, s2] = ŝwhere

Ŷ = Y1ðY2 − (1←→ 2), Ŷ = Y1ðY2 − (1←→ 2),

T̂ =
(
Y1ð + Y1ð

)
T2 − 1

2
ψ1T2 − (1←→ 2).

(6.1)
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The translation of the charges, the nonintegrable piece due to the news, and the central
charges computed in [16] is given here

Qs[X] = − 1
8πG

∫
d2Ωϕ

[(
f
(
Ψ0

2 + σ
0σ̇

0
)
+ Y
(
Ψ0

1 + σ
0
ðσ0 +

1
2

ð

(
σ0σ0
)))

+ c.c.
]
,

Θs[δX,X] =
1

8πG

∫
d2Ωϕf

[
σ̇
0
δσ0 + c.c.

]
,

Ks1,s2[X] =
1

8πG

∫
d2Ωϕ

[(
1
4
f1ðf2ðR +

1
2
σ0f1ð

2ψ2 − (1←→ 2)
)
+ c.c.

]
.

(6.2)

Note that one could also write the charges Qs[X] by allowing for the additional terms

((1/2)ð2σ0 − (1/2)ð
2
σ0) in the first parenthesis since these terms were cancelled with the

corresponding terms in the complex conjugate expression. Note also that not Ψ0
2 but only

Ψ0
2 + Ψ

0
2 is free data on-shell because of the relation (4.17).
We recognize all the ingredients of the surface charges described in [27], which in turn

have been related there to previous expressions in the literature and, in particular, to the
twistorial approach of Penrose [28]. More precisely, up to conventions, Q0,0,T agrees with
Geroch’s linear supermomentum [8] Qgn + Qgn, as given in (A1.12) of [27]. The angular
(super-)momentum that we get is

QY,0,0 = − 1
8πG

∫
d2ΩϕY

[
Ψ0

1 + σ
0
ðσ0 +

1
2

ð

(
σ0σ0
)
− u
2

ð

(
Ψ0

2 + Ψ
0
2 + ∂u

(
σ0σ0
))]

. (6.3)

It differs from Qηc given in (4) of [27] by the explicitly u-dependent term of the second line.
It thus has a similar structure to Penrose’s angular momentum as described in (11), (12), and
(17a) of [27] in the sense that it also differs by a specific amount of linear supermomentum,
but the amount is different and explicitly u-dependent,

QY,0,0 = Qu=0
Y,0,0 +

1
2
uQ0,0,ðY. (6.4)

The main result derived in [16] states that

(i) if one is allowed to integrate by parts,

∫
d2Ωϕ

ðη−1 = 0 =
∫
d2Ωϕ

ðη1, (6.5)

where d2Ωϕ = (2dζ ∧ dζ)/iP 2,

(ii) if one defines the “Dirac bracket” through

{Qs1 , Qs2}∗[X] = −δs2Qs1[X] + Θs2[−δs1X,X], (6.6)
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then the charges define a representation of the bms4 algebra, up to a field-dependent
central extension,

{Qs1 , Qs2}∗ = Q[s1,s2] +Ks1,s2 , (6.7)

where Ks1,s2 satisfies the generalized cocycle condition

K[s1,s2],s3 − δs3Ks1,s2 + cyclic(1, 2, 3) = 0. (6.8)

The representation theorem contained in (6.7) and (6.8) can be verified directly in the
present context by starting from (6.2), (4.17) and using the properties (4.13), (6.5) of ð, the
evolution equations (4.16), the conformal Killing equations (5.1), the bms4 algebra (6.1), and
the transformation laws (5.4).

Several remarks are in order as follows.

(i) Integrations by parts are justified for regular functions on the sphere and thus for
bms

glob
4 and regular solutions. In the case of Laurent series more care is needed, see

for example, [29]. We will address this question elsewhere.

(ii) For the globally well-defined bms
glob
4 algebra on the sphere, the central chargeKs1,s2

vanishes.

(iii) The nonconservation of the charges follows by taking s2 = (0, 0, 1) and s1 = s.
Indeed, since (d/du)Qs = (∂/∂u)Qs − δ(0,0,1)Qs, the equality of the right hand sides
of (6.6) and (6.7) gives

d

du
Qs = − 1

8πG

∫
d2Ωϕ

[
σ̇
0
(
−δsσ0

)
+
1
4

ðfðR +
1
2
σ0

ð
2ψ + c.c.

]
. (6.9)

For s = (0, 0, 1), this gives the standard Bondi-Sachs mass loss formula,

d

du
Q0,0,1 = − 1

8πG

∫
d2Ωϕ

[
σ̇
0
σ̇0 + c.c.

]
. (6.10)

It also follows that the standard bms
glob
4 charges are all conserved on the sphere in

the absence of news.

To the best of our knowledge, except for the previous analysis in the BMS gauge,
the above representation result does not exist elsewhere in the literature. A more detailed
discussion of its implications, a detailed comparison with results in the literature as well as
a self-contained derivation of the bms4 transformation laws in the context of the Newman-
Penrose formalism will be given elsewhere.
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