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In the semiclassical regime, we obtain a lower bound for the counting function of resonances cor-
responding to the perturbed periodic Schrodinger operator P(h) = —A + V(x) + W (hx). Here V is
a periodic potential, W a decreasing perturbation and h a small positive constant.

1. Introduction

The quantum dynamics of a Bloch electron in a crystal subject to external electric field, which
varies slowly on the scale of the crystal lattice, is governed by the Schrodinger equation

P(h) = -A + V(x) + W (hx). (1.1)

Here V is periodic with respect to the crystal lattice I' C R, and it models the electric potential
generated by the lattice of atoms in the crystal. The potential W is a decreasing perturbation
and h a small positive constant.

There has been a growing interest in the rigorous study of the spectral properties of
Bloch electrons in the presence of slowly varying external perturbations (see [1-11]).

Since the work of Peierls [10] and Slater [11], it is well known that, if & is sufficiently
small, then solutions of P(h) are governed by the “semiclassical” Hamiltonian

H(y,n) =An+A(y)) +V(y). (1.2)
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Here (k) is one of the “band functions” describing the Floquet spectrum of the unperturbed
Hamiltonian

Py=—-Ay+V(x). (1.3)

One argues that for suitable wave packets, which are spread over many lattice spacings, the
main effect of a periodic potential on the electron dynamics consists in changing the disper-
sion relation from the free kinetic energy Egee(k) = |k|? to the modified kinetic energy (k)
given by the Bloch band.

The problem of resonances has been examined in [12] for the one-dimensional case
and in [13] for the general case. In particular, a similar reduction to (1.2) for resonances has
been obtained in [13].

This paper continues our previous works [13, 14] on the resonances and the eigenval-
ues counting function for P(h). In [14], Dimassi and Zerzeri obtained a local trace formula for
resonances. As a consequence, they obtained an upper bound for the number of resonances
of P(h) in any h-independent complex neighborhood of some energy E. The purpose of this
paper is to give a lower bound for the number of resonances of P(h).

In the case where V = 0, it is known that, for 0 < E in the analytic singular support
(from now on sing supp,, for short) of the distribution dpy * y, then the operator P(h) = —-A +
W (hx) has at least Coh™ resonances in any h-independent complex neighborhood € of E
(see, e.g., [15]). Here

wo = | dx,
{xeR"; W (x)>t} (14)

po(t) = (2or) "vol(B(0, 1)) (max(t, 0))"'.

Using the explicit formula of py we see that the analytic singular support of the distrib-
utions y and dpy * p coincide.

In the case where V #0 the situation is different. Following Theorem 1.6 in [14] and
Lemma 2.1 of the next section, we have to change py by

1
() = —— f dk, (1.5)
P (20r) 2 (keE*; 1;(k)<))

j=1

which is the integrated density of states corresponding to the nonperturbed Hamiltonian Py
(see Section 2).

If A;(k) is a simple eigenvalue near some point ey, then \;(k) is a smooth function, and
if eg = Aj(k) is a critical value, we expect in general that eg will belong to the analytic singular
support of p(1). In particular, we expect that near every point e € ey + singsupp,, () there
exists at least Ch™", C > 0, resonances.

Multiple eigenvalues (A;(ko) = Aj;1(ko) = ep) can also give rise to singularities of p(1)
and then lead to the existence of resonances near eq + sing supp,,(i).

The purpose of this paper is to describe all these situations. Some results of this paper
are announced without proofs in [16].

The paper is organized as follows: in the next section, we introduce some notations
and state some technical lemmas. In Section 3 we give an upper bound for resonances near
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singularities of the density of states measure p generated by a band crossing. In Section 4 we
give an upper bound for resonances near the edge of bands.

2. Preliminaries

LetI' = @, Za; be the lattice generated by the basis ay, ay, ..., a, a; € R". The dual lattice I'* is
defined as the lattice generated by the dual basis {a], a3, ..., a;,} determined by a;- a;f = 26;j,
i,j =1,2,...,n. Let E be a fundamental domain for I', and let E* be a fundamental domain
for I'*. If we identify opposite edges of E (resp., E*), then it becomes a flat torus denoted by
T =R"/T (resp., T* = R"/T™).

Let V be a real valued potential, C* and I'-periodic. For k in R", we define

Po(k) = (Dx + k)? + V(x) (2.1)

as an unbounded operator on L?(T) with domain H?(T). The Hamiltonian Py(k) is semi-
bounded and self-adjoint. Since the resolvent of (D, + k)? is compact, the resolvent of Py(k) is
also compact, and therefore Py (k) has a complete set of (normalized) eigenfunctions @, (-, k) €
H?(T*), n € N, called Bloch functions. The corresponding eigenvalues accumulate at infinity,
and we enumerate them according to their multiplicities:

M(K) < Ao(k) <o (2.2)

Since e ™" Hy(k)e™" = Hy(y* + k), the band function 1, (k) is periodic with respect to T*.
The function A, (k) is called a band function, and the closed intervals A,, := A,,(T*) are called
bands.

Standard perturbation theory shows that 1, (k) is a continuous function of k and is real
analytic in a neighborhood of any k such that

A1 (k) < Xa(K) < A () (23)
We fix A in the spectrum of the unperturbed operator Py. We make the following hypothesis
on the spectrum of the unperturbed Schrodinger operator.

(H1) For all ko with 1;(ko) = A, the eigenvalue \;(ko) is simple and diA; (ko) #0.

Now, let us recall some well-known facts about the density of states associated with
Py. The density of states measure p is defined as follows:

1
p(A) == WZ dk, (2.4)

B f{keE*; (k)<

where E* is a fundamental domain of R”/I™*. Since the spectrum of Py is absolutely continu-
ous, the measure p is absolutely continuous with respect to the Lebesgue measure d\. Thus,
the density of states of Py, 0p/0A is locally integrable.
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We now consider the perturbed periodic Schrodinger operator:
P(h) := Py + W(hx), (2.5)

where W € C*®(R";R). We assume that there exist positive constants a and C such that W
extends analytically to I'(a) := {z € C*; |J(z)| < a(%R(z))} and

W (z)| < C(z)7", uniformly on z € I'(a), n>mn, (2.6)

where (z) = (1+ |z|2)1/ 2. Here R(z),3(z) denote, respectively, the real part and the imaginary
part of z.

This assumption allows us to define the resonances of P(h) by the spectral deformation
method (see [17]). We follow essentially the presentation of [13].

Let v € C*(R";R") be I'*-periodic. For t € R, we introduce the spectral deformation
family %; defined by for all u € S:

() = F;{ (712 Fnw) (0u())) (1), vx e R, (2.7)
where v;(k) = k —tv(k) and J;(k) its Jacobian. Here ¥y, is the semiclassical Fourier transform:

[Frul () = IRn e /My (x)dx, Yu e S(R"). (2.8)

Consider, for t € R, the family of unitarily equivalent operators
Pyi(t, h) .= U Py (W)U (2.9)

It was established in [13, Proposition 2.8] that P; (t, h) extends to an analytic type-<# family of
operators on D(tp) := {t € C; || < to} with domain H?(R"). Moreover, under the assumptions
(H1) and (2.6), there exists a neighborhood Q of zp and a small positive constant 7 such that,
for t € D(tp) with 3t > 0, the spectrum of Pi(t, h) in Q; = {z € Q;Jz > —-nJt} consists of
discrete eigenvalues of finite multiplicities that lie in the lower half plane (see [13, formula
(4.9)]). These eigenvalues are t-independent under small variations of J¢ > 0 and are called
resonances. We will denote the set of resonances by Res(P(h)).
For f € C°(R), we set

(. f) = [LF W) - FO)]d, 2.10)
1
1) = G2, J @00 -s@@lacax @
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For E > 0, let

v, (E) := f dx.

{xeR"; W(x)>E}

Similarly, for E < 0, we set

v_(E) := f dx.
{xeR"; W(x)<E}

(2.12)

(2.13)

Clearly, v, (E) (resp., v-(E)) is a decreasing function of E (resp., an increasing function of E)

and

d
Hlpse = _d_Evi(E)‘

(2.14)

Lemma 2.1. The distributions w and y are real valued of order <1. Moreover, in®'(R), one has

w=dp*pu.
Proof. Applying Taylor’s formula to the right-hand side of (2.10), we obtain
[ )] < supl | [IW o,
which together with (2.6) imply that y is a distribution of order <1, with
supp p C [inf W(x),sup W (x)].
Consequently, dp * p is well defined in ®'(R) and for all f € C(R), we have

(dpxp, f)=(dp(®), (u, f(-+ 1))
—~(p), [l W) +1) - f0)dx)

T (2ylr)" Z]‘ J‘E* L(k) f [f W)+ 1) - f()]dx dt dk

) (2%)”2]' fp ng [f (W (x) + 4;(k)) — £ (A (k)] dx dk
= (w, f).

This ends the proof of the lemma.

(2.15)

(2.16)

(2.17)

(2.18)
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Let Q be an open-bounded set in R”, and let Q be a complex neighborhood of Q. Let
x — (x) be analytic on Q and real valued for all x in Q. Let us introduce the real function

I(e) = f dx. (2.19)
{x€Q; p(x)<e}

For e € ¢(Q2), we set

S(e) = {x € Q; g(x) =e}. (2.20)

Lemma 2.2. Let ey € (), and let 2(e), I(e) be as above. One assumes that
(i) Ve(x) #0 for all x € Z(ep),
(il) 0Q N Z(ep) = 0.

Then the function
I(e) := I dx (2.21)
(xeQ; p(x)<e)

is analytic near ey.

Proof. Let € be a small positive constant such that Vi(x) #0 when x € Z¢(ep) := ¢~ (Jeo — €,
eo + €[). Without any loss of generality we may assume that 0,,¢ #0 for all x € Z.(ep). By the
change of variable H : x — (¢(x), x»,...,x,) we have

f dx = I Jac (H‘1 (x))dx. (2.22)
{xeXc(eo):; p(x)<e} {xeH (Z¢(ep):); x1<e}

Clearly the right-hand side of the above equality is analytic. Combining this with the fact that

(XEQ\S, (e0):; p(x)<e) dx is constant for e near ey we get the lemma. O

Lemma 2.3. If ¢ has a nondegenerate extremum at xo with ¢(xg) = eg and if V(x) #0 for all x €
2 \ {x0}, then

I(e) = fe—en) + H(x(e - 30))8(\/ﬂ=(€ - eo>), (2.23)

where f and g are analytic near zero and

vol(§™1)

ny/det ¢" (xo)

g(t) ~—o P (2.24)

Here H(t) is the Heaviside function and + (=) corresponds to a minimum (maximum, resp.).
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Proof. Here we only give a sketch of the proof. For the details we refer to [18]. Without any
loss of generality, we only consider the case of minimum. By Morse lemma there exist a neigh-
borhood U of xp, € > 0 and a local analytic diffeomorphism D : Q — B(0, €) such that

J dx = f ]ac(D_l(x)>dx. (2.25)
{xell; p(x)<e} {x€B(0,e); |x|*<e-eo}{ }

By a simple calculus we show, using polar coordinates, that the integral of the r.h.s. is equal
to H(e — ep)g(+/e — ep). On the other hand, since Vg(x) #0 for x € %, \ {xo}, it follows from
Lemma 2.2 that

f dx (2.26)
(xeO\U; p(x)<e)

is analytic near eg. This ends the proof of the lemma. O

3. Lower-Bound Near Singularities due to Band Crossing

Here we are interested in the C* singular support (which will be denoted by sing supp). Re-
call that xq ¢ sing supp  if and only if y is C* near xy. The case of analytic singular support
can be treated similarly.

In this section we study resonances near singularities of p(1) generated by a band
crossing. We will only consider the two-dimensional case. With similar assumptions, one can
treat the case n > 2.

We assume that A;(k) is double eigenvalues ;1 (ko) < Aj(ko) = eo = Ajy1(ko) < Ajya(ko)
and that for all k # kg such that A;(k) = ey, Ai(k) is simple and V4;(k) #0.

Since Py (k) is analytic in k, this implies that, for |k — ko| < 6 (with 6 small enough), the
span V (k), of the eigenvectors of Py(k) corresponding to eigenvalues in the set {e; |e—eg| < 6},
has a basis ¢s;(x, k), gjs1(x, k), which is orthonormal and real analytic in k. The restriction of

Py(k) to V (k) has the matrix
<a(k) b(k)>, (3.1)
b(k) p(k)

a(k) +c(k) bi(k) —iby(k)
<bl(k> +iby(k)  a(k) - c(k) >

which can be written

(3.2)

where a(k) = a(k) + (k) /2, c(k) = a(k) — p(k)/2, bi(k) and by (k) are real valued. Next the
periodic potential is assumed to have the symmetry V(x) = V(-x). This symmetry is typical
of metals. This symmetry forces b(k) to be real valued (i.e., by(k) = 0), (see [19]). Conse-
quently, near kg we have

Ni(k) = a(k) —=\Jc2(k) + B2(k),  Aja(k) = a(k) + /2 (k) + P (k). (3.3)
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We assume that Vb, (ko), Ve (ko) are independent. Since n = 2, (Vb (ko), Vc(ko)) is a basis in
R2. Set Va(ky) = a1 Vb (ko) + a2 Ve(ko).

Lemma 3.1. Let Va(ky) = a1 Vb (ko) + a2 Ve(kg) be as above. One assumes that
o +ad <1 (3.4)
Then there exist an open connected neighborhood J of ey and analytic functions f and g such that
ple) = f(e) + (H(e—eo) - H(eo - e))g(e), (3.5)
with
<"(e0)#0, Vee ] (3.6)

Proof. To simplify the notation we assume that kg = 0 and ey = 0.
Let Q be a neighborhood of kg = 0. We introduce

@ny'pice) - [ ax+ [ dk, (37)
{keQ; A, (k)<e) {(keQ; Ay (k)<e)
so that
(ZJT)"(p(e) - Pl(t?)) = Z I dk + f dk + f dk.
jé{nn+1} 7 {keE; Aj(k)<e} {(keE"\Q; Ay (k)<e) {kEE\Q; Ayar (K)<e)
(3.8)

Due to Lemma 2.2, the right-hand side of the above equalities is analytic near 0.

Since Vbi(kg), Vc(ky) are independent, there exist a neighborhood Q of kg = 0, € > 0
and a local analytic diffeomorphism x : Q — B(0,¢€) such that, with the change of variable
k — x(k), we obtain

27)"p1(e) = f F(k)dk + f F(k)dk, (3.9)

{Ikl<e; G(k)+|k|<e} {Ikl<e; G(k)-|k|<e}

where G(k) = a(x7!(k)) and F(k) = Jac(x(k)) are analytic near k = 0 and VG(0) = (a1, a2).
Using polar coordinates and making the change r — -1, w — —w in the second inte-
gral, we get

(2m)"p1(e) = I f F(rw)rdrdw - J I F(rw)rdrdw,
St J {0<r<6; G(rw)+r<e) St J {-6<r<0; G(rw)+r<e}
(3.10)
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which can be written

(2m)"p1(e) = f I F(rw)rdrdw + J '[ F(rw)rdrdw - c,
St J {0<r<6; G(rw)+r<e) St J {-6<r<0; G(rw)+r>e}
(3.11)

where ¢g = [4 j{ | F(rw)rdrdw. Since

-6<r<0

0, (G(rw) + 1), =(VG(0),w) +127n>0, (3.12)

uniformly on w € S?, there exist 61,6, > 0 (independent on w € S') suchthat Y : r — Y(r) =
G(rw) + r from ]| — 61,61 [ into | — 6, 6| is an analytic diffeomorphism. Hence, for |e| small
enough

" _ - Y'(t)
@) pi(e) + co = .[51 ’[{QO; - F<Y 1(t)w) Y e
_ YL(t) (3.13)
+Ll Lm . F(Y 1(t)w) i At
= (H(e) - H(-e))g(e),
where

gle) = fo J‘Sl F(Y-l (t)w> ;(_/1(2) dt dw. (3.14)

Using that
Y1(0) =0 (3.15)
we deduce ¢"(0) = F(0) [, (VG(0),w) + 1) 2dw #0. O

We denote by #A the number of elements of A, counted with their multiplicity. The
main result of this section is the following.

Theorem 3.2. Let A, ey € o(Py) with A € (ep + sing supp(u)). One assumes the following.
(i) The periodic potential V satisfies V (x) = V(=x).
(ii) There exists kg € R™ /T such that Aj_1(ko) < Aj(ko) = eo = Ajy1(ko) < Ajya(ko).
(iii) Forall k & ko + I such that A;(k) = eq, the eigenvalue A;(k) is simple and V A;(k) #0.

(iv) The numbers (a1, az) satisfy (3.4), and (A — supp(u)) C J. Here ] is the interval given by
Lemma 3.1.

(v) A satisfies (H1).
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Then for all h-independent complex neighborhoods Q of A, there exist hg = h(€2) > 0 sufficient-
ly small and C = C(Q) > 0 such that, for h €]0, ho|,

#{z € Q; z € Res(P(h))} > Coh™. (3.16)

Proof. Without any loss of generality we may assume that eg = 0. Set
K() = (H() - H(=))g(), (3.17)

where g(-) is the function given in Lemma 3.1.
The assumption that (A — supp(p)) C J ensures that, in the study of dp * p near A, one
only needs the value of p in | given by (3.4). More precisely, it implies that

wW(t) = dpx p(t) = px dp(t) = f dp+ K() x dp = (1) +(2), (3.18)

for t near .

Since f is smooth, the first term of the right-hand side of the above equation is also
smooth.

Clearly, it follows from assumption (2.6) and Lemma 2.2 that the sing supp(u) is a dis-
crete set. Thus, the point .\ is isolated in sing supp(y). We recall that we have assumed that
ep = 0.

Let y € C°(B(0,1)) (resp., 0 € C5°(B(A,1))) be equal to one near zero (resp., A). Here
B(y,r) is the disc of center y and radius r. Set y. = y(-/€) and 8. = 0(-/¢€). We choose ¢ > 0
small enough such that

sing supp(u) Nsupp B = {1}. (3.19)
To study the second term of the right-hand side of (3.18), we write it in the form
(2) = K(-)(1 = xe) *dp + K(-)xe * Oedp + K(-) ye ¥ (1 - 0e)dpu = (3) + (4) + (5). (3.20)

Since K(:)(1 — xe) is smooth the term (3) is also smooth. Using (3.19) and the fact that the
support of K(-) y. is small for € « 1, we see that the term (5) is C* near \.
Now, we claim that

sing supp(4) = {1}. (3.21)
First, from a standard result on the singular support, we have
sing supp(4) C sing supp (K (-)ye) + sing supp(6.du) = {1}. (3.22)

Consequently, to prove the claim it suffices to show that (4) ¢ C5°(R). We recall that (4) has a
compact support.
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A simple calculus and Lemma 3.1 yield
1
c(1+RP) <|KOx@|<C (3.23)

Here f (¢) is the Fourier transform of f. Consequently, @ € S(R) if and only if (4/\) € S(R),
where S(R) is the Schwartz space of C* function of rapid decrease.

On the other hand, (3.19) implies that G/JL ¢ S(R). Combining this with the above
remarks we get the claim.

Summing up, we have proved that A € sing supp(w = dp * p).

Now, applying the following result of [14] we obtain Theorem 3.2.

Theorem 3.3 (see [14]). Let A € singsupp,(w). Assume that \ satisfies (H1). Then for every h-in-

dependent complex neighborhood Q of \, there exists hy = h(Q) sufficiently small and C = C Q) large
enough such that, for h €]0, ho[,

#{z eQze Res(P(h))} > C(Q)h*”. (3.24E)]

Remark 3.4. Let ep be a singularity of the integrated density of states, generated by a band
crossing. Theorem 3.2 shows that there is at least ~ h™ resonances near ej + t, where ¢ is in
the singular support of the distribution y defined by

u(t) = f dx. (3.25)
{xeR",W (x)>t}

4. Lower Bound of the Counting Function near the Edges of Bands

In this section we study resonances generated by analytic singularities of p near the edge of
bands. The following result is a consequence of Lemma 2.3.
Lemma 4.1. Let ey € 0(Py). One assumes the following.

(i) If Aj(k) = eq, then Aj(k) is a simple eigenvalue of Ho (k).

(ii) There exist ig and ko such that A;, (ko) = eo, VA, (ko) = 0, £0%\;, (ko) > 0 and V.\;, (k) #0,
forall k € E*, k #k.

(iii) For all k € A\;*{eo)} with i #iy, VA;i(k) #0.

Then there exists an open connected neighborhood J of ey such that

p(e) = fle-en) + Histe - en)g (Vale-en)), Vee, (4.1)

where f and g are analytic near zero and g(0) = 0,...,g"V(0) = 0, g™ (0) #0. Here, +(-) corre-
sponds to a local minimum (maximum, resp.).

Now, repeating the arguments in the proof of Theorem 3.2 and using Lemma 4.1, we
obtain the following.
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Theorem 4.2. Let ey, A € o(Py) with A € (eg + sing supp ,(u)). One assumes the following.
(i) A satisfies (H1),

(ii) e satisfies the assumptions of Lemma 4.1,

(iii) (A —supp(u)) C J. Here ] is the interval given by Lemma 4.1.

Then for all h-independent complex neighborhoods Q of A, there exist hy = h(€) > 0 sufficiently small
and C = C(L) > 0 such that, for h €]0, hy|[,

#1z € Q; z € Res(P(h))} > Coh™. (4.2)

Remark 4.3. Notice that the assumptions (iv) in Theorem 3.2 and (iii) in Theorem 4.2 are sat-
isfied if ||W|| is small.
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