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Ideal occurrence of an event (projector) E leads to the known change of a state (density operator)
ρ into EρE/[tr(Eρ)] (the Lüders state). It is shown that two events E and F give the same Lüders
state if and only if the equivalence relation Eρ = Fρ is valid. This relation determines equivalence
classes. The set of them and each class, are studied in detail. It is proved that the range projectorQ
of the Lüders state can be evaluated asQ = E−(E∧Q0), where

∧
denotes the greatest lower bound,

and Q0 is the null projector of ρ. State-dependent implication ≤ρ extends absolute implication
(which, in turn, determines the entire structure of quantum logic). Q and ≤ρ are investigated in a
closely related way to mutual benefit. Inherent in the preorder ≤ρ is the state-dependent equiva-
lence ∼ρ, defining equivalence classes in a given Boolean subalgebra. The quotient set, in which the
classes are the elements, has itself a partially ordered structure, and so has each class. In a complete
Boolean subalgebra, both structures are complete lattices. Physical meanings are discussed.

1. Introduction

The basic object of this study is the concept of a quantum-mechanical state (density operator)
ρ and its change when an event (projector) E with positive probability tr(ρE) > 0 occurs (the
result 1 is obtained) in ideal measurement. The terms “state” and “density operator” as well
as “event,” and “projector” will be used interchangeably.

As it is well known, ideal measurement is the simplest special case of measurement of
the first kind (synonyms: predictive, repeatable, and nondemolition measurement). It causes
a change of state according to the Lüders selective (or definite-result) formula

ρ −→ ρ ≡ EρE
[
tr
(
ρE

)] . (1.1)
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See [1–3]. We call ρ the Lüders state, and E a state-determining projector (it is all meant with
respect to the initially given state ρ).

Usually one treats the special case of a pure-state ρ = |ψ〉〈ψ|. Then, as easily seen, (1.1)
takes the simple form

∣
∣ψ

〉 −→ E
∣
∣ψ

〉

(〈
ψ
∣
∣E

∣
∣ψ

〉)1/2 , (1.2)

which is sometimes called the von Neumann-Lüders projection (it is actually a normalized
projection). Von Neumann treated the even more special case when the event is elementary
(an atom) E = |φ〉〈φ| [4]. The change of state then is

∣
∣ψ

〉 −→ ∣
∣φ

〉
. (1.3)

The Lüders state was postulated by Lüders. It was derived by several authors
including the present one [5, 6] (and the first derivation was repeated in different context
in [7]; see also references in these articles).

For a different approach, see references [8–10]. In Khrennikov’s terminology, one deals
with the postulates of Lüders and von Neumann (and he carefully examines their effect on
some foundational issues).

As it was mentioned, in my view, ideal measurement is the simplest kind of
measurement, and of which kind a measurement is depends on the interaction of object and
measuring instrument (an elaboration of this will be presented in a followup). Both Lüders
and von Neumann treat ideal measurement, but the former allows degenerate eigenvalues
of the measured observable, whereas the latter is confined to the special case of complete
observables, that is, to ones with all eigenvalues nondegenerate.

Incidentally, I have shown in my mentioned article [6] (see Section 3 there) that the
Lüders change of state can be obtained by measuring a suitable complete observable as its
refinement (in the way of von Neumann), but the choice of the latter depends on the state
in which the measurement is performed. Khrennikov has rediscovered essentially the same
result independently in [9].

Change of state (1.1) is made use of in the concept of state-dependent (SD) implication
E≤ρ F, where E and F are events, and ρ is a given state [11–13]. Absolute (or state
independent) implication E ≤ F ⇔ EF = E in quantum logic P(H) (the complete lattice
of all projectors in the Hilbert space H of the given quantum system) is such that if an event
E occurs in a state ρ, that is, if tr(ρE) = 1, then also the implied event F occurs; and this is so
for every state.

SD implication ≤ρ, which is a generalization if the absolute implication (cf.
Corollary 2.3 below), is, on the other hand, based on the following reasoning. If an event
E occurs in an ideal way in a given state ρ and, after the occurrence, another event F ipso facto
also occurs, then one says that E implies state-dependently F and one writes E≤ρF.

When one takes into account that ideal occurrence gives rise to (1.1), one obtains the
equivalence relation

E≤ρF ⇐⇒ tr

[(
EρE

[
tr
(
ρE

)]

)

F

]

= 1. (1.4)
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Evidently, the SD implication relation (1.4) is restricted to nonzero-probability state-
dependently implying events E.

SD implication is defined on a given Boolean subalgebra B of P(H) (to achieve
transitivity) [11]. SD implication onB is a preorder [11, 14]. As every preorder, being reflexive
and transitive but not antisymmetric, SD implication defines an equivalence relation on B, SD
equivalence ∼ρ, as follows:

E∼ρF ⇐⇒ E≤ρF, F≤ρE. (1.5)

SD equivalence breaks up B into equivalence classes, the elements of the SD quotient set
B/∼ρ. By this all zero-probability projectors {E : tr(ρE) = 0} are taken to form one class. (This
will be seen to be correct, cf. Remark 2.2.) The SD equivalence class in B to which a given
projector E belongs will be denoted by [E]B.

The SD implication concept is further elaborated in the next section. But, unlike in
[11, 12], this time the powerful structure of Boolean algebras is not made use of. Only poset
(partially ordered set) theory is utilized, and poset structure is introduced in the SD quotient
set B/∼ρ.

2. SD Implication Further Elaborated

Simple algebraic relations characterizing SD implication and SD equivalence are now
derived.

Proposition 2.1. If tr(Eρ) > 0, then E≤ρF if and only if Eρ = EFρ is valid.

Proof. On account of commutation under the trace, idempotency of projectors, and
commutation in B, the mentioned former definition (1.4) of state-dependent implication boils
down to tr(Eρ) = tr(EFρ), or equivalently to tr[(E − EF)ρ] = 0. Since (E − EF) is a projector,
one can further equivalently write tr[(E − EF)ρ(E − EF)] = 0, and (E − EF)ρ(E − EF) = 0
(no other positive operator then zero gives trace zero). Finally the Lüders lemma (page 326
in [1], cf. also Remark 4.3) gives (E − EF)ρ = 0.

Remark 2.2. Relation (1.4) as the definition of SD implication cannot be extended to projectors
E for which Eρ = 0, but the equivalent definition Eρ = EFρ for Eρ /= 0 can. Hence, we
extend formally SD implication to these projectors. If an event E is such that tr(ρE) = 0,
then it (formally) state-dependently implies every other event in B. This statement cannot be
falsified because E cannot occur in ρ. Hence it is formally true though trivial (more on this in
Lemma 4.7).

One should note the equality of sets {E : Eρ = 0} = {E : tr(ρE) = 0} due to 0 = tr(ρE) =
tr(EρE) ⇒ 0 = EρE = Eρ (cf. for analogy proof of Proposition 2.1).

Corollary 2.3. SD implication generalizes and extends absolute implication, that is, the latter is a
special case of the former, and the former can be valid for pairs of events for which the latter is not
valid.

Proof. If E = EF, then relation (1.4) is obviously valid, and E≤ρF ensues.
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SD implication ≤ρ, being reflexive, transitive but not antisymmetric, is a partial order
[14]. As for every partial order, one can take the SD (equivalence) quotient set B/∼ρ, the
elements of which are the SD equivalence classes [E]B in B. Next, one can induce the
corresponding partial-order relation in the quotient set and thus obtain a proper binary
relation for quantum logic.

We proceed by acquiring a simple insight on which the poset structure of B/∼ρ is
based.

Proposition 2.4. Let [E]B and [F]B be distinct SD equivalence classes, that is, elements of B/∼ρ,
such that ∃E′ ∈ [E]B and ∃F ′ ∈ [F]B so that E′≤ρF ′. Let further E′′ and F ′′ be arbitrary elements in
the same respective classes. Then also E′′≤ρF ′′. In other words, if one projector from one class implies
state dependently a projector from another class, then every projector from the former class implies
state dependently every projector from the latter one.

Proof. The very definition of the classes implies E′′≤ρE′ and F ′≤ρF ′′. In view of the assumed
relation E′ ≤ρ F ′, and due to the validity of transitivity of SD implication in B, E′′≤ρF ′′ follows.

On ground of Proposition 2.4 we can define a poset structure in B/∼ρ.

Definition 2.5. One has [E]B ≤ρ [F]B if for all E′ ∈ [E]B and for all F ′ ∈ [F]B the relation E′≤ρF ′

is valid.

Lemma 2.6. SD implication thus defined in the SD quotient set B/∼ρ is a partial order relation, that
is, it has the properties of reflexivity, transitivity, and antisymmetry.

Proof. Reflexivity. If [E]B is an arbitrary SD equivalence class in B, and E is its arbitrary
element, one has E≤ρE and E≥ρE, so that, according to Definition 2.5, also [E]B≤ρ[E]B and
[E]B≥ρEB are valid.

Transitivity. If [E]B≤ρ[F]B and [F]B≤ρ[G]B, and E′, F ′, G′ are arbitrary elements from
the respective classes, then, according to Proposition 2.4, the relations E′≤ρF ′ and F ′≤ρG′ hold
true. Transitivity of SD implication in B then implies the same for the SD quotient set: from
E′≤ρG′ ensues [E]B≤ρ[G]B.

Antisymmetry. Let [E]B≤ρ[F]B and [F]B≤ρ[E]B be valid. Then Definition 2.5 implies
E≤ρF and F≤ρE, having E∼ρF as its consequence, that is, one obtains [E]B = [F]B.

Remark 2.7. Having in mind that B can be arbitrarily chosen in P(H), we may call the SD
quotient set B/∼ρ SD quantum logic paralleling the set of all projectors, quantum logic
P(H). Since the term “quantum logic” has also another meaning as a branch of mathematical
physics, one might use the term “SD quantum logic” also to designate a part of quantum
logic (meant as the mentioned branch), the part treated in [11–13], and in this paper (cf. also
the last passage in Section 11).

Proposition 2.8. Two projectors E, F ∈ B are state-dependently equivalent E∼ρF if and only if Eρ =
Fρ is satisfied.

Proof. Relation (1.5) and Proposition 2.1 imply Eρ = EFρ and Fρ = FEρ. Since all projectors
in B commute, necessity of the claimed condition obviously follows. As to sufficiency, the
claimed condition and idempotency obviously imply Eρ = EFρ and Fρ = FEρ, which, in
view of Proposition 2.1 and relation (1.5), is tantamount to E∼ρF.
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Remark 2.9. The SD quotient set B/∼ρ is complemented because orthocomplementation in B
takes each SD equivalence class onto another, and none is self-complemented. Finite Boolean
subalgebras thus consist of an even number of elements.

Evidently, SD equivalence E∼ρF(⇔ Eρ = Fρ) can be extended to the entire quantum
logic P(H). In what immediately follows we study SD equivalence in the entire P(H),
and we write the equivalence classes as [E] (without index). Subsequently, beginning with
Section 8, we shall return to restricting our investigation to B to obtain additional insight in
SD quantum logic.

3. Lüders States

We now express SD implication in terms of a (known but, perhaps, not well known) projector
relation.

Lemma 3.1. Denoting by Q the range projector of a given density operator ρ, the general claim is
valid that an event E has probability 1 in the state ρ if and only if Q ≤ E.

Proof. The proof is given for the reader’s convenience in Appendix A.

Corollary 3.2. Denoting the range projector of the Lüders state ρ (cf. (1.1)) by Q, and calling it
Lüders projector, relation (1.4) and Lemma 3.1 entail the following necessary and sufficient condition
for SD implication in terms of it:

E≤ρF ⇐⇒ Q ≤ F. (3.1)

Evidently, the projector E in Corollary 3.2 is somehow inherent in ρ. We want to find
out how, and proceed by evaluating the Lüders projector Q. One needs, not Q, the initial
range projector (of the initially given state ρ), but its ortho-complementary projector, the
null-space projector, which one denotes by Q0 and call the initial null projector. Besides, one
shall need more insight into the properties of E that appears in (1.1). As stated, one calls such
a projector a state determining one.

Lemma 3.3. Let E and ρ be an arbitrary projector and an arbitrary density operator, respectively.
Then the following equivalence relation is valid

tr
(
Eρ

)
= 1 ⇐⇒ Eρ = ρ. (3.2)

This general equivalence is known, but perhaps not well known. For the reader’s
convenience it is proved in Appendix B.

Corollary 3.4. Let E be a state determining projector. Then, obviously Eρ = ρ (cf. (1.1)), and, on
account of Lemmas 3.3 and 3.1, one has

Q ≤ E. (3.3)
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Definition 3.5. On account of Corollary 3.4, we can define a new projector E as follows:

E ≡ E −Q. (3.4)

We call E the redundancy projector (for reasons that will become clear below).

Proposition 3.6. The redundancy projector E of a state-determining projector E in (1.1) satisfies both
E ≤ Q0 and E ≤ Q0, where Q0 ≡ I −Q, I being the identity operator, is the Lüders null projector and
Q0 is the initial null projector (that of ρ).

Proof. Definition 3.5 makes E orthogonal to Q, hence E ≤ Q0 it must be a subprojector of the
null projector Q0, E ≤ Q0, because Q0 = I −Q, where I is the identity operator.

Let |φ〉 ∈ R(Q0), where R(Q0) is the range of Q0, that is, the null space of the Lüders
state (cf. (1.1)). Further, let ρ =

∑
i ri|i〉〈i| be a spectral decomposition of the initially given

density operator ρ into eigen-ray-projectors with all eigenvalues {ri : ∀i} positive. This is
always possible. Then, in view of (1.1),

0 =
〈
φ
∣
∣EρE

∣
∣φ

〉
=
∑

i

ri
〈
φ
∣
∣E|i〉〈i|E∣∣φ〉 =

∑

i

ri
∣
∣〈i|E∣∣φ〉∣∣2, (3.5)

implying

∀i : 〈i|E∣∣φ〉 = 0. (3.6)

Since |φ〉 is any state vector in R(Q0), and the vectors {|i〉 : ∀i} span the range of the
initial state ρ, the last relations mean that the image subspace E[R(Q0)] is orthogonal toR(ρ),
that is, that E maps the null space R(Q0) into the null space R(Q0):

E
[
R
(
Q0

)]
⊆ R(Q0). (3.7)

Further, E being a subprojector of Q0, one has R(E) ⊆ R(Q0). Finally, since E is also a sub-
projector of the idempotent operator E (cf. Definition 3.5), it follows that

E
[
R
(
E
)]

= R
(
E
)
⊆ E

[
R
(
Q0

)]
. (3.8)

Therefore, transitivity of the subset relation implies R(E) ⊆ R(Q0), or equivalently E ≤ Q0 as
claimed.

Theorem 3.7. The Lüders projector Q can be evaluated in terms of a state determining projector E
(cf. (1.1)) and the initial null projector Q0 as follows:

Q = E − (E ∧Q0), (3.9)

where E ∧Q0 is the greatest lower bound (glb) or largest common subprojector of E and Q0.
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Proof. Let us introduce G ≡ E − (E ∧Q0) or equivalently

E = (E ∧Q0) +G. (3.10)

Since (E∧Q0) is a sub-projector of the initial null projectorQ0, one has (E∧Q0)ρ = 0 = ρ(E∧Q0)
implying

GρG = EρE. (3.11)

Hence, also G is a determining projector for ρ (cf. (1.1)), and all that has been proved
for the determining projector E in (1.1) is valid also for G. In particular, Q ≤ G, G ≡ Q + G
(definition of G).

The definition of G implies G ≤ G. On the other hand, it is seen from (3.10) that G ≤ E.
Hence, due to transitivity of absolute implication, G ≤ E. Since also Proposition 3.6 is valid
for G and its redundancy projector G, one has G ≤ Q0, and

G ≤ (E ∧Q0) (3.12)

follows.
On can see from (3.10) that G is orthogonal to (E ∧ Q0): G(E ∧ Q0) = 0, and so is its

subprojector G: G(E ∧ Q0) = (GG)(E ∧ Q0) = 0. The projector orthogonality amounts to G ≤
(E ∧ Q0)

c, where the suffix c denotes taking the ortho-complementary projector. Comparing
this with (3.12), we conclude that G = 0 because only zero is the common subprojector of a
projector and its ortho-complementary projector.

Returning to the definition of G(≡ G−Q), we see that we are led to the equality G = Q,
which, due to the definition (3.10) of G, completes the proof.

Theorem 3.7 immediately implies the following conclusions.

Corollary 3.8. The redundancy projector E of any state-determining projector E ∈ P(H) is given by
E = E ∧Q0.

Corollary 3.9. A projector E is a Lüders projector Q if and only if its redundancy projector is zero,
and if and only if the only common subprojector of E and Q0 is zero:

E = Q ⇐⇒ E = 0 ⇐⇒ E ∧Q0 = 0. (3.13)

Corollary 3.10. If [E, ρ] = 0, or at least [E,Q0] = 0, then Q = E − EQ0.

Proof. The first commutation is equivalent, as well known, to reduction of E in each eigen-
subspace of ρ. Since the null-space of ρ is its eigen-subspace corresponding to the eigenvalue
zero, E reduces in it, hence it commutes with Q0 that projects onto the latter. Then the glb
equals the product as claimed.

Remark 3.11. Whenever Fρ = Eρ is valid, one can replace E by F in the evaluation formula of
the Lüders projector (cf. (1.1) and Theorem 3.7), that is, also Q = F − (F ∧Q0) is satisfied.
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Remark 3.12. If the initial density operator ρ is nonsingular, that is, when Q0 = 0, then the
Lüders projector Q is the only state determining projector as obvious from Theorem 3.7.

4. Generalized Lüders Lemma

The SD equivalence relation Eρ = Fρ implies that both E and F are state determining
projectors for the same Lüders state ρ (cf. (1.1)). We want to clarify if the converse implication
is also valid.

Theorem 4.1. Generalized Lüders lemma. If E, F are two projectors and ρ is a density operator, then
EρE = FρF implies Eρ = Fρ.

Proof. One can write E = Q + E and F = Q + F (cf. Definition 3.5). Further, on account of
Proposition 3.6, both E and F are subprojectors of Q0. Hence, Eρ = (Q + E)ρ = Qρ. On the
other hand, symmetrically Fρ = (Q + F)ρ = Qρ.

Corollary 4.2. If EρE = 0, then Eρ = 0.

Proof. One can write EρE = 0ρ0. Then Theorem 4.1 implies the claim.

Remark 4.3. The claim of Corollary 4.2 was proved by Lüders [1] (page 326) in the following
more general form: If B is a positive operator, and C†BC = 0, where the dagger denotes
adjoining (of the linear operator C), then BC = 0 is valid. This auxiliary result is usually
called ”the Lüders lemma.”

Lemma 4.4. The equivalence relation E∼ρF gives, in general, finer equivalence classes in P(H) then
the equivalence relation E∼ tr ρF ≡ (tr(Eρ) = tr(Fρ)).

Proof. The proof is given by a simple example. We take the two-dimensional spin-1/2 space
and we define: ρ ≡ 1/2 = (1/2)|+〉〈+| + (1/2)|−〉〈−|, E ≡ |+〉〈+|, F ≡ |−〉〈−|. Then Eρ =
(1/2)|+〉〈+|/=Fρ = (1/2)|−〉〈−|, though tr(Eρ) = 1/2 = tr(Fρ). Thus, E∼ tr ρF though E∼ρF is
not valid. The latter, finer, equivalence relation breaks up the coarser class [E, F] tr ρ, so that
the two distinct finer classes [E]B and [F]B are within it.

Remark 4.5. Theorem 4.1 can be put as the claim that EρE = FρF and Eρ = Fρ are equivalent,
that is, they both define the same equivalence relation ∼ρ in P(H).

Lemma 4.6. Relation Eρ = Fρ is valid if and only if E and F act equally on each element of the range
of ρ. In particular, SD equivalence is equivalent to EQ = FQ.

Proof. The general element of the range is of the form ρ|ψ〉, and SD equivalence in
Proposition 2.8 amounts to Eρ|ψ〉 = Fρ|ψ〉. This bears out the first claim of the lemma. Since
the last relation is obviously equivalent to EQ|ψ〉 = FQ|ψ〉, also the second claim is shown to
hold true.

Lemma 4.7. One has Eρ = 0, or equivalently E∼ρ0, if and only if EQ0 = E. The last relation means
that E is a subprojector of the initial null projector Q0, that is, that E ≤ Q0 is valid. Thus, the SD
equivalence class [0] = [Q0] consists of all subprojectors of Q0. The projectors 0 and Q0 are the
minimal and the maximal elements in the class, respectively, (cf. Remark 2.2).
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Proof. Sufficiency. Let the subprojector condition EQ0 = E be valid. Then Eρ = (EQ0)(Qρ) = 0.
Necessity. Let Eρ = 0 = 0ρ hold true. Then, according to Lemma 4.6, also EQ = 0Q = 0

is true. Finally, E = EQ + EQ0 = EQ0 as claimed.

Lemma 4.8. One has Eρ = ρ, or equivalently E∼ρI if and only if EQ = Q. The last relation means
that Q is a subprojector of E, that is, that Q ≤ E is valid. Thus, the class [Q] = [I] consists of all
projectors of which Q is a subprojector. The projectors Q and the identity operator I are the minimal
and the maximal elements of the class, respectively.

Proof. Follows immediately from Lemma 4.6.

Lemma 4.9. The equivalence E∼ρF implies E∼ρG∼ρF, where G is defined as the common glb of E
and F.

Proof. It is known that G ≡ E ∧ F = limn→∞(EFE)
n (cf. solution 96 in [15]). On account of

Proposition 2.8, the assumed equivalence relation (with the idempotencies of the projectors)
implies (EFE)ρ = Eρ. Further, (EFE)nρ = Eρ ensues. Finally, Gρ = [limn→∞(EFE)

n]ρ =
limn→∞Eρ = Eρ.

Proposition 4.10. Let E∼ρF, and let by definition H ≡ E − G, J ≡ F − G (cf. Lemma 4.9). Then
E∼ρF is equivalent to the simultaneous validity of the following two sub-projector relations

H ≤ Q0, J ≤ Q0. (4.1)

Proof. Sufficiency. Let the two subprojector relations be valid. Then one can write E = G+HQ0

and F = G + JQ0. SD equivalence then immediately follows.
Necessity. E∼ρF and Lemma 4.9 imply Eρ = Gρ = Fρ, and one has

Hρ = (E −G)ρ = 0 = (F −G)ρ = Jρ. (4.2)

Proposition 4.10 has introduced the entities H and J in the general case. Incidentally,
there is a general lemma that says: Two arbitrary projectors E and F commute if and only if
H and J are orthogonal (since we actually do not need this claim, let its proof be left to the
reader).

5. Complete-Lattice Structure of the SD Equivalence Classes in P(H)

We assume that an arbitrary density operator ρ is given and subject to scrutiny the SD
equivalence classes. On account of Remark 4.5 we know that each such class contains
precisely all projectors that are state determining for one and the same Lüders state ρ. We
begin by paying attention to the Lüders projectors in the classes.

Proposition 5.1. (A) Each SD equivalence class [E] contains a Lüders projector Q, and it can be
evaluated from any element E of the class according to Theorem 3.7.

(B) Each Lüders projector Q is the unique minimal element in its class [Q]: E∼ρQ implies
Q ≤ E.
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(C) The following bijection b̂ maps the SD quotient set P(H)/∼ρ onto the set of all Lüders
projectors in P(H), which we denote by L:

b̂([E]) = Q ≡ E − (E ∧Q0), [E] ∈ P(H)
∼ρ , b̂−1

(
Q
)
=
[
Q
]
, Q ∈ L. (5.1)

Proof. (A) We assume that [E] is any state-dependent equivalence class, and that E is any
of its elements. We take Q as defined by the relation in Theorem 3.7. Since (E ∧Q0) is a sub-
projector of Q0, it follows that we have (E ∧ Q0)ρ = 0, and then, according to the relation in
Theorem 3.7, Qρ = Eρ. Thus, each class does contain at least one Lüders projector.

(B) That Q ≤ E is immediately seen from Corollary 3.4. This makes Q the unique
minimal element in [E] (there cannot be two distinct minimal elements, because they would
have to be subprojectors of each other, and ≤ is a partial order, the anti-symmetric property
of which implies the equality).

(C) is now obvious.

It is now useful to be reminded of a general property of the complete lattice P(H).

Lemma 5.2. Let E be any nonzero projector. The set of all lower bounds {E′ : E′ ≤ E} is a complete
lattice.

Though this a known and simple property of complete lattices, we prove it for the
reader’s convenience in Appendix C.

Theorem 5.3. An arbitrary SD equivalence class [E], as a poset subset of P(H), is isomorphic to the
complete lattice {E′ : E′ ≤ (Q0 ∧Q0)}. The isomorphism î acts as follows:

î(E) ≡ E = E −Q, E ∈ [E]; î−1
(
E′) = Q + E′, E′ ≤

(
Q0 ∧Q0

)
. (5.2)

Proof. Let E′, F ′ ≤ (Qc ∧Q0). Then, on account of the assumed orthogonalities QE′ = 0 = QF ′,
one has

(
Q + E′

)(
Q + F ′

)
= Q + E′F ′. (5.3)

Thus, one has (Q + E′)(Q + F ′) = (Q + E′), symbolically (Q + E′) ≤ (Q + F ′) if and only if
E′F ′ = E′, symbolically E′ ≤ F ′.

We have the immediate consequence.

Corollary 5.4. Each SD equivalence class is a complete lattice with the Lüders projector Q as the
minimal element and Q + (Q0 ∧Q0) as the maximal element.

The set of all Lüders projectors L, as any subset of P(H), is a poset. It has a lattice
structure and it is easily connected with the ortho-complemented SD quotient set.
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Theorem 5.5. (A) The poset L has the structure of a complete glb-semilattice, the operation of glb
(greatest lower bound) being the same as in the entire quantum logic P(H). Its minimal element is
the zero projector.

(B) There is a simple bijection î’ mapping L onto the SD quotient set P(H)/∼ρ that associates
with each Lüders projector its SD equivalence class, and the inverse of which singles out the minimal
element in the SD equivalence class:

î′
(
Q
)
≡
[
Q
]
,

(
î′
)−1

([E]) = Q, Q∼ρE. (5.4)

The term ”glb-semilattice” is consistent with the terminology of Birkhoff, who used the
synonymous term ”meet-semilattice” (cf. the definition on page 22 in [14]).

Proof of Theorem 5.5. Let {Em : m ∈ M} be any subset of L, and let Eglb ≡ ∧m∈MEm be the
greatest lower bound of the projectors in the subset taken in P(H). We show now that it is
a Lüders projector. Corollary 3.9 implies that a projector is a Lüders projector if and only if
only the zero projector is a common lower bound of it and Q0.

We take P as a common sub-projector of Eglb and of Q0. On account of Eglb being a
lower bound (a sub-projector) of each Em in the subset, P is a common sub-projector of each
Em and of Q0. Since each Em is a Lüders projector, P must be zero.

6. Physical Meaning of Complete-Lattice Structure

The physical meaning of an event (projector) E consists in the fact that it can occur in a given
state (density operator) ρ, when tr(Eρ) = 1, or “not occur” when tr(Eρ) = 0. In the latter
case the opposite event (ortho-complementary event) Ec ≡ I − E occurs. (There is a third
possibility, E can de indeterminate, that is, 0 < tr(Eρ) < 1. Then it is made to occur or not
occur in an ensemble of measurements giving relative frequencies.)

Let {Em : m ∈M} be an arbitrary set of projectors in P(H). One may wonder if the set
can, as a whole, occur? The answer is of course, that it can. This is the case when all the events
in it occur. One may further wonder if this occurrence of the set of events can be equivalently
replaced by occurrence of a single event. Affirmative answer is given by the following claim.

Proposition 6.1. The system of relations

∀m ∈M : tr
(
Emρ

)
= 1 (6.1)

is equivalent to the single relation tr[(∧m∈MEm)ρ] = 1.

Proof. Necessity. On account of Lemma 3.1, one can rewrite the system of relations in
Proposition 6.1 equivalently as follows:

∀m ∈M : Q ≤ Em. (6.2)

Being a common lower bound of the set {Em : m ∈ M}, Q must satisfy Q ≤ ∧m∈MEm. This is
equivalent, due to Lemma 3.1, to tr[(∧m∈MEm)ρ] = 1.
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Sufficiency. Assuming tr[(∧m∈MEm)ρ] = 1, or equivalently Q ≤ (∧m∈MEm), and taking
into account that ∀m ∈ M : (∧m′∈MEm′) ≤ Em, transitivity implies ∀m ∈ M : Q ≤ Em. This is
equivalent to the system of relations in Proposition 6.1.

Let us turn to the other extreme case. Nonoccurrence of the set of events {Em : m ∈M}
also amounts to that of a single event.

Proposition 6.2. Non-occurrence of a set of events {Em : m ∈ M} is equivalent to non-occurrence
of the single event ∨m∈MEm, where ∨ denotes the least upper bound.

Proof. The non-occurrence in question is equivalent to the occurrence of the set {Ecm : m ∈M}
of opposite events. This, in turn, is, according to Proposition 6.1, equivalent to the occurrence
of ∧m∈MEcm. On account of the corresponding de Morgan rule, this projector can be rewritten
as (∨m∈MEm)

c. Occurrence of this event is equivalent to non-occurrence of the opposite event
(∨m∈MEm).

Propositions 6.1 and 6.2 have made it clear that the physical meaning of the greatest
lower bound and the least upper bound in a complete lattice is occurrence and non-
occurrence of a set of events, respectively.

7. Physical Meaning of the Complete-Lattice Structure of
the SD Equivalence Classes

We have seen that every SD equivalence class contains precisely all those events, that, as
projectors, are the state-determining ones for one and the same Lüders state. These events
have the same probability in the initially given state ρ, and, more importantly, they give rise
to the same change of state in ideal measurement. In this sense, they are indistinguishable,
and the SD equivalence class that they constitute, as a whole, correctly replaces its individual
elements.

According to Proposition 6.1, the minimal element in the class, which is its glb, and
which is the Lüders projector Q, determines via its occurrence the occurrence of the whole
class. Its maximal element Q + (Q0 ∧Q0), via its non-occurrence determines that of the entire
class. Thus, the two extreme elements in the class make possible the occurrence or non-
occurrence of the class as a set of indistinguishable events (as far as probability and ideal
measurement go).

One wonders if the elements of the class that are intermediate between the extreme
ones do have any physical meaning. They are distinguished via the redundancy projectors

E ∈
{
E′ : E′ ≤

(
Q0 ∧Q0

)}
, (7.1)

(cf. Theorem 5.3). They have a subtle physical meaning of redundancy. We elaborate this point.
(A) The Lüders projector Q of any class [E] has no redundancy as far as occurrence

goes in the sense that they occur (have probability one) in the corresponding Lüders state ρ
and there exists no other event that occurs in ρ and that implies the event Q.

(B)All other events E that are state-dependent ly equivalent toQ do have redundancy,
and a kind of its measure is uniquely expressed by the redundancy projector E because
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E = Q + E (cf. Definition 3.5). They occur in ρ, but there exists another event that also occurs
in this state and it implies E (it is, of course, the Lüders state).

(C) As to the events E′ that are implied byQ but belong to another SD-class, one must
distinguish two distinct sets of Lüders entities, besides ρ,Q,Q0 that were in focus so far, also
another set ρ′, Q′,Q′

0 connected to the SD-class to which E′ belongs.
For such events E′ the redundancy projector E′ satisfies formally the same last relation

E′ ∈ {E′′ : E′′ ≤ (Q0 ∧Q′
0)}, but this time with Q′

0.
Next we return to restricting P(H) to one of its Boolean subalgebras.

8. SD Equivalence Classes in B and Their Minimal Elements

After having restricted P(H) to an arbitrary Boolean subalgebra B, “shrinking” further B
into B/∼ρ is mathematically necessary to upgrade the preorder into an order relation (cf.
Lemma 2.6). In other words, the SD implication ”≤ρ” is actually valid in the quotient set.
Physically, the events are now the classes, and the question arises how do they “occur” or
“not occur.”

The subalgebra B can be a finite lattice, if it is closed to taking the greatest lower bound
(glb) and the least upper bound (lub) of at most finite subsets; it can be a σ-lattice if it contains
the glb and lub of its subsets with at most countably infinite number of elements, and, finally,
it can be a complete lattice if the glb and lub of any subset is in it. We will call this the lattice
type of B.

In restricting P(H) to B each SD equivalence class [E]B is part of the corresponding
SD equivalence class in P(H):

[E]B ≡ [E] ∩ B. (8.1)

The importance of the intersection relation (8.1) is in the fact that if two projectors E, F are
in B, then they belong to one and the same SD equivalence class [E]B if and only if they
are equivalent in P(H). For the latter, we have, besides Eρ = Fρ, additional necessary and
sufficient conditions like in Lemma 4.6 and in Proposition 4.10.

It was seen in Corollary 5.4 that each SD equivalence class [E] in P(H) is a complete
lattice. Hence, it follows from (8.1) that each SD equivalence class [E]B in B is also a lattice of
the same lattice type as that of B.

To acquire a feeling for the SD equivalence classes [E]B defined by (8.1), we consider
two extreme cases. Firstly, we assume that ρ is nonsingular. ThenQ = I andQ0 = 0. According
to Remark 3.12, each projector in P(H) equals the minimal element Q in its SD equivalence
class. Hence all SD equivalence classes in P(H) have only one element. Relation (8.1) then
tells us that also the SD equivalence classes [E]B all consist of one element and [E]B = [E] if
E ∈ B.

Secondly, let us take a singular density operator, but let B consist of only two elements.
They must, of course, be 0 and I. Then, only [Q0](= [0]) and [Q](= [I]) (cf. Lemmas 4.7 and
4.8) have nonempty intersectionswithB. The former intersection consists of only themaximal
element in the P(H) class, whereas the latter intersection contains only the minimal element
of the corresponding class. We proceed by investigating the general case of [E]B in detail.

If not stated otherwise, we assume that B is a complete lattice in what follows. We
introduce two key entities for further study.
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Definition 8.1. LetQB
0 be the greatest subprojector ofQ0 that is in B:QB

0 ≡ ∨({E : E ≤ Q0}∩B).
We call QB

0 the Boolean initial null projector. Further, let QB be the least among the projectors
that are greater than Q and belong to B: QB ≡ ∧({E : E ≥ Q} ∩ B). We call QB the Boolean
initial range projector.

Note that, since B, {E : E ≤ Q0}, and {E : E ≥ Q} are complete lattices (cf. Lemma 5.2
and its proof in Appendix C), so are the above intersections.

Proposition 8.2. The Boolean null projector and the Boolean range projector are dual entities, that is,
they are the ortho-complementary projectors of each other: QB

0 = Qc
B.

Proof. The SD equivalence classes {E : E ≤ Q0}∩B and {E : E ≥ Q}∩B are dual to each other.
Hence, so are the maximal element in the former and the minimal element in the latter.

Remark 8.3. Evidently, QB = Q, or equivalently QB
0 = Q0 if and only if Q ∈ B, or equivalently

Q0 ∈ B.

Proposition 8.4. One has [0]B = [QB
0 ]B and [QB]B = [I]B. The zero projector and Q

B
0 are the least

and the greatest elements, respectively, in [0]B: E ∈ [0]B ⇒ 0 ≤ E ≤ QB
0 , whereasQB and the identity

operator I are the least and the greatest elements, respectively, in [I]B: E ∈ [I]B ⇒ QB ≤ E ≤ I.

Proof. The projectorQB
0 is by Definition 8.1 a subprojector ofQ0. Hence,QB

0 ρ = 0ρ, orQB
0 ∼ρ0.

The projectorQB
0 is, by definition, the greatest subprojector ofQ0 that belongs to B. Hence it is

the greatest element in [0]B. Further, as we know (cf. lemma 2 and lemma 3), one has Eρ = ρ,
or equivalently E∼ρI, if and only if E ≥ Q. Hence, QB is the minimal element of [I]B. The rest
is obvious.

Definition 8.5. We call a projector EB
0 a core element in B if the relation EB

0Q
B
0 = 0 is satisfied.

The set of all core elements in Bwe call the core set and denote it by CB.

Proposition 8.6. The core set is CB = {E : E ≤ QB} ∩ B. It is a complete lattice.

Proof. The definition EB
0Q

B
0 = 0 means that each core element is orthogonal to QB

0 , or
equivalently that it is a subprojector of the ortho-complementary projector QB of QB

0 (cf.
Proposition 8.2). The poset CB is the intersection of two complete lattices, hence it is itself
a complete lattice

Theorem 8.7. (A) Every state-dependent equivalence class [E]B contains a core element EB
0 . It can

be evaluated from an arbitrary element E of the class by the relation

EB
0 = E − EQB

0 , (8.2)

(cf. Definitions 8.1 and 8.5).

(B) Every core element EB
0 is the least element of its class [EB

0 ]B: E∼ρEB
0 , E ∈ B ⇒ E ≥

EB
0 . Hence, each class contains a unique core element.

Proof. (A) Let [E]B be any state-dependent equivalence class in B, and let E be any of its
elements. The rhs of (8.2) is state-dependently equivalent to E because QB

0 is equivalent to 0.
In other words, the lhs belongs to [E]B. We prove that it is a core element: (E − EQB

0 )Q
B
0 = 0.
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Hence, according to Definition 8.5, it is a core element, and therefore, each class does contain
at least one core element.

(B) Let EB
0 be a core element of [E]B. Then, according to Theorem 8.7(A), EB

0 = E−EQB
0 .

Multiplication gives EEB
0 = EB

0 , that is, E
B
0 ≤ E as claimed. This makes EB

0 the unique least
element in the class [EB

0 ]B to which it belongs.

The core elements EB
0 in the SD equivalence classes in B play the same role as the

Lüders range projectors Q in the SD equivalence classes in P(H) (cf. Corollary 5.4).

9. Further Investigation of the SD Equivalence Classes in B
Some SD equivalence classes [E] in P(H) do and others do not contain an SD equivalence
class [E]B, that is, they may be vacant in this respect. We now derive some necessary
conditions for nonvacant classes [E].

Proposition 9.1. Each SD equivalence class [E] is vacant unless QB is an upper bound for the
minimal element, the Lüders range projector Q, in the class.

Proof. The core element EB
0 , if it exists in a class [EB

0 ], must be an upper bound of the minimal
element Q in the class. Since, further, EB

0 ≤ QB (cf. Proposition 8.6), transitivity establishes
the claim.

Corollary 9.2. In the special case whenQB = Q, or equivalently,Q ∈ B, SD equivalence classes in B
can appear only in those SD equivalence classes in P(H) in which Q ≤ Q, and then not necessarily
in all (take, e.g., a non-singular ρ and the minimal Boolean subalgebra).

We now investigate the properties of the intermediate elements of the SD equivalence
classes in B analogously as one did in P(H).

Theorem 9.3. (A) Each element E of each state-dependent equivalence class [E]B can (uniquely) be
written as follows:

E = EB
0 + E′, (9.1)

so that

EB
0 ∼ρE, EB

0 ∈ CB, E′ ∈ [0]B. (9.2)

Conversely, for each core element EB
0 , each projector E′ ∈ [0]B determines an element E ≡

EB
0 + E′ that is state-dependently equivalent to EB

0 . In this way one has a one-to-one map of {E′ : E′ ≤
QB

0 } ∩ B(= [0]B = [QB
0 ]B) onto any class [EB

0 ]B.
(B) The map associating with each E′ ∈ [0]B the image EB

0 + E′, where EB
0 is the core element

of any given SD equivalence class in B, is an isomorphism of the poset [0]B onto the poset [EB
0 ]B.

Proof. (A) Theorem 8.7 has established that each SD equivalence class [E]B contains a unique
core element EB

0 and that the latter is the least element of the class. The projector E′ ≡ E − EB
0

is obviously in B since one can write E′ = (EB
0 )

cE. That E′ is a subprojector of QB
0 is seen as
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follows. We take into account that EB
0 ρ = Eρ, which implies E′ρ = 0, E′∼ρQB

0 and E′ ≤ QB
0 (cf.

Proposition 8.4). Thus, E′ ∈ [0]B.
Conversely, we assume that

E′ ≤ QB
0 , E′ ∈ B. (9.3)

One has EB
0 ≤ QB (cf. Definition 8.5 and Proposition 8.4), and, taking the ortho-complement

of this inequality, QB
0 ≤ (EB

0 )
c ensues. Hence, transitivity and (9.3) give E′ ≤ (EB

0 )
c, implying

E′EB
0 = 0. This orthogonality makes it possible to add E′ to EB

0 .
Finally, as we know from Proposition 8.4, E′ρ = 0. Hence, (EB

0 + E′)∼ρEB
0 as claimed.

The map at issue is clearly a one-to-one map because it can be inverted beginning with any
element of the image set [E]B.

(B) To prove isomorphism, let E′ ≤ E′′, E′, E′′ ∈ [0]B. Let us, further, multiply out the
product

(
EB
0 + E′

)(
EB
0 + E′′

)
= EB

0 + EB
0E

′′ + E′EB
0 + E′E′′. (9.4)

One obtains

(
EB
0 + E′

)(
EB
0 + E′′

)
= EB

0 + E′E′′, (9.5)

if one utilizes the orthogonalities stemming from EB
0E

′′ = EB
0 (Q

B
0E

′′) = 0 (cf. Definition 8.5),
and E′EB

0 = (E′QB
0 )E

B
0 = 0. Obviously, if and only if E′E′′ = E′, then (EB

0 +E
′)(EB

0 +E
′′) = EB

0 +E
′

as claimed.

Corollary 9.4. Each SD equivalence class [E]B has, as a poset, the same structure as the poset [QB
0 ]B.

In particular, in the former, its core element EB
0 is the least and EB

0 +QB
0 is the greatest element.

Corollary 9.5. Each SD equivalence class [E]B has precisely one element, the core element EB
0 , if and

only if QB
0 = 0. This is the case, for example, when ρ is non-singular, because then Q0 = 0, and

QB
0 ≤ Q0. But Q0 may be non-zero, and QB

0 = 0.

Corollary 9.6. Theorem 9.3 establishes an isomorphism between any two SD equivalence classes in B
(in an obvious way).

The reader who remembers well the results in the decomposition of entire quantum
logic P(H) into SD equivalence classes is rightly perplexed. He wonders how did it happen
that restriction to a Boolean subalgebra made all the SD equivalence classes [E]B mutually
isomorphic, whereas the larger SD equivalence classes [E] (cf. (1.1)) are not isomorphic due
to the fact that the Lüders null projectors Q0 are, in general, different for different classes.

To throw additional light on this puzzling fact, we shortly repeat the relevant parts of
the above arguments. The (minimal) core elements EB

0 in the classes [E]B are obtained from
an arbitrary element in the class in a completely parallel way as in [E] (cf. Theorem 8.7(A)
above and Theorem 3.7). As a consequence, the core elements satisfy EB

0Q
B
0 = 0 parallelly

to the Lüders range projectors for which Q ∧ Q0 = 0 is valid (cf. Definition 8.5 above and
Corollary 3.9).
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Also Theorem 9.3(A) above could have been put in the form of a map of {E′ : E′ ≤
QB

0 ∧ (EB
0 )

c} ∩ B (see below) onto [E]B, to display further parallelism with P(H), where the
counterpart is {E′ ≤ Q0 ∧Q

c}. So far the classes in B and in P(H) go parallelly.
What makes a difference is the fact that in a Boolean subalgebra any two projectors

commute. Hence, glb takes the form of multiplication. If the glb is zero, as it is in our case (cf.
Definition 8.5), we have orthogonality, leading to EB

0 ≤ QB and, taking the ortho-complement
of this inequality, to QB

0 ≤ (EB
0 )

c. Since in a Boolean subalgebra the last inequality means
QB

0 (E
B
0 )

c = QB
0 , we have QB

0 ∧ (EB
0 )

c = QB
0 (E

B
0 )

c = QB
0 as a consequence.

Thus, (EB
0 )

c, the counterpart ofQ0, has disappeared from the scene (whereasQ0(= Q
c
)

in [E] does remain in general).

Remark 9.7. If Q ≤ Q, then, taking the ortho-complementary projectors, we obtain Q0 ≤ Q0

implying Q0 ∧ Q0 = Q0. In other words, in the classes considered, Q0 disappears from the
maximal element in the class, which is nowQ+Q0. Thus, the considered classes are mutually
isomorphic just like the SD equivalence classes in B that they may contain.

10. The Core Decomposition

The core set CB in B (cf. Definition 8.5) runs parallel to the Lüders set L in P(H) (cf.
Proposition 5.1(C)). We investigate now if also the lattice structure of the former parallels
that of L.

Theorem 10.1. The core set CB has the structure of a complete lattice with the greatest lower bound
operation being the same as in B, but the least upper bound operation being, in general, different. The
least element in CB is the zero projector 0, and the greatest element is QB.

Proof. Let S be any subset of CB, and let ∧S be the glb of the projectors in S taken in P(H).
We show that it is a core element.

Arguing ab contrario, we assume that there exists a non-zero projector E in B that is
a common subprojector of ∧S and of QB

0 . But then, on account of ∧S being a lower bound
(a subprojector) of each EB

0 ∈ S and of QB
0 , it cannot be non-zero (cf. Definition 8.5), and

∧S ∈ CB follows. It is obvious that zero is the least element in CB.
The projector QB is a core element (cf. Definition 8.5) since it is orthogonal to QB

0
as its ortho-complementary projector. That it is the largest element in CB is evident from
Proposition 8.6.

It is an elementary fact that every complete glb-semilattice with a greatest element is a
complete lattice because the lub of any subset is the glb of the subset of all upper bounds of
the given subset (for the reader’s convenience the latter claim is proved in Appendix D).

The lub ∨S in CB need not be the same as the lub of the same subset in B, in general,
because, in the latter case, it equals the glb of the subset of all upper bounds of the given
subset in B. This is the glb of a larger set, hence it is, in general, less than the mentioned glb
in CB.

Unlike in P(H), the core set has isomorphic complete lattices.

Theorem 10.2. For each E′ ∈ [0]B(= [QB
0 ]B), the poset E′ + CB, which we call the core class

determined by E’, with the absolute implication ≤ defined in P(H), is isomorphic to CB; hence, it
is a complete lattice like CB.
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One should note that E′+CB ≡ {E′+E : E ∈ CB} is the set of all projector sums of E′ and
an element of CB. A sum of two projectors is a projector if the terms are orthogonal as well
known. It is the case here because E′ ≤ QB

0 (cf. Theorem 9.3(A) and Proposition 8.4), EB
0 ≤ QB

(cf. Proposition 8.6), and QB
0 and QB are orthogonal to each other (cf. Proposition 8.2).

Proof of Theorem 10.2. Let E′ ∈ [0]B, E
B
0 , E

′
0
B ∈ CB. On account of the orthogonalities due to

Definition 8.5 and the fact that E′ ≤ QB
0 , one has

(
E′ + EB

0

)(
E′ + E′

0
B) = E′ + EB

0E
′
0
B
. (10.1)

This is (E′ + EB
0 )(E

′ + E′
0
B) = E′ + EB

0 , that is, (E
′ + EB

0 ) ≤ (E′ + E′
0
B) if and only if EB

0E
′
0
B = EB

0 ,
that is, EB

0 ≤ E′
0
B.

Definition 10.3. We call the (nonoverlapping) decomposition of B

B =
∑

E′∈[0]B

{
E′ + CB

}
, (10.2)

the core decomposition of the given Boolean subalgebra B of P(H) into core classes.

We can picture B as a matrix of elements such that the rows are the SD equivalence
classes and the columns are the core classes. Then, the rows are enumerated by the core
elements (elements of CB), and the columns by the elements of [0]B.

One should pay attention to the fact that the same notation is used for summation (+
and

∑
) in two different senses: as a summation of projectors like in the core class E′ +CB, and

as a union of non-overlapping subsets as in Definition 10.3.

Remark 10.4. In view of Remark 9.7, we see that if we restrict ourselves to NV ≡ ∑
Q≤Q[Q]

(a subset of P(H)), that is, if we consider only those SD equivalence classes in P(H) that
may contain a SD equivalence class in B (that are nonvacant in this respect), then we have a
decomposition of NV parallelling the core decomposition of B. But in P(H), when no B is
chosen, there is no motivation for this.

11. Back to the SD Quotient Set

There is more insight to be gained about the poset structure of the SD quotient set B/∼ρ.
A remarkable property of B/∼ρ is the following fact [11] (Lemma 1 there). A SD

equivalence class implies state-dependently another such class if and only if there is an event
E in the former and an event F in the latter so that E ≤ F, that is, the former event implies
the latter one in the absolute sense. Since this result is of great importance for the aims of this
study, we re derive it (with new insight) to make the present text self-contained.

Proposition 11.1. If E ≤ F, then [E]B≤ρ[F]B. Conversely, if [E]B≤ρ[F]B, then ∃E′ ∈ [E]B and
F ′ ∈ [F]B such that E′ ≤ F ′.

Proof. The relation E ≤ F can be rewritten as E≤ρF (cf. Corollary 2.3), then the claimed
relation [E]B≤ρ[F]B immediately follows (cf. Definition 2.5). If [E]B≤ρ[F]B, then Eρ = EFρ
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(cf. Propositions 2.4 and 2.1). Hence, EF∼ρE, that is, EF ∈ [E]B, and, taking E′ ≡ EF and
F ′ ≡ F one has E′ ≤ F ′.

Remark 11.2. In the partially ordered set B/∼ρ one can replace ≤ρ by ≤ because
Proposition 11.1 allows one to define [E]B ≤ [F]B via E ≤ F that the respective CD
equivalence classes contain.

For the sake of generality, let us assume now that the Boolean subalgebra B is of any
lattice type (finite, σ- or complete, cf. the second passage in section 8).

Theorem 11.3. (A) The map associating with each projector E ∈ B the SD equivalence class [E]B to
which it belongs is a poset homomorphism of the Boolean subalgebra B onto the Boolean algebra B/∼ρ.

(B) B/∼ρ is of the same lattice type as B.

Proof. (A) In view of Proposition 11.1, it is obvious that the map taking B onto B/∼ρ by
associating with each element E ∈ B the SD equivalence class [E]B to which it belongs is
a homomorphism of a poset with absolute implication ”≤” onto the poset B/∼ρ with the
same implication ”≤.” The map evidently preserves the ortho-complementation operation.
We prove now that it preserves also the glb and lub operations.

Let {Em : m ∈ M} be an arbitrary subset of B of a finite number of elements if B is
a finite lattice, of at most a countably infinite number of elements if B is a σ-lattice, and a
completely arbitrary subset if B is a complete lattice.

The SD equivalence class [∧m∈MEm]B is a lower bound of the set {[Em]B : m ∈ M} of
classes because so is ∧m∈MEm for the set of projectors {Em : m ∈ M}. If [F]B is an arbitrary
lower bound of {[Em]B : m ∈ M}, then ∀m ∈ M : ∃Fm ∈ [F]B such that Fm ≤ Em (cf.
Proposition 11.1 and its proof). Let F ′ ≡ ∧m∈MFm. Since ∀m ∈ M : F ′ ≤ Fm ≤ Em, one has
F ′ ≤ ∧m∈MEm.

On the other hand, F ′ ∈ [F]B because also [F]B is a lattice of the specified lattice type
(cf. (8.1)). Hence, on account of the last inequality, [F]B ≤ [∧m∈MEm]B, and [∧m∈MEm]B is
seen to be the glb of {[Em]B : m ∈M}. Thus the map in question preserves the glb operation.
Symmetrically (or dually) one can prove preservation of the lub operation.

To prove that the quotient set is an ortho-complemented lattice, let again {[Em]B : m ∈
M} be an arbitrary subset of B (of cardinality corresponding to the lattice type of B). Since
the first Morgan rule (∧m∈MEm)

c = ∨m∈MEcm is valid in B, and the surjection is such that
[E]cB = [Ec]B, one obtains the validity of the first Morgan rule (∧m∈M[Em]B)

c = ∨m∈M[Em]
c
B)

in B/∼ρ. Symmetrically one proves that also the second Morgan rule is true.
To show that B/∼ρ is a Boolean algebra, we have to prove that the glb and the lub

operations are mutually distributive. It is, actually, a straightforward consequence of the
preservation of these operations in the map E → [E]B:

[E]B ∧ ([F]B ∨ [G]B) = [E]B ∧ [F ∨G]B = [E ∧ (F ∨G)]B. (11.1)

Since B is a Boolean subalgebra, it is distributive, and one further has

lhs = [(E ∧ F) ∨ (E ∧G)]B = [(E ∧ F)]B ∨ [(E ∧G)]B
= ([E]B ∧ [F]B) ∨ ([E]B ∧ [G]B).

(11.2)

The converse distributivity of lub with respect to glb is proved analogously.
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(B) We prove now that B/∼ρ is a lattice of the same lattice type as B. Let {[Em]B : m ∈
M} be an arbitrary subset of the former (of cardinality corresponding to the lattice type of B).
Then ∧m∈MEm, being the glb of {Em : m ∈ M}, makes (according to the preceding passage)
[∧m∈MEm]B the glb of {[Em]B : m ∈M}. Symmetrically one deals with the lub operation.

The results of this and the next section, in conjunction with all the results of the four
articles on the topic ([11–13], and this paper) make it, hopefully, desirable to accept the
proposed term “SD quantum logic” in its two meanings (cf. Remark 2.7).

12. Physical Meaning of the Quotient Set

We have seen that SD implication extends absolute implication in a given Boolean subalgebra
B of quantum logicP(H), but there is a price to be paid: SD implication is a preorder. Inherent
in it is an equivalence relation that makes equivalent events indistinguishable. These are the
events that have same probability in the given state ρ, and change this state in the same way
when ideally measured.

When one makes the transition to the SD quotient set B/∼ρ (by a homomorphism of
a Boolean subalgebra to a Boolean algebra of the same kind, cf. Theorem 11.3), then one can
even forget about the SD implication, because B/∼ρ can be characterized by the equivalence
relation in B and absolute implication (cf. Remark 11.2).

This throws new light on SD implication. The SD quotient set, that is, the SD quantum
logic (cf. Remark 2.7), can be viewed, instead of as extending absolute implication in B, as a
contraction, a shrinking of sets of indistinguishable events with respect to ρ into, effectively,
single events (the corresponding SD equivalence classes in B).

This is where, when B is a complete lattice, the extreme elements of the SD equivalence
classes acquire physical meaning. As it has been shown in Propositions 6.1 and 6.2 (cf. also
Corollary 9.4), occurrence of a SD equivalence class amounts to the occurrence of its minimal
element, the core element EB

0 , and its non-occurrence to that of its maximal element EB
0 +QB

0 .
If for a set of SD equivalence classes, that is, elements of the SD quantum logic

B/∼ρ, the question of occurrence or non-occurrence appears, then the physical answer is
given by the corresponding glb and lub operation in the core set CB (cf. Definition 8.5 and
Proposition 8.6).

13. An Illustration

Let the state space be a separable, that is, a countably infinite dimensional, complex Hilbert
space H, and let {|n〉 : n = 1, 2, . . . ,∞} be a given complete orthonormal basis in H. We
consider an observable A defined by its spectral form

A =
∑

n

an|n〉〈n|, n /=n′ =⇒ an /=an′ , (13.1)

and a state vector

|Ψ〉 ≡
∑

n=2,4,...,∞
ψn|n〉;

∑

n=2,4,...,∞

∣
∣ψn

∣
∣2 = 1. (13.2)

The last two sums are over all even integers, and all ψn in them are non-zero.
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We define the Boolean subalgebra B as the set of all spectral projectors of the
observableA. Let S be an arbitrary set of integers including the vacant set, and let S = Se+So

be the unique decomposition of S into the subset of all even integers that it contains and the
subset of all odd integers in it. Let us denote by P the power set, that is, the set of all subsets
(the vacant set included) of the set N of all integers.

It is easily seen thatP can be used as the index set of the spectral projectors, that is, that
B ≡ {ES : S ∈ P}, ES ≡ ∑

n∈S |n〉〈n|. B and P are isomorphic posets with respect to the map
P � S → ES ∈ B. In B absolute implication ”≤” defined in P(H), and in P the set-theoretical
inclusion relation ”⊆” are the partial orders. Evidently, P and B are complete lattices.

The SD equivalence classes are defined by the SD equivalence relation

ES∼|Ψ〉ES′ ⇐⇒ ES|Ψ〉 = ES′ |Ψ〉. (13.3)

Evidently, ES∼ρES′ if and only if Se = (S′)e. Hence. the SD equivalence classes are the sets
{ES : ∀So,Se fixed}with ESe as the core elements.

To find the greatest elements in the SD equivalence classes, we note that ESM ≡
∑

n=1,3,...,∞ |n〉〈n|, where the summation goes over all odd integers, is the greatest spectral
projector that takes |Ψ〉 into zero. It is the Boolean null projector QB

0 = ESM . The greatest
elements in the SD equivalence classes are ESe + ESM . The Boolean range projector is QB =
(QB

0 )
c = EcSM

=
∑

n=2,4,...,∞ |n〉〈n|, where the summation goes over all even integers.
In particular, the projectors 0 and ESM are the extreme elements of [E]B when E|Ψ〉 = 0,

and EcSM
and I are the extreme elements of [E]B if Eρ = ρ (cf. Proposition 8.4).

Incidentally, the initial range projector is Q = |Ψ〉〈Ψ|, and the initial null projector
is Q0 = I − |Ψ〉〈Ψ|. In a given SD equivalence class [EB

0 ≡ ESe] in P(H) the Lüders range
projector is Q = EB

0 − (EB
0 ∧Q0).

The core set is CB = {ESe : ∀Se}. The core classes are

{ESo + ESe : ∀ESe , ESe ∈ CB;ESo fixed}. (13.4)

Thus an arbitrary element E in B is uniquely decomposed as E = EB
0 + E′, where EB

0 ≡ ESe ,
and E′ ≡ ESo . If one pictures B as a matrix of elements (projectors) so that the SD equivalence
classes are the rows and the core classes are the columns, then EB

0 shows in which row, and
E′ displays in which column the element is.

One could replace the above density operator |Ψ〉〈Ψ| by a mixed state, and make the
observable incomplete with arbitrary multiplicities of the eigenvalues, but still with a purely
discrete spectrum. Such an observable would be the general one that is measured exactly. But
the additional intricacies would then diminish the transparency of the illustration.

Appendices

A. Proof of Lemma 3.1

Claiming the general validity of the equivalence relation

tr
(
Eρ

)
= 1 ⇐⇒ Q ≤ E, (A.1)

where Q is the range projector of ρ.
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Let {|i〉 : ∀i} be an eigen-basis of ρ spanning its range, that is, let Q =
∑

i |i〉〈i| and
ρ =

∑
i ri|i〉〈i|, where {ri : ∀i} is the positive spectrum of ρ. Then 1 = tr(Eρ) is equivalent to

1 =
∑

i ri tr(E|i〉〈i|) =
∑

i ri〈i|E|i〉. Since always 1 =
∑

i ri holds true, the basic certainty relation
is further equivalent to 0 =

∑
i ri(1 − 〈i|E|i〉). This is equivalent to ∀i : 1 = 〈i|E|i〉. In turn,

the last equalities are equivalent to ∀i : 0 = 〈i|Ec|i〉, where Ec is the ortho-complementary
projector to E. Further equivalences give ∀i : Ec|i〉 = 0, and ∀i : E|i〉 = |i〉, and, finally,
EQ = E

∑
i |i〉〈i| = Q as claimed.

B. Proof of Lemma 3.3

Claiming the equivalence

tr
(
Eρ

)
= 1 ⇐⇒ Eρ = ρ, (B.1)

where E and ρ are a projector and a density operator, respectively.
tr(Eρ) = 1 ⇒ tr(Ecρ) = 0, where Ec ≡ I − E, I being the identity operator. Further,

tr(EcρEc) = 0 follows due to idempotency and commutation under the trace. The next
consequence is EcρEc = 0 because zero is the only positive operator that has zero trace. Then
the Lüders lemma (cf. Remark 4.3) leads to Ecρ = 0, which, in turn, makes Eρ = ρ necessary.
The inverse implication is obvious.

C. Proof of Lemma 5.2

Claiming that if E is any non-zero element of a complemented complete lattice, the set of all
its lower bounds {E′ : E′ ≤ E} is also a complete lattice.

Let {E′
m : m ∈ M} be an arbitrary subset of {E′ : E′ ≤ E}. Its glb (taken in P(H)) is

obviously in the latter set because it is its lower bound. The lub (again taken in P(H)) is the
least upper bound of the former set. Since also E is an upper bound of the same set, the lub
must be a lower bound of E and hence it must belong to the former set.

Naturally, the claim that is symmetric to the just proved one with respect to taking the
complement is proved symmetrically. It reads: Every set {E′ : E′ ≥ E} of all upper bounds of
a given element E of a complemented complete lattice is also a complete lattice.

Proof of the claim that the lub of a subset of a complete lattice is the same as the glb of
all its upper bounds.

D. When lub Equals glb

Let {Em : m ∈ M} be a given subset, and let F be the set of all its upper bounds. We show
that the glb ∧F∈F is the lub of the former set. Since each Em is a lower bound of F, one has
∀m : Em ≤ ∧F∈F. Thus, ∧F∈F is an upper bound for {Em : m ∈ M}, hence it must belong
to F. Being the glb of F, it is a lower bound of F, and hence it is the least upper bound of
{Em : m ∈M} as claimed.
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