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We present applications of the representation theory of Lie groups to the analysis of structure and
local unitary classification of Werner states, sometimes called the decoherence-free states, which are
states of n quantum bits left unchanged by local transformations that are the same on each particle.
We introduce a multiqubit generalization of the singlet state and a construction that assembles
these qubits into Werner states.

1. Introduction

Quantum entanglement, a feature of quantum theory named by Schrödinger [1] and em-
ployed by Bell [2, 3] in the rejection of local realism, has come to be seen as a resource for
quantum information processing tasks includingmeasurement-based quantum computation,
teleportation, and some forms of quantum cryptography. Driven by applications to computa-
tion and communication, entanglement of composite systems of n quantum bits, or qubits, is
of particular interest.

The problem of entanglement is to understand nonlocal properties of states and to
answer operational questions such as when two given states can be interconverted by local
operations on individual subsystems. This inspires the mathematical problem of classifying
orbits of the local unitary group action on the space of states.

The goal of this paper is to address these questions for the Werner states, which are
defined to be those states invariant under the action of any particular single-qubit unitary
operator acting on all n qubits. Werner states have found a multitude of uses in quantum in-
formation science. Originally introduced in 1989 for two particles [4] to distinguish between
classical correlation and the Bell inequality satisfaction, Werner states have found use in the
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description of noisy quantum channels [5], as examples in nonadditivity claims [6] and in
the study of deterministic purification [7]. In what may prove to be a practical application
to computing in noisy environments, Werner states lie in the decoherence-free subspace for
collective decoherence [8–10]. A recent example of how analysis of state structure can be
useful is the work of Migdał and Banaszek [11] on protecting information against the loss of
a qubit using Werner states.

We apply the representation theory of Lie groups, in particular the Clebsch-Gordan
decomposition of representations of SU(2) on tensor products and the representation theory
of SO(3) on polynomials in three variables, to obtain structural theorems and local unitary
classification for Werner states. We summarize recent results for the special cases of pure
Werner states [12] and symmetric Werner states [13] in Section 3. We present new results for
the general case of mixed Werner states in Section 4. We introduce a generalization of the
singlet state and use these states to construct Werner states.

2. Local Unitary Group Action

Let G = (SU(2))n denote the local unitary (LU) group for n-qubit states. An LU operator
g = (g1, g2, . . . , gn) acts on an n-qubit density matrix ρ (i.e., a 2n × 2n positive semidefinite
matrix with trace 1) by

ρ �−→ gρg† :=
(
g1 ⊗ g2 ⊗ · · · ⊗ gn

)
ρ
(
g†
1 ⊗ g

†
2 ⊗ · · · ⊗ g†

n

)
. (2.1)

In this notation, the Werner states are defined to be the set of density matrices ρ such that
ρ = g⊗nρ(g†)⊗n for all g in SU(2). We will write Δ to denote the subgroup

Δ =
{(
g, g, . . . , g

)
: g ∈ SU(2)

}
(2.2)

of the LU group G.
The set of n-qubit density matrices is a convex set inside of the vector spaceV⊗n, where

V is the 4-dimensional real vector space of 2 × 2 Hermitian matrices. A convenient basis for
V is {σ0, σ1, σ2, σ3}, where σ0 is the 2 × 2 identity matrix, and σ1 = σx, σ2 = σy, and σ3 = σz
are the Pauli matrices. Every element ρ (whether or not ρ is positive or has trace 1) of V⊗n

can be uniquely written in the form ρ =
∑

I sIσI , where I = i1, i2 . . . , in is a multi-index with
ik = 0, 1, 2, 3 for 1 ≤ k ≤ n, and σI denotes

σI = σi1 ⊗ σi2 ⊗ · · · ⊗ σin , (2.3)

with real coefficients sI .
Sitting inside V⊗n is the space of pure states, which are the rank 1 density matrices of

the form |ψ〉〈ψ|, where |ψ〉 is a vector in the Hilbert space H = (C2)⊗n of pure n-qubit states.
We will use the computational basis vectors |I〉 for H, where I = i1, i2 . . . , in is a multi-index
with ik = 0, 1 for 1 ≤ k ≤ n. The expansion of a pure state vector |ψ〉 in the computational basis
has the form |ψ〉 =

∑
I cI |I〉, where the coefficients cI are complex. Note that we use the same

multi-index notation I for “mod 4” multi-indices for tensors of the Pauli matrices in V⊗n, and
for “mod 2” multi-indices for computational basis vectors in H. The distinction will be clear
from context.
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3. Pure and Symmetric Werner States

In [12], we prove a structure theorem for the pure Werner states based on the following
geometric construction. Begin with a circle with an even number n = 2m of marked points,
labeled 1 through n in order around the circle, say clockwise. Let P be a partition of
{1, 2, . . . , n} into two-element subsets. Each two-element subset {a, b} determines a chord
connecting a and b. We impose the condition that no two chords coming from P may
intersect. For each chord C in P, let |sC〉 be a singlet state (1/

√
2)(|01〉 − |10〉) in the two

qubits at the ends of C, and define the state |sP〉 to be the product

|sP〉 = ⊗
C∈P

|sC〉 (3.1)

of singlet states |sC〉, over all C in P. We call states of the form |sP〉 “nonintersecting chord
diagram states.” Figure 1 illustrates the two possibilities for 4 qubits.

We show that any linear combination of chord diagram states is a Werner state, and
conversely, any pure Werner state can be written uniquely as a linear combination of nonin-
tersecting chord diagram states. Further, these linear combinations are unique representatives
of their LU equivalence class, up to a phase factor. Representation theory and combinatorics
enter the story in the proof that the nonintersecting chord diagram states span the space
of pure Werner states. The Werner states are the trivial summand in the decomposition
into irreducible submodules of the SU(2)-space H = (C2)⊗n. The dimension of the trivial
summand is equal to the Catalan number

1
m + 1

(
2m

m

)

(3.2)

when the number of qubits n = 2m is even, and the dimension of this space is zero when
n is odd. The nonintersecting chord diagrams with n = 2m nodes are one of the well-
known sets enumerated by the Catalan numbers [14]. Together with an argument that
the nonintersecting chord diagram states are linearly independent, the fact that these two
numbers agree establishes that the chord diagram states form a linear basis for the space of
pure Werner states.

In [13], we consider the case of pure and mixed Werner states that are invariant under
permutations of qubits, also called symmetric states. Given nonnegative integers n1, n1, n3
with n1 + n2 + n3 ≤ n, we identify the monomial xn1yn2zn3 in three variables with the matrix

ρ = α Sym
(
σ⊗n0
0 ⊗ σ⊗n1

1 ⊗ σ⊗n2
2 ⊗ σ⊗n3

3

)
, (3.3)

where n0 = n − n1 − n2 − n3, the symmetrizing operator Sym sums all the permutations of the
products of nk copies of σk for k = 0, 1, 2, 3, and α is a normalization factor. This establishes
a correspondence between mixed symmetric states (not necessarily Werner states) and real
polynomials in three variables. Using the representation theory of SO(3), we show that the
symmetric Werner states correspond to polynomials that are linear combinations of (x2 +y2 +
z2)m for somem ≤ 
n/2�. Further, any two such states are local unitarily inequivalent.

Now we turn to the general case of mixed Werner states.
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P = {{1, 2}, {3, 4}}

sP = |0101〉 + |1010〉 − |0110〉 − |1001〉

(a)

1

2

3

4

Q = {{1, 4}, {2, 3}}

sQ = |0011〉 + |1100〉 − |0101〉 − |1010〉

(b)

Figure 1: The two non-intersecting 4-qubit chord diagrams and their associated singlet product states.

4. The General Case of Mixed Werner States

We begin with the construction of a family of density matrices Cn that generalize the singlet
state.

Given an n-qubit binary string I, let C(I) denote the pure state

C(I) = α
n−1∑

k=0

ωk
∣∣∣πkI

〉
, (4.1)

where ω = e2πi/n and π is the cyclic permutation of {1, 2, . . . , n} given by 1 �→ n, k �→ k − 1
for 2 ≤ k ≤ n, and α is a normalizing factor so that |C(I)| = 1, whenever C(I)/= 0 (notice that
C(00) = 0, so is not a state). For example,

C(001) =
1√
3

(
|001〉 + e2πi/3|010〉 + e4πi/3|100〉

)
. (4.2)

Let Cn denote the density matrix

Cn = β
∑

I

C(I)C(I)†, (4.3)

where β is a normalizing factor so that tr(Cn) = 1. Observe that C2 is the density matrix |s〉〈s|
of the singlet state |s〉 = (1/

√
2)(|01〉 − |10〉), so that the Cn states are n-qubit generalizations

of the singlet.
Next we form products of Ck states to make Werner states. (It is perhaps nontrivial

to show that the Cn and the diagram states constructed from them below are indeed
Werner states. This can be done with straightforward calculations, but at the expense of
technical overhead. We refer the interested reader to our paper [15] which gives details
on the action of the Lie algebra of the local unitary group on density matrices. One can
show that the generators of the Lie algebra of the Werner stabilizer group Δ = {(g, g, . . . ,
g) : g ∈ SU(2)} annihilate Cn.) As with the case of pure Werner states, we utilize dia-
grams. This time we consider diagrams consisting of n points labeled 1, 2, . . . , n on a circle,
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with nonintersecting polygons that have vertices in the given set of n points. Again,
there is a Catalan number (1/(n + 1))

(
2n
n

)
of such n-vertex diagrams [14]. (There is a

one-to-one correspondence between these “nonintersecting polygon” diagrams and the
“nonintersecting chord” diagrams on 2n points in our pure Werner states analysis of the
previous section. Given a nonintersecting chord diagramwith 2n vertices, rename the vertices
1, 1′, 2, 2′, . . . , n, n′ and then glue each pair jj ′ for 1 ≤ j ≤ n.)

Given an n-vertex nonintersecting polygon diagram D, we construct a state ρD,

ρD = ⊗
U∈D

CU, (4.4)

where the tensor has positions specified by elements of the partition D and CU denotes the
state C|U| in qubit positions inU. Figure 2 shows an example.

Here is our main conjecture.

Conjecture. The states ρD form a basis for the space of Werner states (in the larger space of
real linear combinations of Pauli tensors).

Again, representation theory says that we have the right dimension: the 1-qubit densi-
ty matrix representation space V decomposes into irreducible SU(2)-submodules as follows:

V =
{
span of σ0

} ⊕ {
span of σ1, σ2, σ3

}
= R1 ⊕ R3, (4.5)

where the R3 summand is isomorphic to the adjoint representation. The complexification
VC is isomorphic to C1 ⊕ C3 ≈ C2 ⊗ C2, which is 2-qubit pure state space. In general, the
complexification (V⊗n)C of n-qubit density matrix space V⊗n is isomorphic to 2n-qubit pure
state space, as SU(2) spaces. Thus the real dimension of the trivial summand for n-qubit
density matrices is equal to the complex dimension of the trivial summand for 2n-qubit pure
states, which is the Catalan number (1/(n + 1))

(
2n
n

)
. This establishes that we only need to

show that the diagram states are independent in order to prove the conjecture.
We conclude with a conjecture regarding a precise statement about the stabilizer sub-

group of the local unitary group for our constructed Werner states. The full stabilizer of a
Werner state ρ, that is, the set

Stabρ =
{
g ∈ G : ρ = gρg†

}
(4.6)

of all local unitary transformations that fix ρ, could be larger than the subgroup Δ of the
unitary group. For example, a diagram state ρD is stabilized by the subgroup

ΔD :=
∏

U∈D
ΔU, (4.7)

where ΔU denotes the subgroup that consists of elements (g, g, . . . , g) in qubits in U, and all
other coordinates are the identity.

In [12], we give a criterion on the diagrams that appear in the expansion of a pure
Werner state for when the stabilizer subgroup of a pureWerner state is precisely the subgroup
Δ of the local unitary group, and not larger. The criterion is that for any bipartition of the set
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D =

ρD = (C3){1,2,5}
⊗

(C2){3,4}

Figure 2: A non-intersection polygon diagram state.

of qubits, there must be a diagram (with nonzero coefficient) in the expansion of the given
state that has a chord with one end in each of the sets of the partition. Our final conjecture is
a generalization of this idea to the general mixed Werner case.

Consider a poset lattice of partitions of {1, 2, . . . , n} (we consider all partitions, with
and without crossing polygons), where D ≤ D′ if D′ is a subdivision of D. The n-gon is the
least element at the bottom, and the all-singleton diagram is the greatest element at the top of
this lattice. The noncrossing polygon diagram lattice is a sublattice. There is a corresponding
lattice of subgroups of local unitary group G, whereH is less than or equal toK in the partial
order if H is a subgroup of K. The subgroup Δ is the least element at the bottom and LG at
the top. A diagram D corresponds to the subgroup ΔD defined above. We conjecture that

Stab∑aDρD = glb{ΔD : aD /= 0} =
⋂

D:aD /= 0

ΔD, (4.8)

where “glb” denotes the greatest lower bound in the lattice. This would give a picture crite-
rion for when a Werner state has the Werner stabilizer (and not a larger one).

5. Summary and Outlook

We have surveyed known results on the structure and local unitary equivalence classification
of Werner states for the special cases of pure states and symmetric states. We have presented
a diagram-based construction for the general case of the mixedWerner states that generalizes
the “sums of products of singlets” construction known for pure states. Finally, we conjecture
that the general construction will prove to be a basis for the Werner states and that this basis
will lead to local unitary classification and a precise analysis of stabilizer subgroups.
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