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An analysis is performed to investigate the effect of MHD and thermal radiation on the
two-dimensional steady flow of an incompressible, upper-convected Maxwells (UCM) fluid in
presence of external magnetic field. The governing system of partial differential equations are
transformed into a system of coupled nonlinear ordinary differential equations and is solved
numerically by efficient shooting technique. Velocity and temperature fields have been computed
and shown graphically for various values of physical parameters. For a Maxwell fluid, a thinning
of the boundary layer and a drop in wall skin friction coefficient is predicted to occur for the higher
elastic number which agrees with the results of Hayat et al. 2007 and Sadeghy et al. 2006. The
objective of the present work is to investigate the effect of elastic parameter β, magnetic parameter
Mn, Eckert number Ec, Radiation parameter N, and Prandtl number Pr on flow and heat transfer
charecteristics.

1. Introduction

In recent years, the studies of boundary layer flows of Newtonian and non-Newtonian fluids
over a stretching surface have received considerable attention because of their numerous
applications in the field of metallurgy and chemical engineering and, particularly, in the
extrusion of polymer sheet, from a die or in the drawing of plastic films. During the
manufacture of these sheets, the melt issues from a slit and is subsequently stretched to
achieve the desired thickness. Such investigations of magnetohydrodynamic (MHD) flow
are very important industrially and have applications in different areas of research such as
petroleum production and metallurgical processes. The magnetic field has been used in the
process of purification of molten metals from nonmetallic inclusions. The study of flow and



2 Advances in Mathematical Physics

V

Stationary UCM
fluid
y

Die

x

δ

Tw U

Linearly stretching sheet

L

Wind-up roll

B0

Figure 1: Schematic showing flow above a stretching sheet.

heat transfer caused by a stretching surface is of great importance in many manufacturing
processes such as in extrusion process, glass blowing, hot rolling, manufacturing of plastic
and rubber sheets, crystal growing, continuous cooling, and fibers spinning.Water is amongst
the most widely used coolant liquid. In all these cases, a study of flow field and heat transfer
can be of significant importance because the quality of the final product depends to a large
extent on the skin friction coefficient and the surface heat transfer rate [1].

Sarpakaya [2] was the first researcher to study the MHD flow a of non-Newtonian
fluid. Prandtl’s boundary layer theory proved to be of great use in Newtonian fluids as
Navier-Stokes equations can be converted into much simplified boundary layer equation
which is easier to handle.

Crane [3]was the first among others to consider the steady two-dimensional flow of a
Newtonian fluid driven by a stretching elastic flat sheet which moves in its own plane with a
velocity varying linearly with the distance from a fixed point. Subsequently, various aspects
of the flow and/or heat transfer problems for stretching surfaces moving in the finite fluid
medium have been explored in many investigations, for example, [4–13].

Extrusion of molten polymers through a slit die for the production of plastic sheets
is an important process in polymer industry. The operation normally involves significant
heat transfer between the sheet and the surrounding fluid, thus making it a thermofluid
mechanical problem to address [14]. In a typical sheet production process the extrudate
starts to solidify as soon as it exits from the die. The sheet is then brought into a required
shape by a wind-up roll upon solidification (see Figure 1). An important aspect of the flow
is the extensibility of the sheet which can be employed effectively to improve its mechanical
properties along the sheet. To further improve sheet mechanical properties, it is necessary to
control its cooling rate. Physical properties of the cooling medium, for example, its thermal
conductivity, can play a decisive role in this regard [14]. The success of the whole operation
can be argued to depend also on the rheological properties of the fluid above the sheet as it is
the fluid viscosity which determines the (drag) force required to pull the sheet.

Generally it is observed that rheological properties of a material are specified by their
constitutive equations. The simplest constitute equation for a fluid is a Newtonian one, and
the governing equation for such a fluid is the Navier-Stokes equation. But in many fields,
such as food industry, drilling operations, and bioengineering, the fluids, rather synthetic or
natural or mixtures of different stuffs such as water, particles, oils, red cells, and other long
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chain of molecules. This combination imparts strong non-Newtonian characteristics to the
resulting liquids. In these cases, the fluids have been treated as non-Newtonian fluids.

Problems involving fluid flow over a stretching sheet can be found in many
manufacturing processes such as polymer extrusion, wire and fibre coating, and foodstuff
processing. Essentially, the quality of the final product depends on the rate of cooling in
the process which is significantly influenced by the fluid flow and heat transfer mechanism.
Water is amongst the most-widely used fluids to be used as the cooling medium. However,
the rate of cooling achievable with water is often realized to be too excessive for certain
sheet materials. To have a better control on the rate of cooling, in recent years it has been
proposed that it might be advantageous for water to be made more or less viscoelastic, say,
through the use of polymeric additives [15, 16]. The idea is to alter flow kinematics in such
a way that it leads to a slower rate of solidification with the price being paid that fluid’s
viscosity is normally increased by such additives. A better and less intuitive idea is to rely on
a transverse magnetic field for affecting flow kinematics provided that the fluid is electrically
conducting [17]. The radiative heat transfer properties of the cooling medium may also be
manipulated to judiciously influence the rate of cooling [18, 19]. In recent years, MHD flows
of viscoelastic fluids above stretching sheets (with and without heat transfer involved) have
also been addressed by various researchers [20–23].

A non-Newtonian second-grade fluid does not give meaningful results for highly
elastic fluids (polymer melts) which occur at high Deborah numbers [24, 25]. Therefore, the
significance of the results reported in the above works is limited, at least as far as polymer
industry is concerned. Obviously, for the theoretical results to become of any industrial
significance, more realistic viscoelastic fluid models such as upper-convectedMaxwell model
or Oldroyd-B model should be invoked in the analysis. Indeed, these two fluid models have
recently been used to study the flow of viscoelastic fluids above stretching and nonstretching
sheets but with no heat transfer effects involved [26–28].

Some researchers [27, 29–31] have done the work related to UCMfluid by using HAM-
method, and the researcher [28] have studied UCM fluid by using numerical methods for
only to solve the equation of motion but not for the heat transfer.

Motivated by all the above works, it is interested to extend the research work carried
out by the researchers Hayat et al. [24] and Sadeghy et al. [29] in which the velocity field
above the sheet was calculated for MHD flow of a Maxwell fluid with no heat transfer
involved using homotopy analysis method (HAM). The effect of thermal radiation on MHD
flow of Maxwellian fluids above the stretching sheets has been investigated by Aliakbar et.
al [31] by using homotopy analysis method (HAM). It is recognized that there are many
other methods that could be considered in order to describe some reasonable solutions for
this particular type of problem. But to the best of our knowledge, no numerical solution has
previously been investigated for such type of problems even having various applications
in engineering processes involving nuclear reactors, gas turbines, power production, and
solar collectors, the cooling of electronic equipments and polymer industry. So, the aim of
this study is to analyze, numerically, the combined effect of thermal radiation and viscous
dissipation on steady MHD flow and heat transfer of an upper-convected Maxwell fluid past
a stretching sheet in presence of external magnetic field.

2. Formulation of the Problem

The equations governing the transfer of heat and momentum between a stretching sheet and
the surrounding fluid (see Figure 1) can be significantly simplified if it can be assumed that



4 Advances in Mathematical Physics

boundary layer approximations are applicable to both momentum and energy equations.
Although this theory is incomplete for viscoelastic fluids, but has been discussed by Renardy
[27], it is more plausible for Maxwell fluids as compared to other viscoelastic fluid models for
MHD flow of an incompressible Maxwell fluid resting above a stretching sheet. The steady
two-dimensional boundary layer equations for the fluid can be written as [25, 26]

∂u

∂x
+
∂v

∂y
= 0, (2.1)

u
∂u

∂x
+ v

∂u

∂y
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[
u2
∂2u
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+ v2 ∂
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∂y2
+ 2uv

∂2u

∂x∂y

]
= υ

∂2u

∂y2
− σB0

2

ρ
u, (2.2)

where B0 is the strength of the magnetic field, υ is the kinematic viscosity of the fluid, and λ
is the relaxation time Parameter of the fluid. As to the boundary conditions, we are going
to assume that the sheet is being stretched linearly. Therefore the appropriate boundary
conditions on the flow are

u = Bx, v = 0 at y = 0, u −→ 0 as y −→ ∞, (2.3)

where B > 0 is the stretching rate. Here x and y are, respectively, the directions along and
perpendicular to the sheet, and u and v are the velocity components along x and y directions.
The flow is caused solely by the stretching of the sheet, the free stream velocity being zero.
Equations (2.1) and (2.2) admit a self-similar solution of the following form:

u = Bxf ′(η), v =
√
νBf

(
η
)
, η =

(
B

ν

)1/2

y, (2.4)

where superscript (′) denotes the differentiation with respect to η. Clearly u and v satisfy
(2.1) identically. Substituting these new variables in (2.2), we have

f ′′′ −M2f ′ − (
f ′)2 + f ′′ + β

(
2ff

′f ′′ − ff ′′′
)
= 0. (2.5)

HereM2 = σB2
0/ρB and β = λB are magnetic and elastic parameters.

The boundary conditions (2.3) become

f ′(0) = 1, f(0) = 0 at η = 0

f ′(∞) −→ 0, f ′′(0) −→ 0 as η −→ ∞.
(2.6)
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3. Heat Transfer Analysis

By using usual boundary layer approximations, the equation of the energy for two-dimen-
sional flow is given by

u
∂T

∂x
+ v

∂T

∂y
=

k

ρCp

∂2T

∂y2
+

μ

ρCp

(
∂u
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)2

− 1
ρCp

(
∂qr
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)
, (3.1)

where T, ρ, cp, and k are, respectively, the temperature, the density, specific heat at constant
pressure and the thermal conductivity is assumed to vary linearly with temperature.
Following Rosseland approximation (see [32]) the radiative heat flux qr and is modeled as

∂qr
∂y

= −4σ
∗

3k∗
∂
(
T4)
∂y

, (3.2)

where σ∗ is the Stefan-Boltzmann constant, and k∗ is the mean absorption coefficient.
Assuming that the differences in temperature within the flow are such that T4 can be
expressed as a linear combination of the temperature, we expand T4 in a Taylor’s series about
T∞ as follows:

T4 = T4∞ + 4T3∞(T − T∞) + 6T2∞(T − T∞)2 + · · · , (3.3)

and, neglecting higher order terms beyond the first degree in (T − T∞), we get

T4 ∼= −3T4∞ + 4T3∞T. (3.4)

Substituting (3.4) into (3.2), we obtain
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Using (3.5) in (3.1) we obtain
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We define the dimensionless temperature as

θ
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η
)
=
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Table 1: Comparison of values of skin friction coefficient −f ′′(0) withM = 0.0 andM = 0.2.

β
Sadeghy et al. [29] Hayat et al. [24] Present results

M = 0.0 M = 0.0 M = 0.2 M = 0.0 M = 0.2
0.0 1.00000 1.90250 1.94211 0.999962 1.095445
0.4 1.10084 2.19206 2.23023 1.101850 1.188270
0.8 1.19872 2.50598 2.55180 1.196692 1.275878
1.2 — 2.89841 2.96086 1.285257 1.358733
1.6 — 3.42262 3.51050 1.368641 1.437369
2.0 — 4.13099 4.25324 1.447617 1.512280

Table 2: Comparison of values of of Eckert number Ec and magnetic parameter Mn in PST case (λ =
0.1,Pr = 3,N = 30).

Ec Mn
Aliakbar et al. [31] Present results

−θ′
(0) −θ′

(0)

0.0 0.0 2.47116 2.439162
5.0 0.0 −1.38806 −1.753606
10.0 0.0 −5.24982 −5.938303
0.0 0.0 2.47116 2.439162
0.0 10.0 1.0472 1.927487
0.0 20.0 0.730305 1.738464

The thermal boundary conditions depend upon the type of the heating process being
considered. Here, we are considering two general cases of heating, namely, (1) prescribed
surface temperature and (2) prescribed wall heat flux, varying with the distance.

3.1. Governing Equation for the Prescribed Surface Temperature Case

For this heating process, the prescribed temperature is assumed to be that a quadratic func-
tion of x is given by

u = Bx, v = 0, T = Tw(x) = T0 − Ts
(x
l

)2
at y = 0.

u = 0, T −→ T∞ as y −→ ∞,

(3.9)

where l is the characteristic length. Using (2.4), (3.1), and (3.9), the dimensionless tempera-
ture variable θ, given by (3.7), satisfies the following:

Pr
[
2f ′θ − θ′f − Ecf ′′2

] 3N
3N + 4

= θ′′, (3.10)
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Table 3: Values of surface temperature θ(1) and heat transfer rare −θ′(0) for various values of Mn, Pr, Ec,
N, and β.

Pr Mn Ec N β θ(1) −θ′(0)
1.0 0.5 1.0 30.0 0.1 −0.000000 0.756603
5.0 0.5 1.0 30.0 0.1 0.000000 1.501049
10.0 0.5 1.0 30.0 0.1 −0.000000 1.889985
3.0 0.0 1.0 30.0 0.1 0.000000 1.593204
3.0 5.0 1.0 30.0 0.1 0.000001 −1.206756
3.0 10.0 1.0 30.0 0.1 0.000000 −3.367022
3.0 0.5 0.0 30.0 0.1 0.000001 2.385235
3.0 0.5 1.0 30.0 0.1 0.000001 1.242008
3.0 0.5 2.0 30.0 0.1 −0.000001 0.098781
3.0 0.5 1.0 1.0 0.1 0.000000 0.876908
3.0 0.5 1.0 30.0 0.1 0.000001 1.242008
3.0 0.5 1.0 30.0 0.0 0.000000 1.287680
3.0 0.5 1.0 30.0 0.1 0.000001 1.242008
3.0 0.5 1.0 30.0 0.3 −0.000001 1.150961

where Pr = μcp/k is the Prandtl number, Ec = a2l2/CpTs is the Eckert number, and N =
4σ∗T∞3/kk∗ is the thermal radiation parameter. The corresponding boundary conditions are

θ(0) = 1 at η = 0

θ(∞) = 0 as η −→ ∞.
(3.11)

3.2. Governing Equation for the Prescribed Heat Flux Case

The power law heat flux on the wall surface is considered to be a quadratic power of x in the
following form:

u = Bx, −k
(
∂T

∂y

)
w

= qw = b
(x
l

)2
at y = 0

u −→ 0, T −→ T∞ as y −→ ∞.

(3.12)

Here D is constant. Using (2.4), (3.1), and (3.12), the dimensionless temperature variable g,
given by (3.2), satisfies the following:

Pr
[
2f ′g − g ′f − Ecf ′′2

] 3N
3N + 4

= g ′′. (3.13)

The corresponding boundary conditions are

g ′(η) = −1, g(∞) = 0. (3.14)
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Figure 2: The effect of MHD parameter Mn on u-velocity component f at β = 0.
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Figure 3: The effect of MHD parameter Mn on v-velocity component f ′ at β = 0.

The rate of heat transfer between the surface and the fluid conventionally expressed in
dimensionless form as a local Nusselt number is given by

Nux ≡ − x

Tw − T∞

(
∂T

∂y

)
y=0

= −x
√
Re θ′(0). (3.15)
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Figure 4: The effect of MHD parameter Mn on u-velocity component f at β = 1.
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Figure 5: The effect of MHD parameter Mn on v-velocity component f ′ at β = 1.

Similarly, momentum equation is simplified, and exact analytic solutions can be
derived for the skin-friction coefficient or frictional drag coefficient as

Cf ≡
(
μ
(
∂u/dy

))
y=0

ρ(Bx)2
= −f ′′(0)

1√
Rex

, (3.16)

where Rex = ρBx2/μ is known as local Reynolds number.
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4. Numerical Solution

We adopt the most effective shooting method (see [33, 34]) with fourth-order Runge-Kutta
integration scheme to solve boundary value problems in PST and PHF cases mentioned in
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the previous section. The nonlinear equations (2.5) and (3.10) in the PST case are transformed
into a system of five first-order differential equations as follows:

df0
dη

= f1,

df1
dη

= f2,

df2
dη

=

(
f1
)2 +M2f1 − f0f2 − 2βf0f1f2

1 − βf2
0

,

dθ0
dη

= θ1,

dθ1
dη

= Pr
[
2f1θ0 − θ1f0 − Ecf ′′2

] 3N
3N + 4

.

(4.1)

Subsequently the boundary conditions in (2.6) and (3.11) take the following form:

f0(0) = 0, f1(0) = 1, f1(∞) = 0,

f2(0) = 0, θ0(0) = 0, θ0(∞) = 0.
(4.2)

Here f0 = f(η) and θ0 = θ(η), aforementioned boundary value problem, is first
converted into an initial value problem by appropriately guessing the missing slopes f2(0)
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and θ1(0). The resulting IVP is solved by shooting method for a set of parameters appearing
in the governing equations with a known value of f2(0) and θ1(0). The convergence criterion
largely depends on fairly good guesses of the initial conditions in the shooting technique.
The iterative process is terminated until the relative difference between the current iterative
values of f2(0) matches with the previous iterative value of f2(0) up to a tolerance of 10−6.
Once the convergence is achieved, we integrate the resultant ordinary differential equations
using standard fourth-order Runge-Kutta method with the given set of parameters to obtain
the required solution.

5. Results and Discussion

The nonlinear coupled ordinary differential equations (2.5), (3.10), and (3.13) subject to the
boundary conditions (2.6), (3.11), and (3.14)were solved numerically using themost effective
numerical fourth-order Runge-Kutta method with efficient shooting technique. Appropriate
similarity transformation is adopted to transform the governing partial differential equations
of flow and heat transfer into a system of nonlinear ordinary differential equations. In order
to validate the numerical method, comparison with the exact analytical solutions for the
local skin-friction and the local Nusselt number is shown in Tables 1 and 2. Without any
doubt, from these tables, we can claim that our results are in excellent agreement with that of
references Hayat et al. [24], Sadeghy et al. [29], and Aliakbar et al. [31] under some limiting
cases. The effects of surface temperature θ(1) and heat transfer rare −θ′(0) for various values
of Mn, Pr, Ec, N, and β are tabulated in Table 3. The effect of several parameters controlling
the velocity and temperature profiles is shown graphically and discussed briefly.

Figures 2 and 3 reveal that, for β = 0 the effect of magnetic parameter Mn on the
velocity profile above the sheet. It is clear that increasing values of Mn leads decrease of
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both u- and v-velocity components at any given point above the sheet. This is due to the fact
that applied transverse magnetic field produces a drag in the form of Lorentz force thereby
decreasing the magnitude of velocity. The drop in horizontal velocity as a consequence of
increase in the strength of magnetic field is observed. Figures 4 and 5 show the same effect as
said above for β = 1. That is, an increase in Mn leads decrease of fluid velocity at any given
point above the sheet.

Figures 6 and 7 show the effect of elastic parameter β for Mn = 0 on the velocity
profile above the sheet. An increase in the elastic parameter is noticed to decrease both u-
and v-velocity components at any given point above the sheet. Figures 8 and 9 show the
effect of elastic parameter β on the velocity profiles above the sheet. An increase in the elastic
number β is seen to decrease both u- and v-velocity components at any given point above
sheet. A decrease in a stream-wise velocity component, u, can result in a decrease in the
amount of heat transferred from the sheet to the fluid. Similarly, a decrease in the transverse
velocity component, v, means that the amount of fresh fluid which is extended from the low-
temperature region outside the boundary layer and directed towards the sheet is reduced
thus decreasing the amount of heat transfer. The two effects are in the same direction
reinforcing each other. Thus, an increase in the elastic number is expected to decrease the
total amount of heat transfer from the sheet to the fluid, as suggested by Figures 10 and 11.
That is, an increase in the elastic number decreases fluid temperature at any given point above
the sheet.

Figures 12 and 13 show the effect of magnetic parameter on the temperature profiles
above the sheet for both PST and PHF cases. An increase in the magnetic parameter is seen
to increase the fluid temperature θ(η) above the sheet. That is, the thermal boundary layer
becomes thicker for larger the magnetic parameter.

Figures 14 and 15 show the effect of Prandtl number on the temperature profiles above
the sheet for both PST and PHF cases. An increase in the Prandtl number is seen to decrease
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Figure 15: The effect of Prandtl number Pr on the temperature profile for the PHF case at β = 0.1, Mn =
0.5, Ec = 1, N = 30.
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Figure 16: The effect of Eckert number Ec on the temperature profile for the PST case at β = 0.1, Mn =
0.5, Pr = 3,N = 30.

the fluid temperature θ(η) above the sheet. That is not surprising realizing the fact that the
thermal boundary becomes thinner for larger the Prandtl number. Therefore, with an increase
in the Prandtl number the rate of thermal diffusion drops. This scenario is valid for both PST
and PHF cases. For the PST case the dimensionless wall temperature is unity for all parameter
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Figure 17: The effect of Eckert number Ec on the temperature profile for the PHF case at β = 0.1, Mn =
0.5, Pr = 3, N = 30.

Figure 18: The effect of radiation parameterN on the temperature profile for the PST case at β = 0.1, Mn =
0.5, Ec = 1, Pr = 3.

values. However, it may be other than unity for the PHF case because of its differing thermal
boundary conditions.

Figures 16 and 17 show the effect of Eckert number on the temperature profiles above
the sheet for both PST and PHF cases. An increase in the value of Eckert number is seen to
increase the temperature of the fluid at any point above the sheet.
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Figure 19: The effect of radiation parameterN on the temperature profile for the PHF case at β = 0.1, Mn =
0.5, Ec = 1, Pr = 3.
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Figure 20: Dimensionless heat flux −θ′(0) at the sheet versus Prandtl number.

Figures 18 and 19 show the effect of radiation parameter, N, on the temperature
profiles above the sheet. An increase in the radiation parameter decreases fluid temperature
for both the PST and PHF cases.

A drop in skin friction as investigated in this paper has an important implication that
in free coating operations, elastic properties of the coating formulations may be beneficial for
the whole process, which means that less force may be needed to pull a moving sheet at a
given withdrawal velocity, or equivalently higher withdrawal speeds can be achieved for a
given driving force resulting in increase in the rate of production [32]. A drop in skin friction
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with increase in elastic parameter as observed in Table 1 gives the comparison of present
results with that of Hayat et al. [24] and Sadeghy et al. [29]. Without any doubt, from this
table, we can claim that our results are in excellent agreement with those [24, 29].

6. Conclusions

The present work analyses the MHD flow and heat transfer within a boundary layer of UCM
fluid above a stretching sheet. Numerical results are presented to illustrate the details of the
flow and heat transfer characteristics and their dependence on the various parameters.

(1) We observe that when the magnetic parameter increases, the velocity decreases;
also, for increase in elastic parameter, there are decreases in velocity. The effect
of magnetic field and elastic parameter on the UCM fluid above the stretching
sheet is to suppress the velocity field, which in turn causes the enhancement of
the temperature field.

(2) Also it is observed that an increase of Prandtl number results in decreasing thermal
boundary layer thickness and more uniform temperature distribution across the
boundary layer in both the PST and PHF cases. The reason is that smaller values of
Pr are equivalent to increasing the thermal conductivities, and therefore heat is able
to diffuse away from the heated surface more rapidly than for higher values of Pr.

(3) An increase in the Eckert number causes an increase in the temperature of the fluid
above the sheet. Thus, it may be used to reduce the rate of cooling. For the PST case,
fluid temperature near the wall is predicted to exceed wall temperature inferring
that the direction of heat transfer is reversed from the fluid to the sheet.

(4) An increase in the radiation parameter causes a decrease in the temperature of the
fluid medium above the sheet. This effect can be used to increase the rate of cooling
of the sheet when required.

The dimensionless wall temperature gradient −θ′(0) takes a higher value at large
Prandtl number Pr. (see Figure 20).

Nomenclature

b: Stretching rate [s−1]
x: Horizontal coordinate [m]
y: Vertical coordinate [m]
u: Horizontal velocity component [ms−1]
v: Vertical velocity component [ms−1]
T : Temperature [K]
t: Time [s]
Cp: Specific heat [J kg−1K−1]
f : Dimensionless stream function
Pr: Prandtl number, υ/k
Ec: Eckert number, a2l2/CpTs
N: Radiation parameter,N = 4σ∗T∞3/kk∗

M2: Magnetic parameter, σB2
0/ρb

q: Heat flux, −k(∂T/∂y)[J s−1m−2]
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Nux: Local Nusselt number,(3.15)
Cf : Skin friction coefficient, (3.16).

Greek Symbols

β: Elastic parameter
η: Similarity variable,(2.5)
θ: Dimensionless temperature
k: Thermal diffusivity [m2 s−1]
μ: Dynamic viscosity [kgm−1s−1]
υ: kinematic viscosity [m2s−1]
ρ: Density [kgm−3]
τ : Shear stress, μ∂u/∂y[kgm−1 s−2]
ψ: Stream function [m2 s−1].

Subscripts

X: local value.

Superscripts

′ : First derivative
′′ : Second derivative
′′′ : Third derivative.
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