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A new method with a different auxiliary equation from the Riccati equation is used for constructing exact travelling wave solutions
of nonlinear partial differential equations. The main idea of this method is to take full advantage of a different auxilliary equation
from the Riccati equation which has more new solutions. More new solitary solutions are obtained for the RLW Burgers and Hirota

Satsuma coupled equations.

1. Introduction

In the recent years, remarkable progress has been made in
the construction of the exact solutions for nonlinear partial
differential equations, which have been a basic concern for
both mathematicians and physicists [1-3].We do not attempt
to characterize the general form of nonlinear dispersive
wave equations [4, 5]. When an original nonlinear equation
is directly calculated, the solution will preserve the actual
physical characters of solutions [6]. The studies in finding
exact solutions to nonlinear differential equation (NPDE),
when they exist, are very important for the understanding
of most nonlinear physical phenomena. There are many
studies which obtain explicit solutions for nonlinear differ-
ential equations. Many explicit exact methods have been
introduced in literature [7-21]. Some of them are generalized
Miura transformation, Darboux transformation, Cole-Hopf
transformation, Hirota’s dependent variable transformation,
the inverse scattering transform and the Bécklund transfor-
mation, tanh method, sine-cosine method, Painleve method,
homogeneous balance method (HB), similarity reduction
method, improved tanh method and so on.

In this article, the first section presents the scope of the
study as an introduction. In the second section contains
analyze of a new method and balance term definition. In the
third section, we will obtain wave solutions of RLW Burgers

and Hirota Satsuma coupled equations by using a new
method. In the last section, we implement the conclusion.

2. Method and Its Applications

Let us simply describe the method [22]. Consider a given
partial differential equation in two variables

H (t,uy, thyy iy, .. .) = 0. (1)

The fact that the solutions of many nonlinear equations can
be expressed as a finite series of solutions of the auxiliary
equation motivates us to seek for the solutions of (1) in the
form

u(nt) =AY [aFE) +a FE)™], )
i=0
where, & = k(x — ct), k and ¢ are the wave number and

the wave speed respectively, m is a positive integer that can
be determined by balancing the linear term of highest order
with the nonlinear term in (1), A is balancing coefficient
that will be defined in a new “Balance term” definition and
Gy, 4y, dy, ... are parameters to be determined. Substituting
(2) into (1) yields a set of algebraic equations for a,, a;, a,,. ..
because all coefficients of F have to vanish. From these
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FIGURE 1: Graph of the solution u(x, t) from left to the right for (13) and (14).

FIGURE 2: Graph of the solution u(x, t) from left to the right for (15) and (16).

relations ay, a,, a,, ... can be determined. The main idea of
our method is to take full advantage of the new auxiliary
equation. The desired auxiliary equation presents as following

!

F =%+BF+CF3, (3)

where dF/dé = F' and A, B, C are constants.

Casel If A = -1/4, B = 1/2, C = —1/2 then (3) has the
solution F = 1/4/1 + tan(&) + sec(£).

Case 22 1f A = 1/4, B = -1/2, C = 0 then (3)
has the solutions F = 1/+/1 + csch(&) + coth(§) or F =
1/+/1 +isec h() + tanh(Z).

Case 3. If A = 1/2, B = —1,C = 0 then (3) has the solutions

F =1/+/1+ coth(&) or

1

F= V1 + tanh (8) @

Remark 1. Depending on the A, B and C coefficients in the
(3), it could be reached only three cases.

In the following we present a new approach to the
“Balance term” definition.

Definition 2. When (1) is transformed with u(x,t) = u(&),
& = k(x — ct), where k and ¢ are real constants, we get a
nonlinear ordinary differential equation for u(&) as following

Q' (u, keu' ki K", ) =0. (5)

Let u'?) is the highest order derivative linear term and 494"

is the highest nonlinear term in (5) and F' = k, + k,F +
k,F* +---+k,F" is the auxiliary equation that is used to solve
the nonlinear partial differential equation then the “Balance
term” m can be decided by the balancing the nonlinear term
u1u™) and the linear term u?) with acceptances of u = AF'
and F' = F" where n is integer (n# 1)and A is the balance
coeflicient that can be determined later.
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FIGURE 3: Graph of the solutions u(x, t) and v(x, t) corresponding to the value b, = 1 from left to the right for (22), (3), and (23).

Example 1. For the KdV equation with the transform
u(x,t) = u(€), & = x — ct we have the ordinary differential
equation as following

—cu' +6ud +d" =o0. (6)

By the balancing linear term »""’ with nonlinear term uu/’
u' = (AF™) = AmF"™ ' F' = AmF" ' F" = AmF™"",
u' = (AmFm+n—1)’ — Am(m+n— 1)Fm+n—zFr
= Am(m+n—-1)F""?F" = Am(m +n—- 1) F"*"2,
u" = (Am (m+n-1) Fm+2”_2)’
= Am(m+n—1)(m+2n-2)F"*"°F
— Am(m+n—1)(m+2n— 2) P23 g
= Am(m+n-1)(m+2n-2)F""7,

uur _ AFm/\anHn—l _ Asz2m+n—1

7)

we have the equations above and the equating uu' to u'"’

NmF™ " — dmm+n—1)(m+2n—2) F""3,
(8)

A=m+n-1)(m+2n-2), m=2mn-1).

If it is noticed that our new balance term m (m = 2(n — 1))
is connected to n. Namely our new balance term definition is
connected to chosen auxiliary equation.

3. Application of the Method

Example 2. Let’s consider RLW Burgers equation
u, +u, + 12uu, —u, — U, =0, 9)

with the transform u(x,t) = u(), & = x — ct we have the
following equation

!

—cu +u + 120 -+ =o0. (10)
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FIGURE 4: Graph of the solutions u(x, t) and v(x, t) corresponding to the value b, = 1 from left to the right for (25) and (26).

From the Definition 2 we have the balance term of RLW Burg- (_ 3a4 27ca, 48 +94°
ers equation by using the auxiliary equation (3) for “Case 1”, 2 2 - -
is equal to 4. Therefore, we may choose the following ansatz: ;
ca
s 18a_4a_2) =0,
u(x,t) =48 (a,4F_4 + a,3F_3 +a,F?+a F! 150, 225ca.,
(11) (—7 — T — 420_4&_3 + 150_30_2
2 3 4
+ay +a,F + a,F" + a;F” + a,F ) 15ca
it 15a_4a_1> =0,

Substituting (11) into (10) along with (3) and using Math- (6a_4 +28ca_, + 24a* .- lsaf3 - 612;2 - 3ca_,

ematica yields a system of equations w.rt. F'. Setting the
coefficients of F' in the obtained system of equations to zero,
we can deduce the following set of algebraic polynomials with
the respect unknowns ay, a,, a,, . .. for the Case 1:

~36a_4a_, +6a’, + 12a_a_, + 12a_4a0) =0,

( 15a_; 429ca_,

1 + 2 +42a_sa_3 —30a_za_,
3ca_, +12a°, = 0, 3a, 27ca, 30 +9
= —30a_ja_ a_,a_
16 32 s
105ca_, _ 3ca
( o + 21a_4a_3) =0, +9a_za, — ?41 + 9a_4a1) =0,
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(Sa_4 +20ca_, —3a_, —4ca_, + 12(132
+24a_sa_, - 6(131 +24a_,a,
-12a_,a, — 12a_sa, - 12a_4a2) =0,

(-10a_, — 32ca_, + 18a’; + 2a_,
+ 5ca_, + 36a_sa_, — 12(132
—24a_sa_; + 3a§1 - 24a_ya,

+6a_,a, + 6a_za, + 6a,4a2) =0,

27ca_s 3a_,
<—6a_3 - +30a_sa_, + —
2 4

35ca_,;
+ ——

2 +30a_sa_, — 18a_,a_,

—18a_,a, + 3a_,q +a1+3ca1
I T R )

- 18a_4a, + 3a_,a, + 3a_za,
3ca,
+H + 30_4613) =0,

<9a_3 N 105ca_;
2 16

ca_;
—-a_, - — +18a_a_,
2

+ 18a_sa, — 6a_,a | + “
—30p — 0d_1dy —
4 32

+18a_,a, — 6a_,a, — 3aya,
-6a_sa, —3a_ja, — — + —
—6a_,a; — 3a_,a; — 3a_3a4> =0,

(— 2a_4,—6ca_,+2a_,+ca_, + 6a31

ca,

+12a_,a, + 12a_za, — 3af 3

9y
+12a_,a, — 6aya, — 6a_,a; — 5

3cay
+T - 6a_2a4> =0,

3a_; Y9ca; a_ ca,
<————+———+6a,1a0
4 8 2 16

ca
+ 71 + 6a_,a, + 6aya, + 6a_za,

3a;  105cas
+ 6&_102 - 9a1a2 + T - T

+6a_4a; + 6a_,a; — 9aya;

+6a_sa, — 9a,1a4> =0,

(6af —a, +4ca, + 12a4a, — 6a§
+12a_,a; — 12a,a5 + 2a, — 10ca,
+12a_,a, - 12a4a,) = 0,

( 3 a_, 3ca_, N a, 35ca
8 4 8 2 16
- 6aya, — 6a_,a, + 18a,a, — 3a;

27cay

+ —6a_,a; + 18aya; — 15a,a;

—6a_sa, + 18a_,a, — 15a1a4> =0,
(—6af +2a, — 10ca, — 12aya, + 12a§

—12a_,a; + 24a,a; — 9a§ - 6a, + 32ca,

~12a_,a, + 24aya, — 18a,a,) = 0,

105ca;
(— - 42a3a4> =0,
(% _ 3 2ea
8 4
429cay
© 16

9a,
- 18611612 + 7

- 18aya; + 30a,a;

-18a_,a, + 30a,a, — 21a3a4> =0,

< 15ca; 15a,4 N 225ca;
8 4 8

-30a,a; — 30a,a, + 42a3a4> =0,
(-24ca, - 24a3) = 0,
(-2a, + 12ca, - 124; - 24a,a,
+ 18a§ + 8a, — 56ca, — 24aya,
+36a,a, — 12a3) = 0,
(—6ca2 - 18a§ — 64y
+54ca, — 36a,a, + 24a; ) = 0.

(12)

From the system of (12) we have

@)

11 i
7 60 12
ag=ay=a3=a,=a_,=ad_5 =0,



1 1
a_,=—+—,
10 10
a ! c= i
—4 20) - 5)

u(x,t)
(%) (%)

-
1
8 ( A1 +sec[x — (i/5) t] + tan [x — (i/5) t] >

_< 1 )
20\ \/1+sec[x—(i/5)f] +tan [x - (i/5)¢] )
(13)
(ii)
1+5i
= > C = —dy,
0 60 4
a,=a,=a;=0a_4=0a_, =ad_ =0,
ao 1ti
2 = 5 1T
T AL (14)

60 5

2
i i
X \j1+sec[x+—t]+tan[x+—t]
5 5
. - - 4
i i i
+ - \/1+sec[x+—t]+tan[x+—t] .
5 5 5

From the Definition 2 we have the balance term of RLW
Burgers equation by using the auxiliary equation (3) for “Case
2% is equal to —4 then we have the following system of
equations

~3ca_, - 12a°, = 0,

3a 27ca
<—;4 Ml 24af4 - 96133

2

3ca_,

- 18a_4a_2) =0,

< 15a_4 N 225ca_s
16 32

15ca_,
64

+42a_4a_5 —15a_za_,

- 15a_4a_1> =0,

4 2 a_,
a_,—18ca_, +18a’; — >
+ 3ca_, + 36a_,a_, — 6a32

-12a_sa_, —12a_4a0> =0,
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9a_; 135ca_j
—_— - +30a_sa_,
4 16
3a_, 27ca_,
-— +30a_,a_,
16 32

-9a_,a_, - 9a_3a0> =0,
(—2a_, +6ca_, +a_, —3ca_,

+ 126132 +24a_ja_, - 36131

+24a_,a, — 6a_,a,) = 0,

3a_ 15ca_ a 9ca_
(B e

21
8 4 16

+18a_,a_; + 18a_sa, — 3a—1a0> =0,

105
<—aca_3 - 21a_4a_3> =0,

(66131 + 12a_2a0) =0,

<a_1 3ca_, 46 ) 0
— - a_,a, ) =0.
1 ~14
(15)
From the system of (15) we have
(i)
1
a,=a_, =0, a,=——,
o 1 2 5
0 1 1
a =y a4 = > cC=—-,
- 720 5
u(x,t)

-2
1 1
_5(\/1 T isech [x + (1/5)f] + tanh [x + (1/5) t])

-4
1 1

! E<\/1 T isech [x + (1/5)f] + tanh [x + (1/5) t]) ’

(16)

or
u(x,t)

1

2
1
5( A1+ csch [x + (1/5) ] + coth [x + (1/5) t] )

1 1

-4
20( 1+ csch [x + (1/5)£] + coth [x + (1/5) £] ) '

17)
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Example 3. Let’s consider Hirota Satsuma coupled equation

1
u, — 3uu, +6vv, — ~u,, . =0,
2 (18)

Ve +3uv, + v, =0,

with the transform u(x, t) = u(&), v(x, t) = v(&), & = x —ct we
have

! ! ! 1 n
—cu —3uu + 6vv —Eu =0,

(19)

!

! ! 1
—cv +3uv +v  =0.

From the Definition 2 we have the balance term of Hirota
Satsuma coupled equation by using the auxiliary equation (3)
for “Case I’ is equal to 4 for 1 and v. Therefore, we may choose
the following ansatz:

u(x,t) =48 (ao +a,F + a2F2 + 513F3 + a4F4) ,
(20)
v(x,t) = 48 (by + b F + b,F* + byF’ + bF*).

Substituting (20) into (19) along with (3) and using Math-
ematica yields a system of equations w.rt. F'. Setting the
coefficients of F' in the obtained system of equations to zero,
we can deduce the following set of algebraic polynomials with
the respect unknowns ay, a;, a,, . .. for the Case 1:

3a;
128

(3(11 3a3>_0
64 128/ 7

7 3 9 3b,b
<&+ﬂ+ Gt _ 745 01>=0,

>

64 4 4 64 2

3a?
Sap a4y cay  3aa,
4 2 2 2

3a, 3b;

- T —7 - 3b0b2> =0,

(

( _ap cap 3aa . 9a,a,

2 2 2 4

129a, N 3cay N 9aya;

64 4 4
9b,b, 9hb
+3byb, — 12—%>=o,
3af Sa,
T2 T TR

2
a, 11a,
+7+3a1a3+7+ca4

+ 3aya, + 3b] + 6byb, — 3b;

—6b,b, — 6b0b4) =0,

43a ca 3ay,a 9a,a
Lt APt ket e i}

(

(

(

32 2 2 2

15a; 3ca; 9aya, N 15a,a;

2 2 2 4

15a,a
n 194

— 3byby +9b,b,

+9b,b; —

15b,b, 15b1b4> o
2 - bl

3a;  1la, )
- + > + ca, + 3aya, — 3a,

a
- 6a,a; + < 17a, — 2cay

9
— 6aga, + a;a‘* — 367 — 6byb,

9b?
+6b7 + 12b,b, — 73

+12byb, — 9b2b4) =0,

105a; N 2laza,

= - 21b3b4> —0,

27a, N 9a,a, 453a; 3ca,

+
16 2 32 2

9aya;  15a,a; 15a,a,
2 2 2

2laza,

— 9byb, — 9bybs

+15b,b, + 15b,b, -

>

21b3b4)
2
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15a, 225a; 15a,a;
( 6 16 > —2cb4+6a0b4—3a2b4>=0,

15a,a, 2lasa,
* -—, kb 105b,  9a,b
2 2 203 <_Ts_ a;3_6a3b4>=0,
_15b1b4 + 21b3b4) = 0) (27b1 _ 3a2b1 + 3a4b1 _ 3a b
2 2 8 2 2 172
(12a, + 6a; - 126]) = 0,
453b;  3cb;  9ayb
) 9a? TR N P e O o
<—6a2 +3a, + 6a,a; — 23 16 2 2
9a,b;  9a,b,
+29a, + 2ca, + 6aya, t— T F 6a,b, — 3asb, | = 0,
2 2
- 9a,a, + 3a; — 6b, (_ 158191 B 301;171 agby + 225b,
— 12b,by + 962 — 12byb,
9a,b;  9a,b
b —£+$—6alb4+6a3b4> -0,
+18b2b4—6bj) =0- % =0, 2 2
(—24b, - 6a,b,) = 0,
<3b1 3b3>
— + =) =0,
32 64

3
(—E%bl +12b, - 3ayb, + 3a,b,

7b. 3a,b,  9b
<__1 + & ! + _3> = ())
32 4 4 32

9a, b, . 9a;b;

——= - 58, + 2cb,
b, 3ayb, 3b ’ ’
3 a
(‘Z“lbl_b”%z_ §2+74>=°’ —6agby + 6arb; — 3 b)—o
094 + 04,0, — 2a46, ) = U,
b ch, N 3a,b,  3a,b,  3a.b, 9ach
175 2 4 2 (—6b2 - 3a,b, — ; 3 4 54b,
129b;  3cb;  9ayb
129, 3cby m) -0,
32 4 4 —6a,b, + 6a4b4> =0,
3a,b,  3azb
(%—%+5b2—cb2 942
<3a2 + 73 -27a, +9a,a, — 6a§
+ 3agh, - 3a,b, 9(/1;173
~9b; — 18bb, + 12bj> = 0.
—-11b, + ¢b, - 3a0b4> =0,
(21)
43b
<__1 L 3ab | 3ab
16 2 2 2
From the system of (21) we have
3a.b 3ab Y
- a: L+ 3a,b, - 2272 4 15b, (i)
3cby;  9apb;  9a,b
_%+%_%_3alb4>zo, 1 1
c=-(5-6b), ay = - (-5-2by),
3 3a,b, 4 4
(——alb1 + - 11b, + ¢b,
a, =a;=0, b =b,=0,
3a,b,

- 3ayb, + 3a,b, —

a, =4, b, =-2,
9a,b;  9a;b
49 7439

2

1 34b, a=-4 b=2
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u(x,t) = :11 (-5 -2b,)
+4<<<1+sec[x—}}(5—6b0)t]
“12\ 1\ 2
+tan[x—i(5—6b0)t]> 1/2) >
—4<<(l+sec[x—i(5—6b0)t]
“12\ 1\
+tan [x—i(5—6b0)t]> 1/2) > ,
v(x,t) = b
—2<<<1+sec[x—}l(5—6b0)t]
Z12\ 1\ 2
+tan[x—}1(5—6b0)t]> 1/2) >
+2<<<1+sec[x—}l(5—6b0)t]
12y
+tan [x—i(5—6b0)t]> 1/2) > :
(22)
(i)
c=}l(—1—3b22), a0=i(—3—b§),
a, =a;=0, b=b=b=0,
a, =2, b, #0, a, = -2,
1
u(x,t):z(—3—b22)

(e Rl
fs-3a-a) "))
(G EER Y
vl Has]) ) ).

v(x,t) = —

- b, (((1 + sec [x— }1 (-1- 3b22)t]
cnle- ) ) )

(23)

© S

From the Definition 2 we have the balance term of Hirota
Satsuma coupled equation by using the auxiliary equation (3)
for “Case 27 is equal to —4 then we have the following system
of equations

3
—a 4 + 3@34 - 6bf4 =0,

105a_; 21 21
e - e ) -0,
( 128 g 403 T a0
a_ ca_
(—1—6‘ - Tl - Za_ja,+ 3b,1) =0,

9b*
+12b%, - 7*3 - 9b_4b_2> =0,

( 225, 21 15
64 2 —4%-3 4 —-3%-2
15a_, 15
+ 8 +Za_4a_1+21b_4b_3

15 15
b, - 719_419_1) _o,

SaEZ
+ - +3a_sa_, + 3a_,a, — 6b_,

+9b°, +18b_,b_, — 3V, — 6b3b1) -0,

< 147a_3 3ca_; 15
+ - —aa,
32 4 2

27a, 15 9

T Tea g Tt
9 9%,

MLl s 15b_3b_,

F15b_b., - gb_zb_1> —0,
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< 27a_; 3ca_, N 13a_, L ¢

9
1 8b_, —2cb_y + 6ayb_y + —a_ib_
16 > 32 4 ( 4 4 0%-4 2 1¥-3
9 3
_Z _Z 2 7b b
za,za,l za,3a0 + 4a,1a0 _ 7—2 CT_Z +3a_,b.,
3b
+9b_; — T*I + 9b_2b_1) =0,

7a_, ca_,
—4a_,-2ca_ 4+ —+ —=
4 2

(b2 - e+ 3ahy + ga_lb_l) _ o,

3a%, - 6 L 27b, 3cb, 9
-3a’, -6a_sa_, + — 5 3cb,
, 4 <T - T + anb,:;) + 3a,1b,2
—6a_ya, + —a_a, + 12b_,
2 13b, cb, 3 3
. - +—+-a,b,—>ab,)=0,
) 30, 16 4 2 4
-3b,+6b>, +12b 36, — — | =0,
2 b, b, 3
c
(i -1y —aob,1> =0.
a_, 3a%, 5 8 2 2
5 Ty 3a_,ay +6b_, +3b°, | =0, (24)
-3b,-3a b, =0,
From the system of (3) we have
(—361 b, - 1050, - 9a b )— 0 (i)
—30_4 64 47493 ) =0
27b
< 2_4+6a_4b_4—3a_2b_4 a,=a3;=b,=b;=0,
9 3b,, 3 b=+l b __E a.=2
—Za 3127 3~ T - Ea,4b,2 =0, 2 > 4 2 > ) 5
225b 1
6a_3b_, —3a_b_, + = =1 =-(1+6b,),
( a_30_4 —50_10_4 32 a_y ¢ 4( 2)
9 9 3 1
+ 54 b3 - Zafzbfa - Eafsb 2 4= (-1+2b,),
B 15b_, _ Ea_4b_1) =0, u(x,t)
64 4
( C19b_, + cby +6a_,b_, — 3a5b., _1, < 1
4 \1+isech[x— (7/4)t
9

-2
] + tanh [x — (7/4) t] >

9
+ Ea 31’),3 - Zﬂ,lb,3 + 3b,2 ) ( | )_4
Y3ab, - %a_zb_z ~ Z“—ab—1> _o, A1 +isech [x — (7/4)t] + tanh [x — (7/4) t]
147b ,  3cb Vi)
<6a,1b,4 - 3, 20
16 4 ] -2
9 9 =by+ ( . )
+ Ea,zb,3 - Zaob 5 \/1+isech[x — (7/4)t] + tanh [x — (7/4) t]
2 -4
+3a_5b, - Ea_lb_2 + 7b., _ 1( 1 ) ,
2 32 2\\/T+isech [x - (7/4)¢] + tanh [x — (7/4) ]
+§a_4b_1 - ia_zb_1> =0,

(25)
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or
u(x,t)
=]
4 "\\/1+csch[x - (7/4) t] + coth[x — (7/4) £]
—( 1 )
VI +csch[x — (7/4)t] + coth [x - (7/4) ] )
v(x,t)

-2
( )

-4
1 1
- 5( VI + csch [x — (7/4) ] + coth [x — (7/4) £] ) '

(26)

Figures 1, 2, 3 and 4 gives to us 3D graphics for RLW Burgers
and RLW Burgers and Hirota Satsuma coupled equations.

4, Conclusion

We have presented a new method and balance term definition
and used it to solve the RLW Burgers and Hirota Satsuma
coupled equations. In fact, this method is readily applicable
to a large variety of nonlinear PDEs. First, all the nonlinear
PDEs which can be solved by the other methods can be
solved by our method. Second, we used only the special
solutions of (3). If we use other solutions of (3), we can obtain
more travelling wave solutions. Third it is a computerizable
method, which allow us to perform complicated and tedious
algebraic calculation on computer and so our balance term
definition is effectively useful for any to chosen auxiliary
equation.
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