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By using the Hille-Yosida theorem, Phillips theorem, and Fattorini theorem in functional analysis we prove that the M*/G/1
queueing model with vacation times has a unique nonnegative time-dependent solution.

1. Introduction

The queueing system when the server become idle is not
new. Miller [1] was the first to study such a model, where
the server is unavailable during some random length of
time for the M/G/1 queueing system. The M/G/1 queueing
models of similar nature have also been reported by a number
of authors, since Levy and Yechiali [2] included several
types of generalizations of the classical M/G/1 queueing
system. These generalizations are useful in model building
in many real life situations such as digital communica-
tion, computer network, and production/inventory system
[3-5].

At present, however, most studies are devoted to batch
arrival queues with vacation because of its interdisciplinary
character. Considerable efforts have been devoted to study
these models by Baba [6], Lee and Srinivasan [7], Lee et
al. [8, 9], Borthakur and Choudhury [10], and Choudhury
[11,12] among others. However, the recent progress of M*/G/1
type queueing models of this nature has been served by Chae
and Lee [13] and Medhi [14].

In 2002, Choudhury [15] studied the M*/G/1 queueing
model with vacation times. By using the supplementary
variable technique [16] he established the corresponding
queueing model and obtained the queue size distribution at a
stationary (random) as well as a departure point of time under
multiple vacation policy based on the following hypothesis.
“The time-dependent solution of the model converges to a
nonzero steady-state solution.” By reading the paper we find
that the previous hypothesis, in fact, implies the following two
hypothesis.

Hypothesis 1. The model has a nonnegative time-dependent
solution.

Hypothesis 2. The time-dependent solution of the model
converges to a nonzero steady-state solution.

In this paper we investigate Hypothesis 1. By using the
Hille-Yosida theorem, Phillips theorem, and Fattorini theo-
rem we prove that the model has a unique nonnegative time-
dependent solution, and therefore we obtain Hypothesis 1.

According to Choudhury [15], the M*/G/1 queueing
system with vacation times can be described by the following
system of equations:

d o0
3_:” —_AQ () + L 0 (%) Py (x, 1) dx
+ J'oo b(x) Py, (x,t) dx,
0

0Py (x,t) 0Py (x,t) B
p” + i =—[A+v(x)] Py (x,1),

0Py, (x,t) OBy, (x,t)
of | ox

=-[A+v(x)] Py, (x1)
+ AchPo’n,k (x,t), n>1,
k=1

OP, , (x,t) 0P, (x,t)
o ox




= - [/\ + b(X)] pl,n (x’ t)

n
+ )LchPl)n,k+1 (x,t), n=1,
k=1

Boo () =AQ (1), Py, (0,t)=0, nx1,

P, (0,t) = JOOO v(x) By, (x,t)dx

+ J b(x) P (xt)dx, n=1,
0

Q(O)Zl, Po,n(x,0)=0, nZOa

P, (x,00=0, nx>1,

@

where (x, ) € [0,00) X [0, 00); Q(t) represents the probability
that there is no customer in the system and the server is idle
at time ; Py ,(x,t)dx (n > 0) represents the probability that
at time ¢ there are n customers in the system and the server is
on a vacation with elapsed vacation time of the server lying
in [x, x +dx). P ,(x,t)dx (n > 1) represents the probability
that at time t there are n customers in the system with elapsed
service time of the customer undergoing service lying in
[x, x + dx). A is batch arrival rate of customers. ¢ (k > 1)
represents the probability that at every arrival epoch a batch
of k external customers arrives and satisfies Y .0, ¢ = 1. v(x)
is the vacation rate of the server, which satisfies

(o]

v(x) =0, J v(x)dx = oo. 2)

0

b(x) is the service rate of the server satisfying

(o]

b(x) 20, J b(x)dx = co. 3)

0

2. Problem Formulation

We first formulate the system (1) as an abstract Cauchy
problem on a suitable state space. For convenience we take
some notations as follows:

e 00 00 v(x)
Ae™* 00 00 0 wv(x)
Ii={ o oo > L= oo 0o o ,
0 b(x) O
0 0 b(x) -

(4)
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If we take state space

Py = (Q’PO,O’PO,I"")
e R x L'[0,00) x L' [0,00) x - -
P = (P1,1>P1,2>P1,3)-~-)
€ L' [0,00) x L' [0, 00)
x L' [0,00) x - - r >

o0
1(Po, P = 1Q1+ Y 1Posll 000
i=0

X=q9(R,P)

(oe]
+ Z“PL:‘"LI [0,00) < X
izl

5

then it is obvious that X is a Banach space. In the following
we define operators and their domains;

A(Py, Pr)
-A 0 0
d Q
0 - 0o .- Py ()
= 0 _i PO,l (x) >
dx .
S
dx P, (x)
d .
0o — 0 P, (x)
dx
0 d P1)3 (x) >
dx :
D(A)
dpP,, (x) dP ;. (x) 1
- b - L b >
dx dx €L [0.00)
Py (%), P (x)(n20, k=1)
are absolutely continuous
functions and satisfy
=1(PP) € X Po(0)=J I, P, (x)dx, [
0
P (0) = J LB, (x) dx
0
+ J I3P, (x)dx
0
U (Py P1)
00 0 O0- Q
03 0 0- Py (%)
_ 0Ag 0 O - Por(x) |,
0 Ac, A¢y D -

Po,z (x)
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b 0

0 0 P, (x)
A, b 0 0 P, (x)
Ay Ac, b 0 - P 5 (x) ,
A, Aoy Ac, b

P1,4 (x)

(6)
where 7 = —[A + v(x)], b = —[A + b(x)] + Ay,
E (P, Py)
JOO v (x) Py (x) dx + JOO b(x) Py, (x)dx
0 0
= 0 >
0
0 b
DU)=D(E)=X.
?)

Then the previous system of equations (1) can be rewritten as
an abstract Cauchy problem in the Banach space X:

d (P, P,) (t)

5 =(A+U+E)(P,P)(t), Vtel[0,00),
1 0
(Py, P,) (0) = 0 , 0
(8)

3. Well-Posedness of The System (8)

Theorem L. If v = SUp, (5 00)U(X) <00, b = SUP, (g 0y b(x) <
00, then A + U + E generates a positive contraction C-
semigroup T(t).

Proof. We split the proof of the theorem into four steps.
Firstly, we prove that (yI — A)™' exists and is bounded for
some . Secondly, we show that D(A) is dense in X. Thirdly,
we verify that U and E are bounded linear operators. Thus by
using the Hille-Yosida theorem and the perturbation theorem
of C,-semigroup we deduce that A + U + E generates a C-
semigroup T'(¢). Finally, we check that A+ U + E is dispersive,
and therefore we obtain the desired result.

For any given (y,, ¥;) € X, we consider the equation (yI -
A)(Py, P)) = (yy, ¥1); that is,

(y+A)Q=yp )

3
dp,,, (x)
i’ix = —yPy,, (X) + ¥, (x), n>0, (10)
dP,
lc)lr;c(x) =—yP, (x)+ y,,(x), n=1, (11)
P(),() (0) = AQ, (12)
Py, (0)=0, nx1, (13)
P, (0) = J v (x) Py, (x)dx
. (14)
+ J b(x)P ., (x)dx, n=1.
0
Through solving (9)-(11), we have
Q= L 15
- '})+AyQ’ ( )
Py, (x)=ay,e " +e J You (1) € dr, n=0, (16)
0

P,(x)=a;,e" +e" J V(e dr, n>1. (17)
0
Combining (16) with (12) and (13), we obtain

A
g0 = Py (0) =AQ = _)/ e (18)
apy =P, (0)=0, nx>1 (19)

Substituting (19) into (16), it follows that
Py (x)=e J You (1) €dT, n=>1. (20)
0

By combining (15), (16), (17), and (20) with (14), we deduce
al,n = Pl,n (0)
= J v (x) ef"xJ‘ Yon (1) €’ drdx
0 0

+ Ay L b(x)e " dx

+ j- b(x)e ™ J Vip (D edrdx, n>1,
0 0

(21
—
Ay, = Oy Jo b(x)e ™ dx
o . (22)
= J v(x)e ™ J Yo (1) e dr dx
0 0

+J b(x)e‘”j Vipn (1) T dT dx.
0 0

If we set



1 - J b(x)e ™ dx
0
0 1

0 0

then (21) can be rewritten as follows:

0 0
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0 0

- J b(x)e ™ dx 0

0 00 b
1 - J b(x)e Pdx ---
0 _ (23)

ap

. a2

d =

J v(x)e V" J Yo (1) drdx + J b(x)e ™ J Y1 (1) € dr dx
0 0

. [e) B x o) B x (24)
€a, = J v(x)e ™ J Yoo (1) e drdx + J b(x)e™ J Y13 (1) e drdx
0 0 0 0
It is easy to calculate
&) © 2 ) 3
1 J b(x)e M dx (J b(x)e_yxdx) (J b(x)e_yxdx> -
0 0 0
(o) o) 2
Lo 1 I b (x) e Pdx (J b(x)e*y"dx> - (25)
€ = 0 0
0 0 1 J b(x)e ™ dx
0
From which together with (24), we derive
© /oo k 1 |aq..| + J [yon (D)€" J e dxdr
a, = Z(L b (x) e_yxdx> )1/ 10 ’
k0 - . = ; |ag,q| + )_/"yoﬂuLl[O,oo)’ nz0,
X {j v(x)e ™ j Yorkin (7)€ dr dx 1 1
0 0 le,n“Ll[o,oo) < )_/ |ay,| + ;"yl,n”Ll[O,oo)’ nzl
+ L b(x)e "™ L Vikin (1) €7 dT dx} , n>1 (27)
(26) From (26) and Fubini theorem, we deduce
00 00 00 b k
By using Fubini theorem we estimate (16) and (17) as follows r; lal’”| = r; kZO ( ;)
(assume that y > v + b): N
X {v L [yosen ()| €7 J e "dxdr

“PO,n "L1 [0,00)

< J. |ao..| e " dx + J e J [¥o.n (D) € dTdx
0 0 0

+bJ |71 (T)|EYTJ e_y"dxdr]»
0 T
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= Z( )Z”)’o,kw"ﬂ[o,oo)

Yi=o n=1

[e) b k+1 oo
+ Z(‘) Z”)’1,k+n+1"L1 [0,00)
k=Y

n=1

IN

Uoo b k oo
y Z ”yO,n“L1 [0,00)

yk =0 n=0

oo b k+1 co
2(7) 2bnbioe

n=1

v b &
= )/Tbr;)"%,n"p[o,m) + m;”)’l,nllu [0,00)°

(28)

By inserting (18), (19), and (28) into (27) and using inequality
(y+v-b)/y(y -b) < 1/(y — v — b), we estimate

¥4l
< =%+ -ZI o] + = lemllp[o@

P, P)| £
||(0 1) Y+A yno

1 (o) 1 o0
+ _Z lal,nl + ‘Z"J’Ln"u[o,oo)
= Yam1

y+tv-b b &
y(y-b)

IN

2||y0n||L1[000

Lyl +
y Q

— > ialiioe (29)
52 Do

1

Sm|ye| y—v- bZH%n"pmm

V v— bznyln"Ll[Ooo

m 1Cvos vl

Equation (29) shows that (yI — A)7! exists for y>v+band

_

y-v-b
(30)

(-4 X — D@, Jor-4)"<

As far as the second step is concerned, from |Q| +
o0 (o)
ano ”PO’”"LI[O,OO) + Zn=1 "Pl’””Ll[O,OO) < 00 fOr (P0$ Pl) € X

it follows that, for any € > 0, there exists a positive integer N

such that Y ; 1Ponll 110,00 < € Yomon 1Pl (0.00) < ©O- Let

Py (x) = (Q Py (x),Pyy (x),...,

Pyn (%),0,...),
Pl(x):(Pl,l(x))PLz(x))u-,
P,y (x),0,...),
L=4(P,P,) b ) -

QeR,Py;(x),

Pyj(x) € L'[0,00), i=0,1,...,N;
j=L1L2,...,N;

N isafinite positive integer

(31)
then L is dense in X. If we set

(Q, Py (x)aP0,1 (%),
Py (x),0,...),
(Pl,l (x)’Pl,Z(x))“-’
P (x),0,...),
Py (x), Py;(x) € C° [0,00),

and there exists positive ’

Py (x) =

P, (x) =

Z = (P»P)
numbers¢y; > 0, ¢ ; > 0,

such that Py; (x) = 0,x € [0,¢;],
P i(x)=0, x€ [O,CLj];
i=0,1,2,..,5j=12..,1

T (32)

then by the relationship C;°[0, co) and L'[0, c0) in Adams

[17], we know that Z is dense in L. Hence in order to prove

denseness of D(A), it suffices to prove that D(A) is dense in Z.

Take any (P), P,) € Z, then there are a finite positive integer

I'and positive numbers ¢y; > 0,¢;; >0 (i = 0,1,....,1 j =
., 1) such that

Py (x) = (Q Py (x), Py, (x),...,P; (x),0,...),
Pl(x):(pl,l(X)>P1,2(x)’“-’pl,l(x)’o"")’
(33)
Py;(x) =0, forxe[0,¢,], i=0,1,2,...,],
Pl,j (x)=0, forxe [O,Cl)j], j=12,...,1,
Py (x)=0 €1[0,2s],i=0,1,...,I;
(34)

P i(x)=0, x¢€[0,2s], = 1,...,1

where 0 < 25 < min{cy, Gy 15 - - .»¢y7}. Define

> €, €10 - -
f50) = (Q f5,(0), f5,(0),.... f5,(0),0,....)
= (Q,1Q,0,...,0,0,...), (35)

£ =(fi1 00, fi50),..., £1,(0),0,...),



where

(6]

£,0= [ o@r,mdxs | b P, (dx

ﬂmwj
fo () = (Q foo (), foy ().

v (x) Py, (x)dx,

2s

o1 (%),0,..),

£ = (f51 G £y () £, (0,0,
(36)
where
. 2
f;)i(0)<1—§>, xe[0s),
Joi (%) = 1 —to (x = 5)*(x = 25)%, x€[s,29),
L Py (%), x € [2s,00),
2
ff,j(0)<1—§), xe[0,s),
fl,j (x) = 1 —yl,j(x — ) (x—2s)?% x€[s29),
_Pl’j (x), x € [2s,00), (37)
[5 v () £5,(0) (1 = (x/5))*dx
AMO,i = 2s >
L v (x) (x = $)*(x = 25)%dx
[5G £ 0) (1= (x/5))dx
‘ul:j = 2s 2 2 >
_L b(x) (x—s)"(x—2s)dx
i=0,1,... j=1,...,L
Then it is not difficult to verify that (fg, f;) € D(A).

Moreover,

(P, P

)= (fo Ol

1
-y J [Py; () - £, (0] dx

i=0

ZJ [Py 0 - £, 0] dx

(0)|<1——)2d

! 2s
+ Z |01 J (x — 5)(x — 25)°dx
i=0 S

+§L§ 17550 <1 - f)zdx

l 2s
) |M1,j| J (x — )’ (x — 25)°dx
j=1 s

3],

i=0
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l s % s s
211505+ 2 lbol 35+ 2.1 ) 5
! §5
+];|‘ul,j.% — 0 ass—0,
(38)

which shows that D(A) is dense in Z. Hence, D(A) is dense in
X. From the first step, the second step, and the Hille-Yosida
theorem [18] we know that A generates a C,-semigroup.

Next we will verify that U and E are bounded linear
operators. From the definition of U and E and Y2 ¢ = 1
we have

[ee)

lu@.e) <y j A+ (0] [Py, ()] dx

n=0

+ /\chz J |P0n (x)| dx

=1 n=0

[ee)

zj A+ b (0] Py, ()] dx

+ /\chz J |P1n (x)| dx

k=1 n=1

< (A +0) Z J |P0n (x)|dx

+2A+b) Z J IP,,, (x)] dx

n=1

< max {21 +v), 2A + b)} |(Py, P)| »
IE (P, P,)| < L 0 (%) |Poo ()] dx

+ J b(x) |P1,1 (x)| dx
0

< 0| Pyl y T b|[Pyall

[0,00 [0,00)

< max {v,b} (P, P,)| -
(39)
The previous two formulas show that U and E are bounded
operators. It is easy to check that U and E are linear operators.
Hence from the perturbation theorem of C,,-semigroup [18],
we obtain that A + U + E generates a C-semigroup T'(¢).

Lastly, we will prove that A+U +E is a dispersive operator.
For (Py, P;) € D(A) we take (¢, $,) as

_ Q] [Po,o(x)]+ [PO,I (x)]+
%(x)‘( Q" P | B )

([P @] [P, )]
(/51 ('x) - ( Pl’l (X) 5 Pl)z (X) 3. ) 5

(40)
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where
ifQ >0,
ifQ<0,
Py, (x if P, (x) >0,
[Py, (x)]" <| n (), 1fp0n(; 0o n>0, (41)
On >
P, (x), ifP,, (x)>0,
P += 1,n 1,n 1.
[P (0] {0, ifp, (x)<0, "7

If we define Vjj; = {x € [0,00) | Py;(x) > 0} and W,; =
{x € [0,00) | Py;(x) < 0} fori = 0,1,2,..., then by a short
argument we calculate

dx

Joo dPy; (x) [Py; (x)]"
0 dx Py; (x)

dx

J‘ dPy; (x) [Py; x)]"
Vo dx P()’i (x)

dx (42)

N J dpy; (x) [PO,i (x)]+
W, dx Py; (x)

_J dPy; (x) [Po’i(x)rdx—[ dPOz(x) dx
- Vo dx PO,i (x) - Vi d'x

_ ro de =-[Py,; (0)]", i=0.
0

dx

Similar to (42), we get

[ 48,00 B, )

i>1. (43)
0 dx Py ;(x) J

dx =-[P,; 0],

By using boundary conditions on (P,, P;) € D(A), (42), (43),
and Z;:Z] ¢ = 1 for such (¢, ¢,), we derive

((A+U +E)(Py, P), (¢ 1))
{ AQ+J v (x) Py (x) dx

+ L b(x) Py (x) dx} [((22]

o (dPy,(x)
)t

Dt oo(x)} [P (x)] »

dx Py (x)
0 oo [ dp, (x)
+;JO {— ‘;xx ~ A+ ()] Py, (1)
= [PO n (x)]+
AY P : d
+ I;Ck 0,n—k (X)} P(),n (x) X
© (o [ dp, (x)
N ; JO { S b P, ()

+/\ZCkP1,n—k+1 (x)} [ (x)]

k=1 (x)

[QQ] L v (x) Py (x) dx

= -AQI" +

+ Q" me(x) P (x)dx
0

[e9) (9]

Y [P, O - Y [ 0l By, @] dx

n=0 n=0 -0

+ /\chz J- Py g (%) [P ()] dx

k=1 n=k Py, (%)

Mg

[P, (0)]" -

+
Mg

L A+ b0 [Py, (0] dx

Il
—
]
—

G

+AZCkZJ Py (x )[ A2l I

k=1 nk Py, (x)

"

IN

QI + [%] jo 0(x) [Py ()] dx

N [QQ] L b(x) [P, ()] dx

(o]

FMQ - Y [T ol [R, @) dx

n=0 -0

+AZCkZ j POn k(x)

k=1 n=k

o0

+ L v () [Py, (x)] dx+ZI b(x) [P, (x)]"d

X (JOOO v (x) [Py (%)) dx + J b(x) [Py, (x)] dx)

-y JOO APy, ()] dx + AZCkz ro [Py, (x)]"dx
n=0 0 k=1 n=0
-y JOO APy, ()] dx+1) g ) JOO [P, (x)]"dx
n=170 k=1 n=170
<0.



Equation (44) shows that A + U + E is a dispersive operator.
From which together with the first step, the second step, and
the Phillips theorem, we know that A + U + E generates a
positive contraction C,-semigroup [18]. By the uniqueness of
a Cy-semigroup we conclude that this semigroup is just T'(¢).

O
It is not difficult to see that X*, the dual space of X, is
x*
q, = (q*’qg,o’qg,1>~")
€ Rx L™ [0,00) x L [0,00) X -+,
qf = (ﬁ,vﬁ,zw--) (45)
=4(q5-97) € L*[0,00) x L [0,00) X + -+,

a3 =sup {1a°] supl.

L®[0,00)’

L°°[0,oo)} J

It is easy to check that X™ is a Banach space. If we take a
set Sin X as

S={(P,P)eX|Q=>0,P, (x)>0,n>0;

*
sup|q;,
n=1

(46)
P, (x)=0,n>1,x € [0,00)},
then Sis a cone in X. For (P, P;) € D(A) N S, we take
1 1
(go-a) =IEPII| | D ]| ) Jexs @

then we have
((Po> P1)>(q9-a1))

= (P, P <|Q| + ZPO,, (x)dx + ZPM (x) dx) (48)

n=1

= [[Po, POI* = (g aDII
that is
(45.4;) € 6 (P, P,))

={(a5-9;) € X" | {(P0, P)(q547)) (49)

= e PP = llias. g}

For such (g, q; ), by using boundary conditions on (P, P,) €
D(A)nSand Y2 ¢ = 1, we have

((A+U+E) (Po’Pl)’(qgﬁf))

= [I(Ro, P

{)LQ+J v(x)POO(x)dx+J b(x)P“(x)dx}

dPy, (x)

+Jo {_ dx

0] By (x)} [(Py, Py dx
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S (® dp,, (x)
i Z J { Codx

A3 s <x>} Iy )] dx

k=1

(A +v(x)] Py, (x)

dpP,, (x)

+§I“’{T

+AchP1)n,k+1 (x)} ||(P0, Pl)” dx

k=1

[A+b(x)] P, (x)

= [I(Ro, P

{)&Q+J v(x)POO(x)dx+J b(x)Pll(x)dx}

- (R P)]

dpP,, (x) <

XLZ‘)L - c’ix dx+’;)J0 (A +v(x)] Py, (x)dx
ayey [ pOn(x)dﬂzj Pial),

k=1 n=0

+ZJ A+ b ()] P, (x) dx

—Aiciro P x)dx}

= (P, P,
y {—AQ ; L V() Pyp (x) dx + JO b(x) P, (x) dx]»

- "(PO’PI)”

X {—/\Q + i J:O v(x) Py, (x)dx
n=0

(o)

v(x) Py, (x)dx
0

M3

I
—

2]

b(x) Py, (x) dx + Zj b(x)Pln(x)dx}

(50)

Which shows that A+ U + E is a conservative operator. So we
can use the Fattorini theorem [19] and state it as follows.

Theorem 2. T'(t) is isometric for the initial value of the system
(8); that is,

IT @) (o, P) O] = |(Py, ) )], ¥t € [0,00). (51
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Proof. Since A + U + E is conservative with respect to 6 and
(Py, P)(0) € D(A*)NS, from the Taylor expansion of T'(¢ + 1)
for t,h > 0 we have

T (t+h) (Py, P,) (0)
=T (t)(Py, P,) (0) +h(A+U +E)T (t) (P, P,) (0)

t+h
+ J (t+h—s)T(s)(A+U+E)* (P, P,)(0)ds

=T (t)(PyP,)(0)+h(A+U+E)T (t) (P, P,) (0)

+hp(t,h),
(52)

where [[p(t,h)| — 0ash — 0, uniformlyint > 0. Then
IT ¢+ h) (B, P) O |T (1) (P, Py) (0)

> (T (¢ +h) (Py, P) (0), (T (£) (

> Re (T (t +h) (Py P,) (0), (T (1) (P, P,) (0)")  (53)

> b

=T @ (P, P) O

+hRe<p(t,h),(T(t) (PO’PI)(O))*>'

In view of (52) and the fact that A+U + E is conservative with
respect to 0, consider the set

Q={t €[0,00) [ |[T(®) (P, 1) O = [[(Po, P) O]},
(54

Since 0 € Q, Q is nonempty, moreover ( is obviously a closed
interval because of continuity of T'(t). If Q2 # [0, 00), then let
t, be the right end point of Q and # > 0 is so small that
IT(t)(Py, P,)(0)| is bounded away from zero int, < t < t,+#.
For any such t we divide (53) by [ T(t)(P,, P,)(0)]l and get

IT (t + h) (P, P,) (0)]

h
IT &) (P, P,) (0)]

xRe {p (t.h), (T (t) (P, P,) (0))")

> | T (t) (P, Py) (0)]| = hB (. h),

where f(t,h) is positive and S(t,h) — 0 whenh — 0,
uniformlyint, <t <t;+#.

Let now € be are small positive number and § > 0 such
that |B(t,h)|| < efor0 < h < Sandt, <t < t,+n. Let
ty < t; <ty <--- < t, =t,+# be partition of the interval
t0<t<t0+113uchthatt—t <6 (1 <j<m).Thenby
(55), one has

0< [T () (Po P,) (O] = |T (to + 1) (Po, P,) (0]

> |T () (P, P) O +
(55)

Jl_

Ms

(I7 (t121) (oo ) O] = [T (£;) (B, P) O)])

[
Il
—

Ms

(8= i) Bty = i) < e

-
I
—_

Since € is arbitrary, it follows that ||T'(t, + #)(P,, P,)(0)|| =
IT(t,)(Py, P)(0)|l, which contradicts the fact that f, is
the right endpoint of Q. Hence QO = [0,00). That is,
IT(t)(Py, PO = [I(Py, P)(0)] for ¢ € [0, 00). The proof of
the theorem is complete. O

From Theorems 1 and 2 we obtain the main result in this
paper.

Theorem 3. Ifv = sup (g o) V(X) < 00, b = sUp, (g 1) b(x) <
0o, then the system (8) has a unique nonnegative time-
dependent solution (P, P,)(x, t), which satisfies

[Py P) 0] = 1,

Proof. Since (P,, P,)(0) € D(A*) NS, by Theorem 1 and The-
orem 11 in Gupur et al. [18], we know that the system (8) has
a unique nonnegative time-dependent solution (P, P,)(x,t)
which can be expressed as

Vt € [0,00). (57)

(P, P,) (x,1) = T (t) (P, P,) (0),  Vt €[0,00).  (58)

From which together with Theorem 2 (i.e., (51)) we have

“(P0>P1) ("t)“ = "T(t) (PO’PI)(O)" = ||(P0’P1) (O)" =1
Vt € [0,00),
(59)

this just reflects the physical background of the problem. [J

4. Concluding Remarks

If we know the spectrum of A + U + E on the imaginary
axis, then by Theorem 1 and Theorem 14 in Gupur et al. [18],
we obtain the asymptotic behavior of the time-dependent
solution of the system (8), which describes Hypothesis 2. It
is our next research work.
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