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An approach based on fractal is presented for extracting affine invariant features. Central projection transformation is employed to
reduce the dimensionality of the original input pattern, and general contour (GC) of the pattern is derived. Affine invariant features
cannot be extracted from GC directly due to shearing. To address this problem, a group of curves (which are called shift curves)
are constructed from the obtained GC. Fractal dimensions of these curves can readily be computed and constitute a new feature
vector for the original pattern. The derived feature vector is used in question for pattern recognition. Several experiments have been
conducted to evaluate the performance of the proposed method. Experimental results show that the proposed method can be used

for object classification.

1. Introduction

The images of an object taken from different viewpoints often
suffer from perspective distortions. For this reason, features
extracted from the image of an object should be tolerant to
an appropriate class of geometric transformation (such as
translation, rotation, scaling, and shearing). A perspective
transformation between two views can be approximated
with an affine transformation if the object is planar and far
away from the image plane [1]. Therefore, the extraction of
affine invariant features plays a very important role in object
recognition and has been found application in many fields
such as shape recognition and retrieval [2, 3], watermarking
[4], identification of aircrafts [5, 6], texture classification [7],
image registration [8], and contour matching [9].

Many algorithms have been developed for affine invariant
features extraction [10-12]. Based on whether the features are
extracted from the contour only or from the whole shape
region, the approaches can be classified into two main cat-
egories: region-based methods and contour-based methods.
Contour-based methods provide better data reduction [13],
but they are inapplicable to objects with several separa-
ble components. Region-based methods can achieve high
accuracy but usually at the expense of high computational
demands, for good overviews of the various techniques refer

to [13-16]. Central projection transformation (CPT) [17] can
be used to combine contour-based methods and region-based
methods together. However, CPT cannot be used to extract
affine invariant features directly. In this paper, we extract
affine invariant features by integrating CPT and fractal.

The essential advantage of fractal technique descriptor
is that it can greatly speed up computation [17]. Fractal,
which is introduced by Mandelbrot [18], has been shown to
be one of the most important scientific discoveries in the
last century. It proposes a powerful tool for human being
to explore the complexity. It can be used to model many
classes of time-series data as well as images. The fractal
dimension (FD) is an important characteristic of fractals;
it contains information about their geometrical structure.
Many applications of fractal concepts rely on the ability to
estimate the FD of objects. In the area of pattern recognition
and image processing, the FD has been used for image
compression, texture segmentation, feature extraction [19,
20], and so forth. The utility of fractal to extract rotation
invariant features has been invested in [17]. CPT is employed
to reduce the dimensionality of the original pattern. A
discrete wavelet transformation technique transforms the
derived pattern into a set of subpatterns. Consequently, its
FD is computed and has been used as the feature vectors.
A satisfying classification rate has been achieved in the
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FIGURE 1: (a) An image of a circle. (b) A scaled version of circle in Figure 1(a). (¢) An affine transformation version of circle in Figure 1(a).

recognition of rotated English letters, Chinese characters, and
handwritten signatures. For more details, please refer to those
papers.

However, the approach presented in [17] is hard to be used
to extract invariant features for general affine transformation.
A general affine transformation not only includes rotation,
scaling, and translation but also includes shearing. That is to
say, a circle may be transformed into an eclipse. Figure 1(a) is
an image of a circle. Figure 1(b) is a scale and rotation version
of circle in Figure 1(a). Figure 1(c) is an affine transformation
version of circle in Figure 1(a). It can be calculated that FD
of curve derived from the circle in Figure 1(a) by CPT is
f1 = 14007, ED of curve derived from the circle in Figure 1(b)
by CPT is f, = 1.4012, while FD of curve derived from the
eclipse in Figure 1(c) is f; = 1.4244. That is to say, FD can
not be used to extract affine invariant features directly. To
address this problem, a group of curves (which are called shift
curves) are constructed from the closed curve derived by CPT
in this paper. FDs of these curves can readily be computed
and constitute a new feature vector for the original pattern.
Several experiments have been conducted to evaluate the
performance of the proposed method. Experimental results
show that the constructed affine invariant feature vector can
be used for object classification.

The rest of the paper is organized as follows. In Section 2,
some basic concepts about CPT are introduced. The method
for the extraction of affine invariant features is provided in
Section 3. The performance of the proposed method is eval-
uated experimentally in Section 4. Finally, some conclusion
remarks are provided in Section 5.

2. CPT and Its Properties

This section is devoted to providing some characteristics
of CPT. In CPT, any object can be converted to a closed
curve of the object by taking projection along lines from the
centroid with different angles. Consequently, any object can
be transformed into a single contour. In addition, the derived
single contour also has affine property.

2.1. The CPT Method. Firstly, we translate the origin of the
reference system to the centroid of the image. To perform
CPT, the Cartesian coordinate system should be transformed
to polar coordinate system. Hence, the shape I(x, y) can be
represented by a function f of r and 0, namely, I(x, y) =
f(r,0), where r € [0,00) and 6 € [0,2m). After the
transformation of the system, the CPT is performed by
computing the following integral:

960 = joo £ (r,0)dr, )
0
where 0 € [0, 2m).

Definition 1. For an angle 8 € R, g(0) is given in (1) and
(0, g(9)) denotes a point in the plane of R2. Letting 6 go from
0 to 27, then {(6, g(0)) | 6 € [0, 2m)} forms a closed curve. We
call this closed curve the general contour (GC) of the object.

For an object f, we denote the GC extracted from it by
CPT as 0. The GC of an object has the following properties:
single contour, affine invariant.

By (1), an angle & € [0,2m) corresponds to a single
value g(0). Consequently, GC can be derived from any object
by employing CPT. For instance, Figure 2(a) shows the
image of Chinese character “Yang’”, which consists of several
components. Figure 2(b) shows the GC of Figure 2(a). The
object has been concentrated into an integral pattern, and a
single contour has been extracted.

In real life, many objects consist of several separable com-
ponents (such as Chinese character “Yang” in Figure 2(a)).
Contour-based methods are unapplicable to these objects. By
CPT, a single closed curve can be derived, and contour-based
methods can be applied. Consequently, shape representation
based on GC of the object may provide better data reduction
than some region-based methods.

2.2. Affine Invariant of GC. An affine transformation A of
coordinates x € R is defined as

x = Ax +b, (2)
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FIGURE 2: (a) The Chinese character “Hai”. (b) GC derived from (a).
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FIGURE 3: (a) An affine transformation version of Figure 2(a). (b) GC derived from (a).

where b = (2) e R*and A = (g 32) is a two-by-two
nonsingular matrix with real entries.

Affine transformation maps parallel lines onto parallel
lines and intersecting lines into intersecting lines. Based
on this fact, it can be shown that the GC extracted from
the affine-transformed object by CPT is also an affine-
transformed version of GC extracted from the original object.

Consider two objects f and £ are related by an affine
transformation A:

F':{xllx':Ax+b,x€F}. (3)

Then df and 9f', GCs of f and £, are related by the same
affine-transformation A:

a/:':{x’|x':Ax+b,x€a/:}. (4)

For example, Figure 3(a) shows an affine transformed
version of Figures 2(a) and 3(b) shows the GC derived

from Figure 3(a). Observing the two GCs in Figures 2(b)
and 3(b), we can see that CPT not only represents the
distribution information of the object but also preserves the
affine transformation signature.

Therefore, to see whether an object ® is the affine
transform version of f, we just need to check if 00, the GC
of @, is the same affine-transformed version of 0. We extract
affine invariant features using fractal from GC of the object.

3. Extraction of Affine Invariant Features
Using Fractal

By CPT, a closed curve can be derived from any object. In
order to extract affine invariant features from the derived
GC, the GC should firstly be parameterized. Thereafter, shift
curves are constructed from the parameterized GC. Conse-
quently, divider dimensions of these curves are computed to
form feature vectors.
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FIGURE 4: (a) 10-shift curve of the Chinese character given in Figure 2(a). (b) 10-shift curve of the Chinese character given in Figure 3(a).

3.1. Affine Invariant Parameterization. GC should be param-
eterized to establish one-to-one relation between points on
GC of the original object and those on GC of its affine
transformed version.

There are two parameters which are linear under an affine
transformation: the affine arc length [21], and the enclosed
area [22]. These two parameters can be made completely
invariant by simply normalizing them with respect to either
the total affine arc length or the enclosed area of the
contour. In the discrete case, the derivatives can be calculated
using finite difference equations. The curve normalization
approach used in this paper is the same as the method given
in [23]. In the experiments of this paper, GC is normalized
and resampled such that N = 256.

Suppose that GC of the object has been normalized and
resampled. Furthermore, we suppose that the starting point
on GC of the original object and that on GC of the affine-
transformed version of the original object are identical. Then,
a parametric point x(0) = [x(0), y(a)]T on GC of the original
object and a parametric point X(¢) = [X(0), j/“(a)]T on GC of
its affine transformed version satisfy the following equation:

X(0)=ayx(0)+a,y(0)+b, -
7 (0) = ayx(0) +ayy (o) + b,

3.2.  Shift Curves. In this part, we will derive invariant
features from the normalized GC. Let [x(0), ¥(0)] and [X(5),
¥(0)] be the parametric equations of two GCs derived from
objects that differ only by an affine transformation. For
simplicity, in this subsection, we assume that the starting
points on both GCs are identical. After normalizing and
resampling, there is a one-to-one relation between o and &.
We use the object centroid as the origin, then translation
factor b is elimated. Equation (2) can be written in matrix
form as X(0) = Ax(0).

Letting p be an arbitrary positive constant, then [x(o +
), ¥(o + y)] is a shift version of [x(0), y(0)]. We denote M,
as the zero moment of the object:

M, = j JI (x, y)dxdy. (6)

We define the following function:
1
C,0) = i <@ o+ ) -y @x o+ ()
0

We call Cy(a) as y shift curve of the object. Figure 4(a) shows
a 10-shift curve of the Chinese character given in Figure 2(a).
As a result of normalizing and resampling, [x(0), y(0)],
[%(0), ¥(6)] and [x(0 + ), y(o + Y)], [X(G + y), (T + y)]
satisfy the following equation:

x(0) =a;x(0) +apy (o),

Y (0) = a,x(0) + axy (0),

(8)
X(@+y)=anx(o+y)+apy(o+y),
J(@+y)=ayx(o+y)+ayy(c+y).
It follows that
C @) - @ 5@ +y) - 7@ F(@E+y)
M,
_det(A)[x (@) y(o+y)-y©@x(a+y)| )
B det (A) M,

=C, (0).

In other words, C, givenin (7) is affine invariant.

Note that, after affine transformation, the starting point
of GC is different. Figure 4(b) shows the 10-shift curve of
the affine transformed version Chinese character given in
Figure 3(a). We observe that the shift curve of an affine
transformation version of the object (see Figure 4(b)) is a
translated version of the shift curve of the original object (see
Figure 4(a)).
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3.3. Computing Divider Dimension of Shift Curves. The FD is
a useful method to quantify the complexity of feature details
present in an image. In this subsection, we shall discuss
the problem of computing the divider dimension of shift
curves and, thereafter, use the computed divider dimension
to construct a feature vector for the original two-dimensional
pattern in question for pattern recognition.

Fractals are mathematical sets with a high degree of
geometrical complexity, which can model many classes of
time series data as well as images. The FD is an important
characteristic of the fractals because it contains information
about its geometric structures. When employing fractal
analysis researchers typically estimate the dimension from
an image. Of the wide variety of FDs in use, the definition
of Hausdorft is the oldest and probably the most important.
Hausdorft dimension has the advantage of being defined for
any set and is mathematically convenient, as it is based on
measures, which are relatively easy to manipulate. A major
disadvantage is that in many cases it is hard to calculate or
estimate by computation methods.

In general, the dimension of a set can be found by the
equation

_ log(N)
~log(1/r)’

where D is the dimension and N is the number of parts
comprising the set, each scaled down by a ratio r from the
whole [18].

In what follows, we use the notion of divider dimension
of a nonself-intersecting curve (see [24, 25] etc.). Suppose
that C is a nonself-intersecting curve and & > 0. Let M;(C)
be the maximum number of ordered sequence of points
Xg»X15- .., %) on curve C, such that |x; — x;_,| = & for
k = 1,2,..., M. The divider dimension dim,C of curve C
is defined as follows:

(10)

log M,
dim,C = lim 08 ) ©

5—0 —logd an

where |x; — x;_,| represents the magnitude of the difference
between two vectors x; and x;_;.

It should also be mentioned that x,, is not necessarily the
end point of curve C, x, but [x; — x,,] < §. Furthermore,
(Ms(C) — 1)0 may be viewed as the length of curve C as
measured using a pair of dividers that are set § distance apart.

Since the divider dimension of nonself-intersecting
curves is asymptotic values, we derive their approximations
based on the following expression in our experiments:

log M5 (C)

—logé 12

where ¢ is set small enough.

The divider dimension of shift curve in Figure 4(a) is
1.6168 and that of shift curve in Figure 4(b) is 1.6195. In
the experiments of this paper, divider dimensions of shift
curves y = 1,2,...,256 are computed. The feature vector is
constituted

T
Viea = (FD1, FD,, ..., FDy55) . (13)

4. Experiment

In this section, we evaluate the discriminate ability of the
proposed method. In the first experiment, we examine the
proposed method by using some airplane images. Object
contours can be derived from these images. In the second
experiment, we evaluate the discriminate ability of the
proposed method by using some Chinese characters. These
characters have several separable components, and contours
are not available for these objects.

In the following experiments, the classification accuracy
is defined as

"= g x 100%, (14)

where § denotes the number of correctly classified images
and A denotes the total number of images applied in the test.
Affine transformations are generated by the following matrix

[5]:
cos® —sinf) [ 4 b
A:k(sine COSQ><0 1>, (15)
a

where k,0 denote the scaling and rotation transforma-
tion, respectively, and a,b denote the skewing transfor-
mation. To each object, the affine transformations are
generated by setting the parameters in (15) as follows:
k € {0812} 6 € {30°,90°,150°,210°,270°,330°}, b ¢
{-3/2,-1,-1/2,0,1/2,1,3/2}, and a € {1, 2}. Therefore, each
image is transformed 168 times.

4.1. Binary Image Classification. In these experiments, we
examine the discrimination power of the proposed method
using 40 Chinese characters shown in Figure 5. These Chinese
characters are with regular script font, and the images have
size 128 x 128 in the experiments. We observe that some
characters in this database have the same structures, but the
number of strokes or the shape of specific stokes may be a
little different. Some characters consist of several separable
components. As aforementioned, each character image is
transformed 140 times. That is to say, the test is repeated 5600
times. Experiments on these Chinese characters in Figure 5
and their affine transformations show that 98.14% accurate
classification can be achieved by the proposed method.

The images are sometimes noised for reasons in many
real-life recognition situations. The robustness of the pro-
posed method is tested using binary image in this part.
We add salt and pepper noise to the transformed binary
images. We compare the proposed method with two region-
based methods, namely, the AMIs and MSA. The comparative
methods are described in [26, 27], and these methods are
implemented as discussed in those articles. 3 AMIs and 29
MSA invariants are selected for recognition. The nearest
neighbor classifier is applied for AMIs and MSA methods. We
firstly add the salt and pepper noise with intensities varying
from 0.005 to 0.03 to the transformed images.

Table 1 shows the classification accuracies of all methods
in the corresponding noise degree. We can observe that
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FIGURE 5: Test characters used in the second experiments.

TaBLE L: Classification accuracies of AMIs, MSA, and the proposed method for Chinese characters in case of affine transformation and

different intensities of salt and pepper noise.

Noise degree 0 0.005 0.010 0.015 0.020 0.025 0.030
AMIs 91.70% 45.50% 34.82% 28.54% 23.82% 19.89% 17.77%
MSA 94.48% 90.63% 73.57% 53.80% 38.16% 26.86% 19.88%
Our method 98.14% 96.21% 93.48% 89.46% 86.25% 82.07% 77.59%

the classification accuracy of AMIs decreases rapidly from
noise-free condition to small noise degree. The classification
accuracy decreases from 91.70% to less than 50% when the
noise intensity is 0.010. MSA performs much better than
AMIs, but the results are not satistying. To large noise degrees,
the proposed method keeps high accuracies all the time.

4.2. Gray Image Classification. In this part, the well-known
Columbia Coil-20 database [28], which contains 20 different
objects shown in Figure 6, is applied in this experiment.
To each object, the affine transformations are generated by
setting the parameters in (15) as aforementioned. Therefore,
each image is transformed 140 times. That is to say, the test
is repeated 2800 times using every method. The classification
accuracies of the proposed method, AMIs, and MSA in this
situation are 96.00%, 100%, and 95.31%, respectively. The
results indicate that AMIs perform best in this test, and the
proposed method is similar with MSA.

The effect of adding different kinds of noises is also
studied. The noise is added to the affine-transformed images
before recognition.

We firstly add the salt and pepper noise with intensities
varying from 0.005 to 0.03 to the transformed images.

Table 2 shows the classification accuracies of all methods
in the corresponding noise degree. We can observe that
the classification accuracy of AMIs decreases rapidly from
noise-free condition to small noise degree. The classification
accuracy decreases from 100% to less than 50% when the
noise intensity is 0.010. MSA performs much better than
AMIs, but the results are not satisfying. To large noise
degrees, the proposed method keeps high accuracies all the
time.

In addition, we add the Gaussian noise with zero mean
and different variance varying from 0.005 to 0.03 to the trans-
formed images. Table 3 shows the classification accuracies of
all methods in the corresponding noise degree. The results
indicate that AMIs and MSA are much more sensitive to
Gaussian noise than salt and pepper noise. However, the
classification accuracies of the proposed method outperform
AMIs and MSA in every noise degree.

The experimental results tell us that the proposed method
presents better performances in noise situations. The reason
may lie in that CPT is robust to noise. It was shown in [29] that
Radon transform is quite robust to noise. We can similarly
show that GC derived by CPT from the object is robust to
additive noise as a result of summing pixel values to generate
GC.
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FIGURE 6: Columbia Coil-20 image database.

TaBLE 2: Classification accuracies of AMIs, MSA, and the proposed method for images in Figure 6 in case of affine transformation and

different intensities of salt and pepper noise.

Noise degree 0 0.005 0.010 0.015 0.020 0.025 0.030

AMIs 100% 55.04% 43.29% 35.93% 31.96% 26.75% 23.04%
MSA 95.31% 88.10% 74.18% 62.14% 53.74% 47.02% 42.08%
Our method 96.00% 95.07% 93.18% 89.25% 83.32% 77.61% 72.54%

TaBLE 3: Classification accuracies of AMIs, MSA, and the proposed method for images in Figure 6 in case of affine transformation and

different intensities of Gaussian noise.

Noise degree 0 0.005 0.010 0.015 0.020 0.025 0.030
AMIs 100% 32.50% 26.04% 21.82% 19.54% 17.64% 16.05%
MSA 95.31% 57.04% 45.82% 40.79% 37.39% 34.78% 32.79%
Our method 96.00% 85.57% 74.89% 63.07% 51.71% 42.89% 34.93%

5. Conclusions

In this paper, affine invariant features are extracted by using
fractal. A closed curve, which is called GC, is derived
from the original input pattern by employing CPT. Due
to shearing, affine invariant features cannot be extracted
from GC directly. To address this problem, a group of
curves (which are called shift curves) are constructed from
the obtained GC. Fractal dimensions of these curves can

readily be computed and constitute a new feature vector
for the original pattern. The derived feature vector is used
for object classification tasks. Several experiments have been
conducted to evaluate the performance of the proposed
method.

Although satisfying results have been achieved in object
classification tasks, some remarks should be made. The
performance of CPT depends strongly on the accuracy cal-
culation of the centroid. We are working towards developing



method without the centroid. Furthermore, some character-
istics of CPT should be further studied.
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