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This paper presents modified halfspace-relaxation projection (HRP) methods for solving the split
feasibility problem (SFP). Incorporating with the techniques of identifying the optimal step length
with positive lower bounds, the new methods improve the efficiencies of the HRP method (Qu
and Xiu (2008)). Some numerical results are reported to verify the computational preference.

1. Introduction

Let C and Q be nonempty closed convex sets in Rn and Rm, respectively, and A anm × n real
matrix. The problem, to find x ∈ CwithAx ∈ Q if such x exists, was called the split feasibility
problem (SFP) by Censor and Elfving [1].

In this paper, we consider an equivalent reformulation [2] of the SFP:

minimize f(z) subject to z =
(
x
y

)
∈ Ω, (1.1)

where

f(z) =
1
2
‖Bz‖2 = 1

2
∥∥y −Ax

∥∥2
, B =

(−A I
)
, Ω = C ×Q. (1.2)

For convenience, we only consider the Euclidean norm. It is obvious that f(z) is convex. If z =
(xT , yT )T ∈ Ω and f(z) = 0, then x solves the SFP. Throughout we assume that the solution
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set of the SFP is nonempty. And thus the solution set of (1.1), denoted by Ω∗, is nonempty. In
addition, in this paper, we always assume that the set Ω is given by

Ω = {z ∈ Rn+m | c(z) ≤ 0}, (1.3)

where c : Rn+m → R is a convex (not necessarily differentiable) function. This representation
of Ω is general enough, because any system of inequalities {cj(z) ≤ 0, j ∈ J}, where cj(z) are
convex and J is an arbitrary index set, can be reformulated as the single inequality c(z) ≤ 0
with c(z) = sup{cj(z) | j ∈ J}. For any z ∈ Rn+m, at least one subgradient ξ ∈ ∂c(z) can be
calculated, where ∂c(z) is a subgradient of c(z) at z and is defined as follows:

∂c(z) =
{
ξ ∈ Rn+m | c(u) ≥ c(z) + (u − z)T ξ, ∀u ∈ Rn+m

}
. (1.4)

Qu and Xiu [2] proposed a halfspace-relaxation projection method to solve the convex
optimization problem (1.1). Starting from any z0 ∈ Rn × Rm, the HRP method iteratively
updates zk according to the formulae:

zk = PΩk

[
zk − αk∇f

(
zk

)]
, (1.5)

zk+1 = zk − γk
[
zk − zk − αk

(
∇f

(
zk

)
− ∇f

(
zk

))]
, (1.6)

where

Ωk =
{
z ∈ Rn+m | c

(
zk

)
+
(
z − zk

)T
ξk ≤ 0

}
, (1.7)

ξk is an element in ∂c(zk), αk = γlmk and mk is the smallest nonnegative integer m such that

αk

(
zk − zk

)T(
∇f

(
zk

)
− ∇f

(
zk

))
≤ (

1 − ρ
)∥∥∥zk − zk

∥∥∥2
, ρ ∈ (0, 1), (1.8)

γk =
θρ

∥∥∥zk − zk
∥∥∥2

∥∥∥zk − zk − αk

(
∇f

(
zk

) − ∇f
(
zk

))∥∥∥2
, θ ∈ (0, 2). (1.9)

The notation PΩk(v) denotes the projection of v onto Ωk under the Euclidean norm, that is,

PΩk(v) = arg min{‖u − v‖ | u ∈ Ωk}. (1.10)

Here the halfspace Ωk contains the given closed convex set Ω and is related to the current
iterative point zk. From the expressions ofΩk, the projection ontoΩk is simple to be computed
(for details, see Proposition 3.3). The idea to construct the halfspace Ωk and replace PΩ by
PΩk is from the halfspace-relaxation projection technique presented by Fukushima [3]. This
technique is often used to design algorithms (see, e.g., [2, 4, 5]) to solve the SFP. The drawback
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of the HRP method in [2] is that the step length γk defined in (1.9) may be very small since
limk→∞‖zk − zk‖ = 0.

Note that the reformulation (1.1) is equivalent to a monotone variational inequality
(VI):

z∗ ∈ Ω, (z − z∗)T∇f(z∗) ≥ 0, ∀z ∈ Ω, (1.11)

where

∇f(z) = BTBz. (1.12)

The forward-backward splitting method [6] and the extragradient method [7, 8] are
considerably simple projection-type methods in the literature. They are applicable for solving
monotone variational inequalities, especially for (1.11). For given zk, let

zk = PΩ

[
zk − αk∇f

(
zk

)]
. (1.13)

Under the assumption

αk

∥∥∥∇f
(
zk

)
− ∇f

(
zk

)∥∥∥ ≤ ν
∥∥∥zk − zk

∥∥∥, ν ∈ (0, 1), (1.14)

the forward-backward (FB) splitting method generates the new iterate via

zk+1 = PΩ

[
zk + αk

(
∇f

(
zk

)
− ∇f

(
zk

))]
, (1.15)

while the extra-gradient (EG)method generates the new iterate by

zk+1 = PΩ

[
zk − αk∇f

(
zk

)]
. (1.16)

The forward-backward splitting method (1.15) can be rewritten as

zk+1 = PΩ

[
zk − γk

(
zk − zk − αk

(
∇f

(
zk

)
− ∇f

(
zk

)))]
, (1.17)

where the descent direction −(zk − zk − αk(∇f(zk) − ∇f(zk))) is the same as (1.6) and the
step length γk along this direction always equals to 1. He et al. [9] proposed the modified
versions of the FB method and EG method by incorporating the optimal step length γk along
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the descent directions −(zk − zk −αk(∇f(zk)−∇f(zk))) and −αk∇f(zk), respectively. Here γk
is defined by

γk = θγ∗k , θ ∈ (0, 2), γ∗k =

(
zk − zk

)T(
zk − zk − αk

(
∇f

(
zk

) − ∇f
(
zk

)))
∥∥∥zk − zk − αk

(
∇f

(
zk

) − ∇f
(
zk

))∥∥∥2
. (1.18)

Under the assumption (1.14), γ∗k ≥ 1/2 is lower bounded.
This paper is to develop two kinds of modified halfspace-relaxation projection

methods for solving the SFP by improving the HRP method in [2]. One is an FB type
HRP method, the other is an EG type HRP method. The numerical results reported in [9]
show that efforts of identifying the optimal step length usually lead to attractive numerical
improvements. This fact triggers us to investigate the selection of optimal step length with
positive lower bounds in the new methods to accelerate convergence. The preferences to the
HRP method are verified by numerical experiments for the test problems arising in [2].

The rest of this paper is organized as follows. In Section 2, we summarize some
preliminaries of variational inequalities. In Section 3, we present the new methods and
provide some remarks. The selection of optimal step length of the new methods is
investigated in Section 4. Then, the global convergence of the new methods is proved in
Section 5. Some preliminary numerical results are reported in Section 6 to show the efficiency
of the new methods, and the numerical superiority to the HRP method in [2]. Finally, some
conclusions are made in Section 7.

2. Preliminaries

In the following, we state some basic concepts for the variational inequality VI(S, F):

s∗ ∈ S, (s − s∗)TF(s∗) ≥ 0, ∀s ∈ S, (2.1)

where F is a mapping from RN into RN , and S ⊆ RN is a nonempty closed convex set. The
mapping F is said to be monotone on RN if

(s − t)T (F(s) − F(t)) ≥ 0, ∀s, t ∈ RN. (2.2)

Notice that the variational inequality VI(S, F) is invariant when we multiply F by some
positive scalar α. Thus VI(S, F) is equivalent to the following projection equation (see [10]):

s = PS[s − αF(s)], (2.3)

that is, to solve VI(S, F) is equivalent to finding a zero point of the residue function

e(s, α) := s − PS[s − αF(s)]. (2.4)

Note that e(s, α) is a continuous function of s because the projection mapping is nonexpan-
sive. The following lemma states a useful property of ‖e(s, α)‖.
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Lemma 2.1 ([4], Lemma 2.2). Let F be a mapping from RN into RN . For any s ∈ RN and α > 0,
we have

min{1, α}‖e(s, 1)‖ ≤ ‖e(s, α)‖ ≤ max{1, α}‖e(s, 1)‖. (2.5)

Remark 2.2. Let S̃ ⊇ S be a nonempty closed convex set and let eS̃(s, α) be defined as follows:

eS̃(s, α) = s − PS̃[s − αF(s)]. (2.6)

Inequalities (2.5) still hold for eS̃(s, α).

Some fundamental inequalities are listed below without proof, see, for example, [10].

Lemma 2.3. Let S̃ be a nonempty closed convex set. Then the following inequalities always hold

(
t − PS̃(t)

)T(
PS̃(t) − s

) ≥ 0, ∀t ∈ RN, ∀s ∈ S̃, (2.7)

∥∥PS̃(t) − s
∥∥2 ≤ ‖t − s‖2 − ∥∥t − PS̃(t)

∥∥2
, ∀t ∈ RN, s ∈ S̃. (2.8)

The next lemma lists some inequalities which will be useful for the following analysis.

Lemma 2.4. Let S̃ ⊇ S be a nonempty closed convex set, s∗ a solution of the monotone VI(S, F) (2.1)
and especially F(s∗) = 0. For any s ∈ RN and α > 0, one has

α(s − s∗)TF
(
PS̃[s − αF(s)]

) ≥ αeS̃(s, α)
TF

(
PS̃[s − αF(s)]

)
, (2.9)

(s − s∗)T
{
eS̃(s, α) − α

[
F(s) − F

(
PS̃[s − αF(s)]

)]}

≥ eS̃(s, α)
T{eS̃(s, α) − α

[
F(s) − F

(
PS̃[s − αF(s)]

)]}
.

(2.10)

Proof. Under the assumption that F is monotone we have

{
αF

(
PS̃[s − αF(s)]

) − αF(s∗)
}T{

PS̃[s − αF(s)] − s∗
} ≥ 0, ∀s ∈ RN. (2.11)

Using F(s∗) = 0 and the notation of eS̃(s, α), from (2.11) the assertion (2.9) is proved. Setting
t = s − αF(s) and s = s∗ in the inequality (2.7) and using the notation of eS̃(s, α), we obtain

{
eS̃(s, α) − αF(s)

}T{
PS̃[s − αF(s)] − s∗

} ≥ 0, ∀s ∈ RN. (2.12)

Adding (2.11) and (2.12), and using F(s∗) = 0, we have (2.10). The proof is complete.

Note that the assumption F(s∗) = 0 in Lemma 2.4 is reasonable. The following propo-
sition and remark will explain this.
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Proposition 2.5 ([2], Proposition 2.2). For the optimization problem (1.1), the following two
statements are equivalent:

(i) z∗ ∈ Ω and f(z∗) = 0,

(ii) z∗ ∈ Ω and ∇f(z∗) = 0.

Remark 2.6. Under the assumption that the solution set of the SFP is nonempty, if z∗ =
((x∗)T , (y∗)T )T is a solution of (1.1), then we have

∇f(z∗) = BTBz∗ = BT(y∗ −Ax∗) = 0. (2.13)

This point z∗ is also the solution point of the VI (1.11).

The next lemma provides an important boundedness property of the subdifferential,
see, for example, [11].

Lemma 2.7. Suppose h : RN → R is a convex function, then it is subdifferentiable everywhere and
its subdifferentials are uniformly bounded on any bounded subset of RN .

3. Modified Halfspace-Relaxation Projection Methods

In this section, we will propose two kinds of modified halfspace-relaxation projection
methods—Algorithms 1 and 2. Algorithm 1 is an FB type HRP method and Algorithm 2
is an EG type HRP method. The relationship of these two methods is that they use the same
optimal step length along different descent directions. The detailed procedures are presented
as below.

The Modified Halfspace-Relaxation Projection Methods

Step 1. Let α0 > 0, 0 < μ < ν < 1, z0 ∈ Rn+m, θ ∈ (0, 2), ε > 0 and k = 0. (In practical
computation, we suggest to take μ = 0.3, ν = 0.9 and θ = 1.8).

Step 2. Set

zk = PΩk

[
zk − αk∇f

(
zk

)]
, (3.1)

where Ωk is defined in (1.7). If ‖zk − zk‖ ≤ ε, terminate the iteration with the iterate zk =

((xk)T , (yk)T )
T
, and then xk is the approximate solution of the SFP. Otherwise, go to Step 3.

Step 3. If

rk :=
αk

∥∥∥∇f
(
zk

) − ∇f
(
zk

)∥∥∥∥∥∥zk − zk
∥∥∥ ≤ ν, (3.2)
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then set

ek
(
zk, αk

)
= eΩk

(
zk, αk

)
= zk − zk, gk

(
zk, αk

)
= αk∇f

(
zk

)
, (3.3)

dk

(
zk, αk

)
= ek

(
zk, αk

)
− αk∇f

(
zk

)
+ gk

(
zk, αk

)
, (3.4)

γ∗k =
ek
(
zk, αk

)T
dk

(
zk, αk

)
∥∥dk

(
zk, αk

)∥∥2
, γk = θγ∗k , (3.5)

zk+1 = PΩk

[
zk − γkdk

(
zk, αk

)]
,
(
Algorithm 1 : FB type HRP method

)
(3.6)

or

zk+1 = PΩk

[
zk − γkgk

(
zk, αk

)]
,
(
Algorithm 2 : EG type HRP method

)
(3.7)

αk :=

⎧⎨
⎩

3
2
αk if rk ≤ μ,

αk otherwise ,

αk+1 = αk, k = k + 1, go to Step 2.

(3.8)

Step 4. Reduce the value of αk by αk := (2/3)αk ∗min{1, 1/rk},

set zk = PΩk

[
zk − αk∇f

(
zk

)]
and go to Step 3. (3.9)

Remark 3.1. In Step 3, if the selected αk satisfies 0 < αk ≤ ν/L (L is the largest eigenvalue of
the matrix BTB), then from (1.12), we have

αk

∥∥∥∇f
(
zk

)
− ∇f

(
zk

)∥∥∥ ≤ αkL
∥∥∥zk − zk

∥∥∥ ≤ ν
∥∥∥zk − zk

∥∥∥, (3.10)

and thus Condition (3.2) is satisfied.Without loss of generality, we can assume that infk{αk} =
αmin > 0.

Remark 3.2. By the definition of subgradient, it is clear that the halfspaceΩk containsΩ. From
the expressions ofΩk, the orthogonal projections ontoΩk may be directly calculated and then
we have the following proposition (see [3, 12]).

Proposition 3.3. For any z ∈ Rn+m,

PΩk(z) =

⎧⎪⎨
⎪⎩
z − c

(
zk

)
+
(
z − zk

)T
ξk

‖ξk‖2 ξk, if c
(
zk

)
+
(
z − zk

)T
ξk > 0;

z, otherwise,
(3.11)

where Ωk is defined in (1.7).
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Remark 3.4. For the FB type HRP method, taking

zk+1 = zk − γkdk

(
zk, αk

)
(3.12)

as the new iterate instead of Formula (3.6) seems more applicable in practice. Since from
Proposition 3.3 the projection ontoΩk is easy to be computed, Formula (3.6) is still preferable
to generate the new iterate zk+1.

Remark 3.5. The proposed methods and the HRP method in [2] can be used to solve more
general convex optimization problem

minimize f(z) subject to z ∈ Ω, (3.13)

where f(z) is a general convex function only with the property that ∇f(z∗) = 0 for any
solution point z∗ of (3.13), and Ω is defined in (1.3). The corresponding theoretical analysis
is similar as these methods to solve (1.1).

4. The Optimal Step Length

This section concentrates on investigating the optimal step length with positive lower bounds
in order to accelerate convergence of the new methods. To justify the reason of choosing the
optimal step length γk in the FB type HRP method (3.6), we start from the following general
form of the FB type HRP method:

zk+1FB

(
γ
)
= PΩk

[
zk+1PC

(
γ
)]
, (4.1)

where

zk+1PC

(
γ
)
= zk − γdk

(
zk, αk

)
. (4.2)

Let

Θk

(
FBγ

)
:=

∥∥∥zk − z∗
∥∥∥2 −

∥∥∥zk+1FB

(
γ
) − z∗

∥∥∥2
, (4.3)

which measures the progress made by the FB type HRP method. Note that Θk(FBγ) is a
function of the step length γ . It is natural to consider maximizing this function by choosing an
optimal parameter γ . The solution z∗ is not known, so we cannot maximize Θk(FBγ) directly.
The following theorem gives an estimate of Θk(FBγ) which does not include the unknown
solution z∗.

Theorem 4.1. Let z∗ be an arbitrary point in Ω∗. If the step length in the general FB type HRP
method is taken γ > 0, then we have

Θk

(
FBγ

)
:=

∥∥∥zk − z∗
∥∥∥2 −

∥∥∥zk+1FB

(
γ
) − z∗

∥∥∥2 ≥ Υk

(
γ
)
, (4.4)
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where

Υk

(
γ
)
:= 2γek

(
zk, αk

)T
dk

(
zk, αk

)
− γ2

∥∥∥dk

(
zk, αk

)∥∥∥2
. (4.5)

Proof. Since zk+1FB (γ) = PΩk[z
k+1
PC (γ)] and z∗ ∈ Ω ⊆ Ωk, it follows from (2.8) that

∥∥∥zk+1FB

(
γ
) − z∗

∥∥∥2 ≤
∥∥∥zk+1PC

(
γ
) − z∗

∥∥∥2 −
∥∥∥zk+1PC

(
γ
) − zk+1FB

(
γ
)∥∥∥2 ≤

∥∥∥zk+1PC

(
γ
) − z∗

∥∥∥2
, (4.6)

and consequently

Θk

(
FBγ

) ≥
∥∥∥zk − z∗

∥∥∥2 −
∥∥∥zk+1PC

(
γ
) − z∗

∥∥∥2
. (4.7)

Setting α = αk, s = zk, s∗ = z∗ and S̃ = Ωk in the equality (2.10) and using the notation of
ek(zk, αk) (see (3.3)) and dk(zk, αk) (see (3.4)), we have

(
zk − z∗

)T
dk

(
zk, αk

)
≥ ek

(
zk, αk

)T
dk

(
zk, αk

)
. (4.8)

Using this and (4.2), we get

∥∥∥zk − z∗
∥∥∥2 −

∥∥∥zk+1PC

(
γ
) − z∗

∥∥∥2
=
∥∥∥zk − z∗

∥∥∥2 −
∥∥∥zk − γdk

(
zk, αk

)
− z∗

∥∥∥2

= 2γ
(
zk − z∗

)T
dk

(
zk, αk

)
− γ2

∥∥∥dk

(
zk, αk

)∥∥∥2

≥ 2γek
(
zk, αk

)T
dk

(
zk, αk

)
− γ2

∥∥∥dk

(
zk, αk

)∥∥∥2
,

(4.9)

and then from (4.7) the theorem is proved.

Similarly, we start from the general form of the EG type HRP method

zk+1EG

(
γ
)
= PΩk

[
zk − γgk

(
zk, αk

)]
. (4.10)

to analyze the optimal step length in the EG type HRP method (3.7). The following theorem
estimates the “progress” in the sense of Euclidean distance made by the new iterate and thus
motivates us to investigate the selection of the optimal length γk in the EG type HRP method
(3.7).

Theorem 4.2. Let z∗ be an arbitrary point in Ω∗. If the step length in the general EG type HRP
method is taken γ > 0, then one has

Θk

(
EGγ

)
:=

∥∥∥zk − z∗
∥∥∥2 −

∥∥∥zk+1EG

(
γ
) − z∗

∥∥∥2 ≥ Υk

(
γ
)
, (4.11)

where Υk(γ) is defined in (4.5) and zk+1PC (γ) is defined in (4.2).
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Proof. Since zk+1EG (γ) = PΩk[z
k − γgk(zk, αk)] and z∗ ∈ Ω ⊆ Ωk, it follows from (2.8) that

∥∥∥zk+1EG

(
γ
) − z∗

∥∥∥2 ≤
∥∥∥zk − γgk

(
zk, αk

)
− z∗

∥∥∥2 −
∥∥∥zk − γgk

(
zk, αk

)
− zk+1EG

(
γ
)∥∥∥2

, (4.12)

and consequently we get

Θk

(
EGγ

) ≥
∥∥∥zk − z∗

∥∥∥2 −
∥∥∥zk − z∗ − γgk

(
zk, αk

)∥∥∥2
+
∥∥∥zk − zk+1EG

(
γ
) − γgk

(
zk, αk

)∥∥∥2

=
∥∥∥zk − zk+1EG

(
γ
)∥∥∥2

+ 2γ
(
zk − z∗

)T
gk

(
zk, αk

)
− 2γ

(
zk − zk+1EG

(
γ
))T

gk
(
zk, αk

)
.

(4.13)

Setting α = αk, s = zk, s∗ = z∗ and S̃ = Ωk in the equality (2.9) and using the notation of
ek(zk, αk) and gk(zk, αk) (see (3.3)), we have

(
zk − z∗

)T
gk

(
zk, αk

)
≥ ek

(
zk, αk

)T
gk

(
zk, αk

)
. (4.14)

From the above inequality, we obtain

Θk

(
EGγ

) ≥
∥∥∥zk − zk+1EG

(
γ
)∥∥∥2

+ 2γek
(
zk, αk

)T
gk

(
zk, αk

)
− 2γ

(
zk − zk+1EG

(
γ
))T

gk
(
zk, αk

)
.

(4.15)

Using gk(zk, αk) = dk(zk, αk) − [ek(zk, αk) − αk∇f(zk)] (see (3.4)), it follows that

Θk

(
EGγ

) ≥
∥∥∥zk − zk+1EG

(
γ
)∥∥∥2

+ 2γek
(
zk, αk

)T{
dk

(
zk, αk

)
−
[
ek
(
zk, αk

)
− αk∇f

(
zk

)]}

− 2γ
(
zk − zk+1EG

(
γ
))T{

dk

(
zk, αk

)
−
[
ek
(
zk, αk

)
− αk∇f

(
zk

)]}
,

(4.16)

which can be rewritten as

Θk

(
EGγ

) ≥
∥∥∥zk − zk+1EG

(
γ
) − γdk

(
zk, αk

)∥∥∥2 − γ2
∥∥∥dk

(
zk, αk

)∥∥∥2
+ 2γek

(
zk, αk

)T
dk

(
zk, αk

)

+ 2γ
(
zk − zk+1EG

(
γ
) − ek

(
zk, αk

))T(
ek
(
zk, αk

)
− αk∇f

(
zk

))

≥ Υk

(
γ
)
+ 2γ

(
zk − zk+1EG

(
γ
) − ek

(
zk, αk

))T(
ek
(
zk, αk

)
− αk∇f

(
zk

))
.

(4.17)

Now we consider the last term in the right-hand side of (4.17). Notice that

zk − zk+1EG

(
γ
) − ek

(
zk, αk

)
= PΩk

[
zk − αk∇f

(
zk

)]
− zk+1EG

(
γ
)
. (4.18)
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Setting t := zk−αk∇f(zk), s := zk+1EG (γ) and S̃ = Ωk in the basic inequality (2.7) of the projection
mapping and using the notation of ek(zk, αk), we get

{
PΩk

[
zk − αk∇f

(
zk

)]
− zk+1EG

(
γ
)}T{

ek
(
zk, αk

)
− αk∇f

(
zk

)}
≥ 0, (4.19)

and therefore

{
zk − zk+1EG

(
γ
) − ek

(
zk, αk

)}T{
ek
(
zk, αk

)
− αk∇f

(
zk

)}
≥ 0. (4.20)

Substituting (4.20) in (4.17), it follows that

Θk

(
EGγ

) ≥ Υk

(
γ
)

(4.21)

and the theorem is proved.

Theorems 4.1 and 4.2 provide the basis of the selection of the optimal step length of the
new methods. Note that Υk(γ) is the profit-function since it is a lower-bound of the progress
obtained by the new methods (both the FB type HRP method and EG type HRP method).
This motivates us to maximize the profit-function Υk(γ) to accelerate convergence of the new
methods. Since Υk(γ) a quadratic function of γ , it reaches its maximum at

γ∗k :=
ek
(
zk, αk

)T
dk

(
zk, αk

)
∥∥dk

(
zk, αk

)∥∥2
. (4.22)

Note that under Condition (3.2), using the notation of dk(zk, αk) we have

ek
(
zk, αk

)T
dk

(
zk, αk

)
=
∥∥∥ek

(
zk, αk

)∥∥∥2 − αkek
(
zk, αk

)T(∇f
(
zk

)
− ∇f

(
zk

))

≥ (1 − ν)
∥∥∥ek

(
zk, αk

)∥∥∥2
.

(4.23)

In addition, since

ek
(
zk, αk

)T
dk

(
zk, αk

)
=
∥∥∥ek

(
zk, αk

)∥∥∥2 − αkek
(
zk, αk

)T(∇f
(
zk

)
− ∇f

(
zk

))

≥ 1
2

∥∥∥ek
(
zk, αk

)∥∥∥2 − αkek
(
zk, αk

)T(∇f
(
zk

)
− ∇f

(
zk

))

+
1
2
αk

∥∥∥∇f
(
zk

)
− ∇f

(
zk

)∥∥∥2

=
1
2
‖dk

(
zk, αk

)
‖2,

(4.24)
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we have

γ∗k :=
ek
(
zk, αk

)T
dk

(
zk, αk

)
∥∥dk

(
zk, αk

)∥∥2
≥ 1

2
. (4.25)

From numerical point of view, it is necessary to attach a relax factor to the optimal
step length γ∗k obtained theoretically to achieve faster convergence. The following theorem
concerns how to choose the relax factor.

Theorem 4.3. Let z∗ be an arbitrary point in Ω∗, θ a positive constant and γ∗
k
defined in (4.22). For

given zk ∈ Ωk, αk is chosen such that Condition (3.2) is satisfied. Whenever the new iterate zk+1(θγ∗k)
is generated by

zk+1
(
θγ∗k

)
= PΩk

[
zk − θγ∗kdk

(
zk, αk

)]
or zk+1

(
θγ∗k

)
= PΩk

[
zk − θγ∗kgk

(
zk, αk

)]
, (4.26)

we have

∥∥∥zk+1(θγ∗k) − z∗
∥∥∥2 ≤

∥∥∥zk − z∗
∥∥∥2 − θ(2 − θ)(1 − ν)

2

∥∥∥ek
(
zk, αk

)∥∥∥2
. (4.27)

Proof. From Theorems 4.1 and 4.2 we have

∥∥∥zk − z∗
∥∥∥2 −

∥∥∥zk+1(θγ∗k) − z∗
∥∥∥2 ≥ Υk

(
θγ∗k

)
. (4.28)

Using (4.5), (4.23), and (4.25), we obtain

Υk

(
θγ∗k

)
= 2θγ∗kek

(
zk, αk

)T
dk

(
zk, αk

)
− (

θγ∗k
)2∥∥∥dk

(
zk, αk

)∥∥∥2

= 2θγ∗kek
(
zk, αk

)T
dk

(
zk, αk

)
− θ2γ∗kek

(
zk, αk

)T
dk

(
zk, αk

)

= γ∗kθ(2 − θ)ek
(
zk, αk

)T
dk

(
zk, αk

)

≥ θ(2 − θ)(1 − ν)
2

∥∥∥ek
(
zk, αk

)∥∥∥2
,

(4.29)

and the assertion is proved.

Theorem 4.3 shows theoretically that any θ ∈ (0, 2) guarantees that the new iterate
makes progress to a solution. Therefore, in practical computation, we choose γk = θγ∗k with
θ ∈ (0, 2) as the step length in the new methods. We need to point out that from numerical
experiments, θ ∈ [1, 2) is much preferable since it leads to better numerical performance.
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5. Convergence

It follows from (4.27) that for both the FB type HRP method (3.6) and the EG type HRP
method (3.7), there exists a constant τ > 0, such that

∥∥∥zk+1 − z∗
∥∥∥2 ≤

∥∥∥zk − z∗
∥∥∥2 − τ

∥∥∥ek
(
zk, αk

)∥∥∥2
, ∀z∗ ∈ Ω∗. (5.1)

The convergence result of the proposed methods in this paper is based on the following
theorem.

Theorem 5.1. Let {zk} be a sequence generated by the proposed method (3.6) or (3.7). Then {zk}
converges to a point z̃, which belongs to Ω∗.

Proof. First, from (5.1)we get

lim
k→∞

∥∥∥ek
(
zk, αk

)∥∥∥ = 0. (5.2)

Note that

ek
(
zk, αk

)
= zk − zk, (see (3.3)). (5.3)

We have

lim
k→∞

∥∥∥zk − zk
∥∥∥ = 0. (5.4)

Again, it follows from (5.1) that the sequence {zk} is bounded. Let z̃ be a cluster point of {zk}
and the subsequence {zkj} converges to z̃. We are ready to show that z̃ is a solution point of
(1.1).

First, we show that z̃ ∈ Ω. Since zkj ∈ Ωkj , then by the definition of Ωkj , we have

c
(
zkj

)
+
(
zkj − zkj

)T
ξkj ≤ 0, ∀j = 1, 2, . . . . (5.5)

Passing onto the limit in this inequality and taking into account (5.4) and Lemma 2.7, we
obtain that

c(z̃) ≤ 0. (5.6)

Hence, we conclude z̃ ∈ Ω.
Next, we need to show (z − z̃)T∇f(z̃) ≥ 0, ∀z ∈ Ω. To do so, we first prove

lim
j→∞

∥∥∥ekj
(
zkj , 1

)∥∥∥ = 0. (5.7)
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It follows from Remark 3.1 in Section 3 that infj{αkj} ≥ infk{αk} = αmin > 0. Then from
Lemma 2.1, we have

∥∥∥ekj
(
zkj , 1

)∥∥∥ ≤

∥∥∥zkj − zkj
∥∥∥

min
{
1, αkj

} , (5.8)

which, together with (5.4), implies that

lim
j→∞

∥∥∥ekj
(
zkj , 1

)∥∥∥ ≤ lim
j→∞

∥∥∥zkj − zkj
∥∥∥

min
{
1, αkj

} ≤ lim
j→∞

∥∥∥zkj − zkj
∥∥∥

min{1, αmin} = 0. (5.9)

Setting t = zkj − ∇f(zkj ), S̃ = Ωkj in the inequality (2.7), for any z ∈ Ω ⊆ Ωkj , we obtain

(
zkj − ∇f

(
zkj

)
− PΩkj

(
zkj − ∇f

(
zkj

)))T(
PΩkj

(
zkj − ∇f

(
zkj

))
− z

)
≥ 0. (5.10)

From the fact that ekj (z
kj , 1) = zkj − PΩkj

[zkj − ∇f(zkj )], we have

(
ekj

(
zkj , 1

)
− ∇f

(
zkj

))T(
zkj − ekj

(
zkj , 1

)
− z

)
≥ 0, ∀z ∈ Ω, (5.11)

that is,

(
z − zkj

)T∇f
(
zkj

)
+ ekj

(
zkj , 1

)T(
zkj − ekj

(
zkj , 1

)
− z +∇f

(
zkj

))
≥ 0, ∀z ∈ Ω. (5.12)

Letting j → ∞, taking into account (5.7), we deduce

(z − z̃)T∇f(z̃) ≥ 0, ∀z ∈ Ω, (5.13)

which implies that z̃ ∈ Ω∗. Then from (5.1), it follows that

∥∥∥zk+1 − z̃
∥∥∥2 ≤

∥∥∥zk − z̃
∥∥∥2 − τ

∥∥∥ek
(
zk, αk

)∥∥∥2
. (5.14)

Together with the fact that the subsequence {zkj} converges to z̃, we can conclude that {zk}
converges to z̃. The proof is complete.

6. Numerical Results

In this section, we implement the proposed methods to solve some numerical examples
arising in [2] and then report the results. To show the superiority of the new methods,
we also compare them with the HRP method in [2]. The codes for implementing the
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Table 1: Results for Example 6.1 using the HRP method in [2].

Starting points Number of iterations CPU (Sec.) Approximate solution
(1, 2, 3, 0, 0, 0)T 43 0.0500 (0.3213, 0.2815, 0.1425)T

(1, 1, 1, 1, 1, 1)T 67 0.0910 (0.8577, 0.8577, 1.3097)T

(1, 2, 3, 4, 5, 6)T 85 0.1210 (1.1548, 0.8518, 1.8095)T

Table 2: Results for Example 6.1 using FB type HRP method.

Starting points Number of iterations CPU (Sec.) Approximate solution
(1, 2, 3, 0, 0, 0)T 15 <0.0001 (0.7335, 0.9309, 1.2014)T

(1, 1, 1, 1, 1, 1)T 0 <0.0001 (1.0000, 1.0000, 1.0000)T

(1, 2, 3, 4, 5, 6)T 36 <0.0001 (2.5000, 0.9572, 1.0466)T

Table 3: Results for Example 6.1 using EG type HRP method.

Starting points Number of iterations CPU (Sec.) Approximate solution
(1, 2, 3, 0, 0, 0)T 15 <0.0001 (0.6505, 1.0000, 1.3744)T

(1, 1, 1, 1, 1, 1)T 0 <0.0001 (1.0000, 1.0000, 1.0000)T

(1, 2, 3, 4, 5, 6)T 38 <0.0001 (2.5000, 1.3024, 1.3927)T

proposed methods were written by Matlab 7.9.0 (R2009b) and run on an HP Compaq 6910p
Notebook (2.00GHz of Intel Core 2 Duo CPU and 2.00GB of RAM). The stopping criterion is
‖ek(zk, αk)‖ ≤ ε.

For the new methods, we take ε = 10−10, α0 = 1, μ = 0.3, ν = 0.9 and θ = 1.8. To
compare with the HRP method and the new methods, we list the numbers of iterations, the
computation times (CPU(Sec.)) and the approximate solutions in Tables 1, 2, 3, 4, 5, 6, 7, 8,
and 9. For the HRP method in [2], we list the original numerical results in [2].

Example 6.1 (a convex feasibility problem). Let C = {x ∈ R3 | x2
2 + x2

3 − 4 ≤ 0}, Q = {x ∈ R3 |
x3 − 1 − x2

1 ≤ 0}. Find some point x in C ∩Q.
Obviously this example can be regarded as an SFP with A = I.

For Example 6.1, it is easy to verify that the point (1, 1, 1, 1, 1, 1)T is a solution of (1.1).
Therefore, the FB type and EG type HRP method only use 0 iteration when we choose
the starting point z0 = (1, 1, 1, 1, 1, 1)T . While applying the HRP method in [2] to solve
Example 6.1 and choosing the same starting point, the number of iterations is 67. This is
the original numerical result listed in Table 1 of [2].

Example 6.2 (a split feasibility problem). Let A =
( 2 −1 3

4 2 5
2 0 2

)
, C = {x ∈ R3 | x1 + x2

2 + 2x3 ≤ 0},
Q = {x ∈ R3 | x2

1 + x2 − x3 ≤ 0}. Find some point x ∈ C with Ax ∈ Q.

Example 6.3 (a nonlinear programming problem). Consider the problem

Minimize f(z) =
n∑
i=1

z2i

subject to
∑
i /= j

z2i − zj − j ≤ 0, j = 1, . . . , n.
(6.1)
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Table 4: Results for Example 6.2 using the HRP method in [2].

Starting points Number of iterations CPU (Sec.) Approximate solution
(1, 2, 3, 0, 0, 0)T 1890 2.7740 (−0.1203, 0.0285, 0.0582)T
(1, 1, 1, 1, 1, 1)T 2978 4.2860 (0.8603,−0.1658,−0.5073)T
(1, 2, 3, 4, 5, 6)T 3317 4.8570 (3.6522,−0.1526,−2.3719)T

Table 5: Results for Example 6.2 using FB type HRP method.

Starting points Number of iterations CPU (Sec.) Approximate solution
(1, 2, 3, 0, 0, 0)T 609 0.0620 (−1.2024, 0.0724, 0.5986)T
(1, 1, 1, 1, 1, 1)T 630 0.0470 (−1.2039, 0.0723, 0.5993)T
(1, 2, 3, 4, 5, 6)T 680 0.0620 (−1.1284, 0.0759, 0.5613)T

Table 6: Results for Example 6.2 using EG type HRP method.

Starting points Number of iterations CPU (Sec.) Approximate solution
(1, 2, 3, 0, 0, 0)T 757 0.0620 (−1.1758, 0.0737, 0.5852)T
(1, 1, 1, 1, 1, 1)T 567 0.0470 (−1.2161, 0.0716, 0.6055)T
(1, 2, 3, 4, 5, 6)T 711 0.0620 (−1.1815, 0.0734, 0.5881)T

Table 7: Results for Example 6.3 using the HRP method in [2].

n (dimension) Number of iterations CPU (Sec.)
10 36 0.0160
100 38 0.2970
1000 40 15.5000
5000 41 416.7340

Table 8: Results for Example 6.3 using FB type HRP method.

n (dimension) Number of iterations CPU (Sec.)
10 15 <0.0001
100 16 0.0160
1000 17 0.1250
5000 17 0.3130

Table 9: Results for Example 6.3 using EG type HRP method.

n (dimension) Number of iterations CPU (Sec.)
10 15 <0.0001
100 16 0.0160
1000 17 0.1250
5000 17 0.3130

This example is a general nonlinear programming problem not the reformulation (1.1) for the
SFP. Notice that it has a unique solution z∗ = (0, . . . , 0)T and ∇f(z∗) = 2z∗ = (0, . . . , 0)T . Then
from Remark 3.5 in Section 3, the proposed methods and the HRP method in [2] can be used
to find its solution.
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The computational preferences to the HRP method (1.5)-(1.6) are revealed clearly in
Tables 1–9. The numerical results demonstrate that the selection of optimal step length in both
the FB type HRP method and the EG type HRP method reduces considerable computational
load of the HRP method in [2].

7. Conclusions

In this paper we consider the split feasibility problem, which is a special case of the multiple-
sets split feasibility problem [13–15]. With some new strategies for determining the optimal
step length, this paper improves the HRP method in [2] and thus develops modified
halfspace-relaxation projection methods for solving the split feasibility problem. Compared
to the HRP method in [2], the newmethods reduce the number of iterations moderately with
little additional computation.
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