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The performance of a genetic algorithm is dependent on the genetic operators, in general, and
on the type of crossover operator, in particular. The population diversity is usually used as the
performance measure for the premature convergence. In this paper, a fuzzy genetic algorithm
is proposed for solving binary encoded combinatorial optimization problems. A new crossover
operator and probability selection technique is proposed based on the population diversity using
a fuzzy logic controller. The measurement of the population diversity is based on the genotype
and phenotype properties. In this fuzzy inference system, the selection of the crossover operator
and its probability are controlled by a set of fuzzy rules derived from the fuzzy logic controller.
Extensive computational experiments are conducted on the proposed algorithm, and the results
are compared with some crossover operators commonly used for solving multidimensional 0/1
knapsack problems published in the literature. The results indicate that the proposed algorithm is
effective in finding better quality solutions.

1. Introduction

Premature convergence is a common problem in finding the optimal solution in Genetic
Algorithm (GA) and it is strongly related to the loss of the population diversity. When
population diversity is low, a GA will converge very quickly. On the other hand, if the
diversity of the population is too high, it is very time consuming for a GA to converge and
this may cause wastage in computational resources.
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The performance of a GA is dependent on the genetic operators in general and on
the type of crossover operator, in particular. During the evolution process by a GA, if the
selected chromosomes are identical, some of the crossover operators have failed to create
offspring that are different from their parents. Effective crossover in a GA is achieved through
establishing the optimum relationship between the crossover and the search problem itself.

In this paper, a fuzzy genetic algorithm (FGA) is proposed for solving binary encoded
combinatorial optimization problems like the Multidimensional 0/1 Knapsack Problem
(MKP). The aim is to design a crossover operator and probability selection technique
based on the population diversity using Fuzzy Logic Controller (FLC). The diversity of
the population is measured on the basis of the genotype and phenotype characteristics of
the chromosomes. In addition, a new technique based on Hamming Distance (HD), Fitness
Value (FV), and Active Genes (AG) of the mate chromosomes is proposed during the sexual
selection.

In recent years, the MKP has turned out to be the favourite playground for
experimenting with metaheuristics. It serves as a suitably “difficult” test problem for
developing advanced techniques in this field. The MKP is a general statement of any binary
encoded problem with nonnegative coefficient. It is formulated as follows (Djannaty and
Doostdar [1]):

n
max f(x1,X2,...,Xn) = Zp]-xj
=1

n
s.t. Zwijxij <¢ i=1,2,...,m, (1.1)
j=1

xj € 0,1} j=12,...,n

with pj > 0, wij 2 0,¢; >0,

where n = number of objects; m = number of knapsacks; w;; = consumption of resource i for
object j; ¢; = capacity of the ith knapsack; p; = profit associated with object j; x; = decision
variable with object j.

The remainder of this paper is organized as follows. Literature review is given next in
Section 2. Section 3 elaborates on the population diversity. In Section 4, the proposed FGA is
described in detail. The computational results of the FGA for MKP based on the benchmark
problem instances deflated from the literature are presented in Section 5. Finally, a brief
conclusion is given in Section 6.

2. Literature

Evolutionary algorithms usually use the population diversity as the performance indicator
for a number of reasons like avoiding premature convergence, controlling algorithm
restarting or stopping when the population diversity drops below certain thresholds, the
necessity for assessing a population of distinct Pareto-optimal solutions in an optimization
problem, and the need for rapid adaptation of a population to dynamic problems (see
Tomassini et al. [2], Morrison and De Jong [3], and Wineberg and Oppacher [4] for more
details).
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Some of the literature on the population diversity focuses on the genetic operators
and their probabilities. Sywerda [5] and De Jong and Spears [6] compared the various
crossover operators, particularly the numbers of crossover points. Their results demonstrated
that sometimes the final output would be better if the number of crossover points was
increased. Besides empirical analysis, substantial efforts have been invested in comparing,
from theoretical perspectives, between mutation and crossover as well as between the
various crossover operators [6]. However, these theories are not general enough to allow
for predicting when to apply or what type of crossover operator to employ. For instance,
those theories did not address the size of the study population even though it may affect
the relative usefulness of the crossover operators [7]. Likewise, there is enough evidence
suggesting that the relative usefulness of mutation may be influenced by the size of the
population. Mutation seems to be more advantageous than crossover with small population
sizes whereas crossover may be more advantageous than mutation with large population
sizes [8]. Moreover, the relative usefulness of mutation and crossover are influenced by
several other factors like, fitness function, representation, and selection scheme.

The selection of crossover probability p. critically affects the behaviour and the
performance of a GA. It controls the rate at which solutions are subordinate to crossover
where for each problem the probability is chosen by the user. Goldberg and Sastry [9]
generalized the schema theorem for p.. They argued that the selection pressure corresponds
to disruption of schema, and they showed that when the building blocks are compact (its
genes are located close to each other in the chromosome string), the GA works well for a
wide range of combinations of p. and selection pressures.

Adaptive techniques that alter the probability of applying an operator in proportion
to the observed performance of the chromosomes in the course of a run were proposed by
Davis [10]. Fernandes et al. [11] considered a GA that adapts the reproduction rate to the size
of the population under investigation. Annunziato and Pizzuti [12] presented a technique for
setting the genetic parameters during the implementation by adapting the population size
and the operators’ rate to the environmental constraint of maximum population size. On the
other hand, Srinivas and Patnaik [13] adopted a messy approach towards the determination
of p. based on the various fitness values of the population. They presented an approach that
eliminates the need for parameters in a crossover-based GA. Cao and Wu [14] proposed a
systematic stochastic algorithm for optimization of the control parameters for GAs. In their
research, a GA is modelled as a controlled Markov chain whose transition depended on the
control probability of crossover and mutation. Hong et al. [15] introduced a dynamic GA that
simultaneously used more than one crossover and mutation operators to generate the next
generation. The operators’ rate is varied along with the evaluation results of the respective
offspring in the next generation.

Numerous researchers used different parameters as the input variables in FLC for
dynamically control the crossover and mutation probabilities during the GA implementation.
Song et al. [16] considered the alteration of the average fitness value between two consecutive
generations as the input variables. Yun and Gen [17] later introduced a scaling factor for
normalization of the input variables used in [16]. Li et al. [18] utilized the information of
both the whole generation and the particular chromosomes as the input variables. Wang et
al. [19] considered the differences in the fitness values between two consecutive generations,
and Liu et al. [20] used the average fitness value and the best fitness value of chromosomes
in each generation as the input variables.

Lee and Takagi [21] considered three inputs for the fuzzy system: xo = favg/ foest, X1 =
fworst/ favg, and x is the change in best fitness since the last control action input
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variables favg, frest, and fworst are the average, best, and worst fitness values, respectively.
Corresponding to these inputs, three outputs are introduced for the current population size,
crossover probability, and mutation probability. They tested the proposed technique on the
inverted pendulum control task in [22]. However, this technique had two major defects:

(i) only the phenotype characteristic is used as the input variable,

(ii) using the metalevel GA to find the optimized fuzzy system for the dynamic
parameterized GA is computationally expensive.

Im and Lee [23] presented adaptive crossover, mutation, and selection using fuzzy
system for GAs. However, it is not clear how fuzzy system is based and which parameter of
GA is used for the selection rules and the membership functions.

The main problem of FLC is how to gain the fuzzy rules the inference system is based
on. Several approaches have been proposed by automatic rule base identification. A family
of bacterial type evolutionary algorithms has been successfully applied for solving this task.
The goal is to create more accurate fuzzy rule bases from input-output data sets as quickly as
possible. A comprehensive review on these bacterial-type evolutionary algorithms is given
in [24].

3. Population Diversity

The approach adopted in this study attempts to define a measure for the population diversity
on the basis of the genotype and phenotype characteristics. The question may be raised as to
why the phenotype and genotype characteristics are used together in this study. A simple
example will be used to answer the question. Let f(x) be a linear function for which a
maximum value needs to be defined as follows:

15
max f(x) = Zixl- where x; € {0,1}. (3.1)
i=1

To solve (3.1) using GA, let us say five chromosomes with length 15 are considered as the
initial population. In Table 1, the goal is to evaluate the population diversity based on the
genotype property. To activate this, the HDs between the chromosomes with the highest
fitness value and other chromosomes are calculated. Note that the HD can be defined as
follows.

Definition 3.1 (Hamming Distance). Let C; = {ci1, ¢, ..., Cim} and C; = {cj1,¢j2,...,Cjm) be

two chromosomes within a population with length m, the Hamming Distance (HD) between
Ciand C;jis

HD(Ci ,Cj) = Zd(cik, Cjk), (3.2)
k=1

' N _ O ifer=cix
where d(Czk; C]k) - { 1, otherwise.

As seen in Table 1, the HD is at most 2 while the length of chromosomes is 15. This
means that the genetic diversity of the population is low. However, by considering the FVs of
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Table 1: A population with low genetic diversity based on genotype property (HD) but with high
population diversity based on phenotype property (FV).

Chromosome Hamming Distance (HD) Fitness value (FV)
010101111101111 — 100
010101111101001 2 73
010101111101110 1 85
010101111101100 2 71
110101111100111 2 89

the chromosomes, the range is somehow relatively high. Therefore, the genotype property of
the chromosomes alone is not enough for explaining the diversity of the population.

In Table 2, a different initial population is used to evaluate the population diversity
based on phenotype property. To achieve this, the FVs of the chromosomes are considered.
As seen in Table 2, the range of differences between the chromosomes in terms of FVs is low,
and hence it seems that the diversity of the population is low although the HD between the
chromosomes is high. Therefore, the phenotype property of the chromosomes alone is not
enough for justifying the diversity of the population.

In light of this, the genotype and phenotype properties are both considered in this
paper for the measurement of the population diversity. In the case of the phenotypic
measures, the methods presented by Srinivas and Patnaik [13] and Zhu and Liu [25] are
used with slight modifications:

ny,

Tl,t = ﬁf/

T _ fmax,t _favg,t (33)
t fmax,t ’

where N = population size, ny, = number of unique fitness values in the population, fmax: =
maximum fitness value in generation ¢ and f.yg: = average fitness value in generation .

In the case when the genotypic measure is used, an equation similar to part of the
technique proposed by Jassadapakorn and Chongstitvatana [26] is used:

HD (Cfmax,t 4 Cfmin,f )

T3,t = L 7

(3.4)

where HD(Cy, ., Cy... ) = HD between the chromosomes with the highest and the lowest FV,
and L = length of the chromosome.

In this technique, the HD is calculated in each generation for only two chromosomes:
the chromosome with the maximum fitness value (Cy,, ) and the one with the minimum
fitness value (Cy,,, ). It should be highlighted, however, that in the method of [26], the HD is
calculated between the first selected chromosome and the candidate chromosome ¢;, where
i =1,2,...,population size. Therefore, our proposed method requires less time than that of
[26].

T1t, Toy, and T3 belong to the interval [0, 1]. As the T ; and T, approach zero, the FVs
of the chromosomes are almost identical and this shows that the convergence has taken place
whereas if these are close to one, the population shows a high level of diversity. Similarly,
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Table 2: A population with low population diversity based on phenotype property (FV) but with high
genetic diversity based on genotype property (HD).

Chromosome Hamming Distance (HD) Fitness value (FV)
010101111101000 — 58
011010001010110 11 57
011010010010101 11 57
011000000010111 12 58
111100100010011 10 57
" " "
1 |Low Medium High 1 |Low High 1 | Low Medium High
0 0 0
0.25 0.5 0.75 0.25 0.5 0.25 0.5 0.75
T Tos Ts;

Figure 1: The set of linguistic labels associated with Ty, To;, and T3.

if T3, is close to zero, then the genetic diversity is low and the population has the potential
to converge very quickly. If it is near to one, the population shows a high level of genetic
diversity.

When we speak of population diversity in terms of low, medium, or high diversity, we
can see that the language becomes a fuzzy variable whose spatial denotation is imprecise. In
this sense, fuzzy theory becomes easily understood because it can be made to resemble a high
level language instead of a mathematical language. To describe this, fuzzy sets with names
such as Low, Medium, or High are used to create a membership function. By determining
the degree of membership of an input in the fuzzy sets of this membership function, one
can see the role of membership functions play in decoding the linguistic terminology to the
values a computer can use. In most cases, membership functions are designed by experts with
knowledge of the system being analyzed. In this paper, with regards to T ¢, T>+, and T3/, three
membership functions are defined. The set of linguistic labels associated with T; ; and T3 are
Low, Medium, and High and those related to T, are Low and High. The semantic meaning
of these labels is illustrated in Figure 1.

4. Fuzzy Genetic Algorithm

In this section, we concentrate on the discussion of the proposed FGA for solving binary
encoded combinatorial optimisation problem specifically on the MKP defined in Section 1. In
the remainder of this section, we explained the framework of the proposed FGA illustrated
in Figure 2 in more detail.
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8 Advances in Operations Research

Let: S is a bit string belong to {0,1}".
Let: R; = accumulated resources of constraintiin S.
fork=1to N do
setxyj <0, Vj€J;
set T < J (T is a dummy set);
randomly selectaj € Tand set T < T —j;
while R; + wj; < ¢;; VieIdo
setx — 1;
set Rj «— R; + wWij, Viel;
randomly selectaj € Tand set T — T —j;
end while
end for

Algorithm 1: Initial population (source: Chu and Beasley [27]).

4.1. Gene Representation and Population

For the MKP, a solution can be simply encoded by a string of 0 and 1s, where “1” encodes
that an item is being selected and “0” means otherwise. The length of the chromosome
corresponds to the number of items 7, in the MKP.

A good initial population makes it easy for a GA to converge to good solutions while
a poor initial population can prolong a GA convergence. There are different approaches in
generating initial population for a GA. The most common method is by random generation.
In this paper, we use the random generation method proposed by Chu and Beasley [27]
to achieve better diversity in the population. The pseudo code for the initial population
is given in Algorithm 1. Note that the population size is kept constant throughout the
implementation.

After new offspring are created via the crossover and mutation operators, there may
be some offspring that have infeasible solutions. There are several ways to deal with the
infeasible solutions in a GA as stated below:

(i) utilize an encoding method that produced only feasible solutions,

(ii) apply a repair mechanism to transform any infeasible solution into a feasible
solution,

(iii) separate the evaluation of fitness between the feasible and infeasible solutions, or
(iv) apply a penalty function to penalise the fitness of any infeasible solution without

distorting the fitness landscape.

In this paper, we use the repair operator introduced by Chu and Beasley [27] that
converts an infeasible solution into a feasible solution as presented in Algorithm 2.

4.2, Sexual Selection

In a standard GA, chromosomes reproduce asexually, that is, any two chromosomes may be
the parents in crossover. Gender division and sexual selection inspired a model of gendered
GA in which crossover takes place only between chromosomes of opposite sex. Since GA
mimics natural evolution, then gender is one of the crucial elements in a GA.
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Let: R; = accumulated resources of constraintiin S.
initialize R; = Z?:o wiixj, VieI;
forj=nto1ldo
if (x; =1) and (R; > ¢; for any i € I) then
setxj — 0;
set R; — R; - Wij, Viel;
end if
end for
forj=1tondo
if (xj = 0) and (R; + wjj < ¢ for any i € I) then
setxj — 1,
set R; «— R; + wij, Viel;
end if
end for

Algorithm 2: Repair operator (source: Chu and Beasley [27]).

Table 3: The layout of male and female chromosomes.

Gender
Chromosome . .
Generation Generation t + 1

C; Male Female

C, Female Male

Cs Male Female

Cy Female Male

Cs Male Female

Inspired by the nongenetic sex determination system prevalent in some reptile species
where sex is determined by the temperature at which the egg is incubated, the population
are divided such that the male and female would be selected in an alternate way. The layout
of the male and female chromosomes in each generation is different. In other words, when
the number of generation is even, the chromosomes C; and Cj,; are the male and female,
respectively, and vice versa when the number of the generation is odd. For instance, suppose
that a population size is five, the layout of males and females from this population is shown
in Table 3.

During the proposed sexual selection, a female chromosome is selected by tournament
selection size t from the female group. The selected female chromosome is denoted as
female_chro. On the other hand, the selection of male chromosome (male_chro) for crossover
is based on the HD from female_chro, FV, or AG of the male chromosome. Note that the AG
can be defined as follows.

Definition 4.1 (Active Gene). The Active Gene denoted by AG(C;) is the number of nonzero
gene in chromosome C;. For instance,let C;= (100101011000 1 0 0), then AG(C;) = 6.

At first, t male chromosomes are selected randomly from the male group. Then, the
male_chro is selected, in order of preference based on

(i) the maximum HD between the male chromosome and the female_chro,

(ii) the highest FV of male chromosome (if more than one male chromosome is having
the maximum HD),
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Table 4: Abbreviations of crossover operators.

Crossover operators Abbreviation
2-point crossover 2PC
k-point crossover KPC
Uniform crossover ucC
Segregation crossover SC
Inversion crossover IC

Table 5: Levels of crossover operator based on CA.

Low Medium High
2-point k—l?omt Segrega.tlon
Uniform Inversion

(iii) the highest AG of the male chromosome (if more than one male chromosome
having the highest FV is found), or

(iv) random selection.

The computational experiments of the proposed sexual selection compared to other
selection mechanisms from the literature can be found in Varnamkhasti and Lee [28].
Computational results on MKPs showed that the proposed sexual selection mechanism is
comparable in providing high-quality solutions in reasonable execution time.

4.3. Fuzzy Crossover Operator and Probability

In this subsection, we propose a crossover operator and probability selection technique based
on the population diversity using FLC. For selecting the most appropriate crossover operator,
the structure of the crossover and the population diversity must be considered. In this paper,
some commonly used crossover operators for binary encoding are considered as the default
crossover operators. These operators and their abbreviations are given in Table 4. It is worth
mentioning that, if crossover is not applied based on the given probability, then the two
offspring are simply duplicates of their parents.

When the genetic diversity of the population is high (T3; > 0.50), the 2PC operator
performs relatively well compared to other crossover operators especially in terms of the
computational time. The genetic diversity of the population is medium (0.25 < T5; < 0.50)
when some loci in the chromosomes are the same. In such cases, the 2PC operator is not an
appropriate choice, but the KPC, and UC operators would be more suitable. Both operators
are capable of keeping the genetic diversity of the population while improving the fitness
values of the chromosomes. On the other hand, the genetic diversity of the population is low
(T34 < 0.25) when some chromosomes are identical. The 2PC, KPC, and UC operators failed
to produce offspring that are different from their parents. In this case, the SC and IC operators
will be more appropriate. Based on the above explanation of the relative crossover operators
and genetic diversity, three levels for Crossover Ability (CA) called Low, Medium, and High
are introduced and presented in Table 5.

As discussed earlier, genetic diversity alone is not enough to justify the population
diversity as a whole. Hence, we propose a fuzzy system which takes three input variables
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H H
1 Low Medium High 1 Low Medium High
0 0
0.25 0.5 0.75 0.25 0.5 0.75
CA Pe

Figure 3: The set of linguistic labels associated with CA and p..

and produces two output variables: Ty, T,, and T3, are the input variables while CA and
pc are the output variables. The set of linguistic labels associated with the output variables
comprises the descriptions of Low, Medium, and High. For each linguistic term, there is a
triangular fuzzy set that defines its semantic meaning as shown in Figure 3.

The linguistic rules describing the control system consist of two parts: an antecedent
block (between the IF and THEN) and a consequent block (following THEN). By making
this type of evaluation, fewer rules can be evaluated, thus simplifying the processing
logic and perhaps even improving the fuzzy logic system performance. Each rule has the
possibility of generating a single rule for each output variable. In this paper, the inputs
are combined logically using the AND/OR operator to produce output (x;, #;(CA)) and
(vi, pi(pc)) response values for all the expected inputs:

wi(CA) = max{p;(Tis), pi(Tog), pi(Tsp) },

4.
pi(pe) = min{p;(Th ), pi(Tog), pi(Ts) }, (1)
wherei=1,2,...,number of rules.

Therefore, the proposed fuzzy system with three input variables will have 18 (3 x2x 3)
rules for each output variable (CA and p,). This fuzzy rule base is collectively presented in
Table 6. The fuzzy outputs for all rules are finally aggregated to one fuzzy set. To obtain a
crisp decision from this fuzzy set, we use the Centre of Gravity approach for defuzzification:

Xea = i pi (CA)xi,
it Hi(CA) (4.2)
Y=V (Pe)yi.
P X Hipe)

4.4. Elitism Replacement with Filtration

After the fuzzy crossover and the standard binary mutation operators are applied, elitism
replacement technique is used as the replacement strategy. The offspring have to compete
with their parents in order to allow transition into the new population. In other words,
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Table 6: Fuzzy rule base for CA and p..

Rule Tl,t T2,t T3,t CA Pc

1 Low Low Low High High

2 Low Low Medium High High

3 Low Low High Medium Medium
4 Low High Low High Medium
5 Low High Medium Medium Medium
6 Low High High Medium Low

7 Medium Low Low High High

8 Medium Low Medium Medium Medium
9 Medium Low High Medium Medium
10 Medium High Low Medium Medium
11 Medium High Medium Medium Medium
12 Medium High High Medium Low
13 High Low Low High High
14 High Low Medium Medium Medium
15 High Low High Low Medium
16 High High Low Low Medium
17 High High Medium Low Low
18 High High High Low Low

fitter chromosomes will survive for the next generation and they are never lost unless
better solutions are found. In the elitism replacement technique, both parent and offspring
populations are considered together as a single population. Then this population is sorted in
a nonincreasing order of their associated fitness value and the first half of the chromosomes
from this combined population are selected as the chromosomes of the new population for
the next generation.

What is meant, within this context, by saying that two chromosomes are identical is
that the loci of their genes are equal. Existence of the identical chromosomes is one of the
critical problems for premature convergence. When a large proportion of the chromosomes
in the population are identical, the diversity of the population will be lost and premature
convergence occurs. In order to overcome this problem, the filtration technique is used to
add diversity to the new population. In this technique, one of the identical chromosomes
is kept while the others are removed and replaced by new feasible chromosomes that
are generated randomly. As the filtration procedure involves the process of “identifying”,
“regenerating” and “reevaluating”, of the new chromosomes, which requires a certain
amount of computation time, it is sensible to just invoke the procedure every R generation
(where R is a parameter, e.g., 100) or when there is at least 10 percent of the population that
are identical.

5. Computational Results

The benchmark data set tested in this paper inclusive of 270 MKPs is proposed in [27].
This data set was extensively utilized in the literature for the testing of MKP algorithms.
These problems include n = 100, 250, 500 variables and m = 5, 10, 30 constraints. For each
category of n variables, three tightness ratios « = 0.25, 0.50, 0.75 are considered. This set of
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problems contains 27 different problem sets, each having 10 randomly generated instances,
thus a total of 270 problems.

In these problem sets, w;; are drawn from discrete uniform generator U (0,1000) and
the right hand side coefficients ¢;, i € {1,...,m}, are set using ¢; = zxZ;’=1 w;j where a is
the tightness ratio. The objective function coefficients pj, Jj € {1,...,m} are correlated to wij
and are generated as p; = 3./, (wij/m) + 500e;, where e; is a real number drawn from the
continuous uniform generator U(0, 1).

The performance of these approaches is measured by the Percentage Deviation (PD)
between the benchmark problems taken from the ORLibrary [29] and our results, that is:

_ |Bi—Ri|

i

PD x 100%, (5.1)

where B; is the benchmark result and R; is the computational result obtained by the proposed
algorithms.

In order to scrutinize the performance and the ability of the proposed FGA compared
to standard genetic algorithms (SGAs), the crossover operators mentioned in Table 4 are
used in the computational experiments. The difference between the proposed FGA and
a SGA is with regards to the use of the crossover operator and its probability. In other
words, a SGA will employ one crossover operator with fixed probability, p. = 0.70 during
implementation. Thus, there will be five SGAs as compared to one FGA in the experiment.
Each algorithm is implemented with a population size of 100. Sexual selection described in
Section 4.2, the replacement strategy explained in Section 4.4, and standard binary mutation
with probability p,, = 1/L (L is the length of chromosome) are used as the default genetic
operators. All algorithms were coded in C++ and ran on a Pentium IV with 2.0 GHz CPU and
2.0GB of RAM. For each problem instance, 30 runs were performed. In order to have a fair
comparison between the algorithms in this experiment, we employed a duration of 20 CPU
seconds per run. Results are listed in Table 7. The benchmark column represents the average
computational results of 10 problem instances from each problem set of the MKPs that are
compiled in [29]. For each algorithm, the entries report the average PD computed over 10
problem instances with 30 runs each, that is, 300 runs. For each category of m, the final line
gives the average PD over all values of n. The final line of Table 7 gives the overall average
PD over all categories of m.

We first observed that the FGA performs significantly better than the SGAs. This shows
that the FGA is able to produce better quality solutions compared to SGAs in a fixed CPU
time. There is clear evidence from Table 7 that, on average, the FGA is the best algorithm
followed by the SGAs with SC, IC, UX, KPC, and finally the SGA with 2PC. The algorithms
find problems of m = 30 to be the most challenging. With other things (i.e.,, n and a)
being equal, when we increase the value of m, then PD will increase. Note that for all the
algorithms, fewer generations are executed within the time limit as the number of knapsacks
or constraints become larger.

6. Conclusion

Genetic algorithms usually use the population diversity as the performance measure for a
number of reasons such as avoiding premature convergence. This paper proposed techniques
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Table 7: Comparative computational results (20 CPU seconds per run).

m n a Benchmark SGA FGA
2PC KPC UX SC IC

0.25 24197.20 1.380 0.849 0.822 0.862 0.905 0.537

100 0.50 43252.90 1.147 0.371 0.344 0.388 0.392 0.187

0.75 60471.00 1.005 0.307 0.285 0.299 0.300 0.196

0.25 60409.70 1.309 0.200 0.196 0.205 0.201 0.110

5 250 0.50 109284.60 1.165 0.100 0.091 0.089 0.096 0.053

0.75 151555.90 0.994 0.057 0.66 0.044 0.057 0.022

0.25 120615.50 0.711 0.701 0.052 0.055 0.055 0.034

500 0.50 219503.10 0.620 0.629 0.029 0.030 0.033 0.005

0.75 302354.90 0.499 0.440 0.019 0.019 0.022 0.004

Average 0.981 0.406 0.278 0.221 0.229 0.128

0.25 22601.90 2.503 1.308 1.288 1.280 1.283 0.735

100 0.50 45659.10 1.282 0.583 0.574 0.570 0.582 0.480

0.75 59555.60 1.097 0.309 0.305 0.316 0.310 0.118

0.25 58993.90 1.630 0.407 0.399 0.395 0.396 0.218

10 250 0.50 108706.40 1.523 0.169 0.163 0.158 0.160 0.107

0.75 151330.40 0.974 0.128 0.125 0.120 0.127 0.073

0.25 118565.50 1.208 0.180 0.175 0.168 0.171 0.105

500 0.50 217274.60 0.988 0.085 0.085 0.080 0.085 0.043

0.75 302556.00 0.811 0.059 0.057 0.054 0.052 0.008

Average 1.335 0.359 0.352 0.349 0.352 0.210

0.25 21654.60 3.755 2.739 2.730 2.718 2.723 1.217

100 0.50 41431.30 2.702 1.200 1.197 1.190 1.192 0.894

0.75 59199.10 1.693 0.725 0.725 0.720 0.724 0.479

0.25 56875.90 2.660 1.020 1.017 1.014 1.019 0.936

30 250 0.50 106673.70 1.602 0.427 0.426 0.415 0.416 0.240

0.75 150443.50 1.109 0.160 0.160 0.152 0.157 0.030

0.25 115473.50 1.581 0.405 0.405 0.398 0.400 0.328

500 0.50 216156.90 1.290 0.117 0.114 0.109 0.110 0.007

0.75 302353.40 1.041 0.103 0.103 0.099 0.101 0.075

Average 1.937 0.766 0.764 0.757 0.760 0.467

Average 1.418 0.511 0.465 0.442 0.447 0.268

for the measurement of the population diversity based on the phenotype and genotype
properties. The main contribution of this study is the crossover operator and probability
selection technique based on the population diversity using fuzzy logic controllers. The
performance of the proposed fuzzy genetic algorithm compared to other standard genetic
algorithms for solving the multidimensional 0/1 knapsack problems showed that the
proposed algorithm is effective in finding better and comparable solutions.

Future research efforts will investigate extending the proposed fuzzy genetic
algorithm to include the fuzzy mutation operator and probability selection technique for
other binary encoded combinatorial optimisation problems. In addition, we may consider
to extend the research for integer encoded fuzzy genetic algorithm.
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