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We consider Hölder continuous circulant (2 × 2) matrix functions G1
2 defined on the Ahlfors-

David regular boundary Γ of a domain Ω in R
2n. The main goal is to study under which

conditions such a function G1
2 can be decomposed as G1

2 = G1
2
+ − G1

2
−, where the components

G1
2
± are extendable to two-sided H-monogenic functions in the interior and the exterior of Ω,

respectively. H-monogenicity is a concept from the framework of Hermitean Clifford analysis,
a higher dimensional function theory centered around the simultaneous null solutions of two
first-order vector-valued differential operators, called Hermitean Dirac operators. H-monogenic
functions then are the null solutions of a (2 × 2) matrix Dirac operator, having these Hermitean
Dirac operators as its entries; such functions have been crucial for the development of function
theoretic results in the Hermitean Clifford context.
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1. Introduction

Clifford analysis essentially is a higher dimensional function theory offering both a
generalization of the theory of holomorphic functions in the complex plane and a refinement
of classical multidimensional harmonic analysis. The standard case, nowadays also called
Euclidean Clifford analysis, focuses on monogenic functions, that is, the null solutions of
the vector-valued Dirac operator ∂X =

∑m
j=1ej∂xj , factorizing the m-dimensional Laplacian:

∂2X = −Δm. Here (e1, . . . , em) is an orthonormal basis for the quadratic space R
0,m underlying

the construction of the real Clifford algebra R0,m. The fundamental group leaving the Dirac
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operator invariant is the special orthogonal group SO(m;R), doubly covered by the spin(m)
group of the Clifford algebra R0,m. For this reason, the Dirac operator is called a rotation
invariant operator. Standard references for Euclidean Clifford analysis are [1–4].

In a series of recent papers, the so-called Hermitean Clifford analysis has emerged as
yet a refinement of the Euclidean case. One of the ways for introducing it is by considering the
complex Clifford algebra C2n and a so-called complex structure on it, that is, an SO(2n;R)-
element J for which J2 = −1. It is precisely the requirement that such a complex structure
exists, which forces the dimension of the underlying vector space to be even: m = 2n.
The resulting function theory focuses on the simultaneous null solutions of two complex
Hermitean Dirac operators ∂Z and ∂Z† which no longer factorize, but still decompose the
Laplace operator in the sense that 4(∂Z∂Z† +∂Z†∂Z) = Δ2n. The fundamental group symmetry
of this system breaks down to the action of the special unitary group. The study of complex
Dirac operators was initiated in [5–8]; a systematic development of the associated function
theory, including the invariance properties with respect to the underlying Lie groups and Lie
algebras, is still in full progress (see, e.g., [9–13]).

In the paper [14], a Cauchy integral formula for Hermitean monogenic functions was
established, obviously an essential result in the function theory. However, as in some very
particular cases Hermitean monogenicity turns out to be equivalent with anti-holomorphy
in n complex variables (z1, . . . , zn) (see [11]), it was predictable that such a representation
formula could not, in the present setting, take the traditional form as in the complex plane
or in Euclidean Clifford analysis. Indeed, a matrix approach had to be followed in order to
obtain the desired result, leading to the concept of (left or right) H-monogenic functions,
introduced as circulant (2 × 2) matrix functions, which are (left or right) null solutions of a
(2 × 2) circulant matrix Dirac operator, having the Hermitean Dirac operators ∂Z and ∂Z† as
its entries.

Although the H-monogenic system thus arose as an auxiliary concept in Hermitean
Clifford analysis, it deserves to be further studied for its own intrinsic value. In this paper,
we consider Hölder continuous circulant (2 × 2) matrix functions G1

2 defined on the Ahlfors-
David regular boundary Γ of a domain Ω in R

2n, and we investigate under which conditions
such a function G1

2 can be decomposed as G1
2 = G1

2
+ − G1

2
−, where the components G1

2
±

are extendable to two-sided H-monogenic functions in the interior and the exterior of Ω,
respectively. Such type of decomposition (or “jump”) problem was considered already in
Euclidean Clifford analysis in, for example, [15].

The present decomposition problem is discussed using the matrix Cauchy integral
C[G1

2] of G1
2 (see also [16]) and its singular version S[G1

2], called the Hilbert transform;
they are shown to be related to each other by Plemelj-Sokhotzki type formulae for the
continuous boundary values of C[G1

2]. Moreover, a result is obtained connecting the two-
sided H-monogenicity of a function G1

2 in Ω to a conservation law for the Hilbert transforms
S[G1

2|Γ] and [G1
2|Γ]S of its trace on the boundary.

2. Preliminaries

Let (e1, . . . , em) be an orthonormal basis of the Euclidean space R
m, and consider the complex

Clifford algebra Cm constructed over R
m. The noncommutative (also called geometric)

multiplication in Cm is governed by the rules

e2j = −1, j = 1, . . . , m,

ejek + ekej = 0, j /= k.
(2.1)
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The Clifford algebra Cm thus is generated additively by elements of the form eA = ej1 · · · ejk ,
whereA = {j1, . . . , jk} ⊂ {1, . . . , m} is such that j1 < · · · < jk, and so the dimension of Cm is 2m.
For A = ∅, one puts e∅ = 1, the identity element. Any Clifford number λ ∈ Cm may thus be
written as λ =

∑
AλAeA, λA ∈ C and its Hermitean conjugate λ† is defined by

λ† =
∑

A

λcAeA, (2.2)

where the bar denotes the usual real Clifford algebra conjugation, that is, the main anti-
involution for which ej = −ej , and ·c denotes the standard complex conjugation. Note that,
as any complex Clifford number λ ∈ Cm may also be written as λ = a + ib, a, b ∈ R0,m, the
Hermitean conjugation also takes the form λ† = a − ib.

Euclidean spaceR
m is embedded in the Clifford algebraCm by identifying (X1, . . . , Xm)

with the real Clifford vector X given by

X =
m∑

j=1

ejxj . (2.3)

The square ofX is scalar-valued and equals the norm squared up to a minus sign:X2 = −|X|2.
The Fischer dual of the vector X is the vector-valued first-order differential operator

∂X =
m∑

j=1

ej∂xj (2.4)

called Dirac operator; it is precisely this Dirac operator which underlies the notion of
monogenicity of a function, the higher dimensional counterpart of holomorphy in the
complex plane. The functions under consideration are defined on an open subsetΩ of R

m and
take values in the Clifford algebra Cm. They are of the form g =

∑
AgAeA, where the functions

gA are complex-valued.Whenever a property such as continuity, differentiability, and so forth
is ascribed to g, it is meant that all the components gA possess the cited property. Such
function g, assumed to be differentiable in Ω, is called left monogenic or right monogenic
in Ω if and only if ∂Xg = 0, or g∂X = 0, respectively. Functions which are both left and right
monogenic are called two-sided monogenic. As the Dirac operator factorizes the Laplacian
Δm = −∂2X , monogenicity can be regarded as a refinement of harmonicity. Within the even
part of the Clifford algebra, one can realize the spin group, given by

Spin(m) =
{

s =
2k∏

j=1

ωj : ωj ∈ Sm−1, k ∈ N

}

, (2.5)

where Sm−1 ⊂ R
m denotes the unit sphere containing vectors ωj for which ω2

j = −1. The
group Spin(m) yields a double cover for the orthogonal group SO(m), defined by the map
χ : Spin(m) �→ SO(m), with χ(s)[X] = sXs. For a Cm-valued function g(X), the induced
action of a spin element s is given by sg(sXs)s; it is well known (see [1]) that the Dirac
operator commutes with this action, whence we call it rotation invariant.
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The transition from the Euclidean Clifford setting described above to Hermitean
Clifford analysis now is essentially based on the introduction of a complex structure J . This
is a particular element of SO(m), satisfying J2 = −1m. Note that such an element cannot exist
when the dimension m of the underlying vector space is odd, whence from now on, we will
putm = 2n. In terms of our basis, a particular realization of the complex structure is given by
J[e2j−1] = −e2j and J[e2j] = e2j−1, j = 1, . . . , n. The two projection operators ±(1/2)(12n ± iJ)
associated to this complex structure J then produce themain objects in theHermitean Clifford
setting by acting upon the corresponding objects in the Euclidean one. First of all, the vector
space C

2n thus decomposes as W+ ⊕W− into two isotropic subspaces.
The real Clifford vector X is now denoted as

X =
n∑

j=1

(
e2j−1x2j−1 + e2jx2j

)
, (2.6)

and the Dirac operator ∂X as

∂X =
n∑

j=1

(
e2j−1∂x2j−1 + e2j∂x2j

)
(2.7)

while we will also consider their so-called “twisted” counterparts, obtained through the
action of J , that is,

X| =
n∑

j=1

(
e2j−1x2j − e2jx2j−1

)
,

∂X| =
n∑

j=1

(
e2j−1∂x2j − e2j∂x2j−1

)
.

(2.8)

As was the case with ∂X , a notion of monogenicity may be associated in a natural way to
∂X| as well. Note that the vectors X and X| anticommute, as do the Dirac operators ∂X and
∂X|, while it also holds that X|2 = X2 = −|X|2, and −∂2

X| = −∂2X = Δ2n. The projections of the
vector variableX and the Dirac operator ∂X on the spacesW± then give rise to the Hermitean
Clifford variables Z and Z†, given by

Z =
1
2
(
X + iX|), Z† = −1

2
(
X − iX|), (2.9)

and (up to a factor) to the Hermitean Dirac operators ∂Z and ∂Z† given by

∂Z† =
1
4
(
∂X + i∂X|

)
, ∂Z = −1

4
(
∂X − i∂X|

)
(2.10)



Ricardo Abreu Blaya et al. 5

(see [9, 10]). Observe for further use that the Hermitean vector variables and Dirac operators
are isotropic, that is, (Z)2 = (Z†)2 = 0 and (∂Z)

2 = (∂Z†)2 = 0, whence the Laplacian allows
for the decomposition

Δ2n = 4
(
∂Z∂Z† + ∂Z†∂Z

)
(2.11)

while also

ZZ† + Z†Z =
∣
∣Z

∣
∣2 =

∣
∣Z†∣∣2 =

∣
∣X

∣
∣2 =

∣
∣X|∣∣2. (2.12)

These objects lie at the core of the Hermitean function theory by means of the following
definition (see, e.g., [9, 10]).

Definition 2.1. A continuously differentiable function g inΩ ⊂ R
2n with values in C2n is called

left Hermitean monogenic (or left h-monogenic for short) in Ω, if and only if it satisfies in Ω
the system

∂Zg = 0 = ∂Z†g, (2.13)

or, equivalently, the system

∂Xg = 0 = ∂X|g. (2.14)

In a similar way, right h-monogenicity is defined. Functions which are both left and right
h-monogenic are called two-sided h-monogenic.

This definition inspires the statement that h-monogenicity constitutes a refinement of
monogenicity.

The main point of difference between the Hermitean framework and the Euclidean
one, is the underlying group invariance of the considered Dirac operators. To this end, we
consider the group SpinJ(2n) ⊂ Spin(2n), given by

SpinJ(2n) = {s ∈ Spin(2n) | ssJ = sJs}, (2.15)

its definition involving the spin element sJ corresponding to the complex structure: χ(sJ) =
J . It has been proved that this group constitutes a realization in the Clifford algebra of the
unitary group U(n), and moreover, that the Hermitean Dirac operators commute with its
associated action. Less precisely, one thus says that these operators are invariant under the
action of the unitary group, and so is the notion of h-monogenicity.

3. A pair of Cauchy integrals and Hilbert transforms in the Euclidean setting

From now on, we denote byΩ a Jordan domain in R
2n, and we putΩ+ = Ω andΩ− = R

2n\Ω+,
where both open sets are assumed to be connected. Furthermore, we assume the boundary
Γ of Ω to be a (2n − 1)-dimensional compact topological and oriented hypersurface, which
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moreover is Ahlfors-David regular (see [17]). The latter means that there exists a constant
C > 0 such that for all X ∈ Γ and all 0 < r ≤ diam Γ

C−1r2n−1 ≤ H2n−1(Γ ∩ B
(
X; r

)) ≤ Cr2n−1, (3.1)

where H2n−1 denotes the (2n − 1)-dimensional Hausdorff measure and B(X; r) denotes, as
usual, the closed ball with radius r and centred at the point X.

Now take a function g ∈ C0,α(Γ), that is, g is α-Hölder continuous on Γ, with 0 < α < 1.
We may then consider the Cauchy integrals C[g] and C|[g] in R

2n \ Γ, defined by

C[g](X) =
∫

Γ
E(Y −X)n(Y )g(Y )dH2n−1(Y ),

C|[g](X) =
∫

Γ
E
∣
∣(Y −X)n

∣
∣(Y )g(Y )dH2n−1(Y )

(3.2)

aswell as their respective singular versions S[g] and S|[g] in Γ, also calledHilbert transforms,
defined by

S[g](U) = 2 lim
ε→ 0+

∫

Γ\B(U;ε)
E(Y −U)n(Y )(g(Y ) − g(U))dH2n−1(Y ) + g(U),

S|[g](U) = 2 lim
ε→ 0+

∫

Γ\B(U;ε)
E
∣
∣(Y −U)n

∣
∣(Y )(g(Y ) − g(U))dH2n−1(Y ) + g(U).

(3.3)

The so-called Cauchy kernels E and E| in the above definitions are derived from the
fundamental solutions of the Dirac operators ∂X and ∂X|, and are, respectively, given by

E(X) = − 1
a2n

X

|X|2n , E|(X) = − 1
a2n

X|
|X|2n , (3.4)

where a2n denotes the surface area of the unit sphere S2n−1 in R
2n. Furthermore,

n(Y ) =
n∑

j=1

(
e2j−1n2j−1(Y ) + e2jn2j(Y )

)
(3.5)

stands for the unit normal vector on Γ at the point Y (as introduced by Federer, see [18]) and
n|(Y ) is its twisted counterpart. Note that C[g] (resp., C|[g]) is left monogenic in R

2n \Γwith
regards to the Dirac operator ∂X (resp., ∂X|) and that

lim
|X|→∞

C[g](X) = 0 = lim
|X|→∞

C|[g](X). (3.6)
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For the sake of completeness, we recall some basic properties of the singular Cauchy
integrals S and S|, which are generalizations to the case of Clifford analysis of the properties
established in the complex plane as follows:

(i) S and S| are bounded linear operators on C0,α(Γ) (0 < α < 1);

(ii) S and S| are involutions on C0,α(Γ) (0 < α < 1), that is, S2[g] = g and S|2[g] = g for
all g ∈ C0,α(Γ);

(iii) the following Plemelj-Sokhotzki formulae hold for any function g in C0,α(Γ) (with
0 < α < 1):

C±[g](U) = lim
Ω±
Y →U

C[g](Y ) =
1
2
(S[g](U) ± g(U)) , U ∈ Γ,

C|±[g](U) = lim
Ω±
Y →U

C|[g](Y ) =
1
2
(S|[g](U) ± g(U)), U ∈ Γ.

(3.7)

Formulae (3.7) express the boundary values of the Cauchy integrals in terms of their singular
versions. The study of this boundary behaviour, in the Euclidean Clifford analysis context,
has been the subject of intensive research in the last years, see for example [19–23]. We must
remark that these formulae also hold for a wider class of rectifiable surfaces, containing as
proper subclasses for instance differentiable, chord-arc, piecewise smooth, Liapunov, and
Lipschitz surfaces as well as simple Lipschitz graphs.

From the above properties, it is clear that the singular Cauchy integral S gives rise to
two important operators, that is,

P =
1
2
(1 + S), Q =

1
2
(1 − S), (3.8)

which are mutually complementary projection operators on the same space: P 2 = P, Q2 = Q,
and PQ = QP = 0. The same holds for S|, where we introduce

P | = 1
2
(1 + S|), Q| = 1

2
(1 − S|). (3.9)

4. The Hermitean Cauchy integral: a matrix approach

Starting from the pair of fundamental solutions (E, E|) of the Euclidean Dirac operators ∂X
and ∂X|, we now construct the distributions E = −(E + iE|) and E† = (E − iE|). Explicitly they
are given by

E(Z,Z†) =
2
a2n

Z

|Z|2n
, E†(Z,Z†) =

2
a2n

Z†

|Z|2n
(4.1)

with

lim
|Z|→∞

E(Z,Z†) = 0 = lim
|Z|→∞

E†(Z,Z†). (4.2)
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Note that E and E† are not the fundamental solutions to the respective Hermitean Dirac
operators ∂Z and ∂Z† , but surprisingly, introducing the particular circulant (2 × 2) matrices

D(Z,Z†) =

(
∂Z ∂Z†

∂Z† ∂Z

)

, E =
( E E†

E† E
)

, δ =
(
δ 0
0 δ

)

, (4.3)

where δ is the Dirac delta distribution, one obtains that D(Z,Z†)E(Z) = δ(Z), so that E may
be considered as a fundamental solution of the operator D(Z,Z†) in a matricial context. It was
exactly this simple observation which has lead to the idea of following a matrix approach in
order to establish a Cauchy integral formula and the related function theoretic results in the
Hermitean Clifford setting, see [14, 16]. Moreover, it inspired the following definition.

Definition 4.1. Let g1, g2 be continuously differentiable functions defined in Ω and taking
values in C2n, and consider the matrix function

G1
2 =

(
g1 g2
g2 g1

)

. (4.4)

ThenG1
2 is called left (resp., right)H-monogenic inΩ if and only if it satisfies inΩ the system

D(Z,Z†)G
1
2 = O (resp., G1

2D(Z,Z†) = O). (4.5)

Here O denotes the matrix with zero entries.

Explicitly, the system for leftH-monogenicity reads

∂Z[g1] + ∂Z†[g2] = 0,

∂Z†[g1] + ∂Z[g2] = 0.
(4.6)

Note that we have found above that E is left (and in fact also right)H-monogenic in R
2n \{0}.

In general, the H-monogenicity of the matrix function G1
2 does not imply the h-

monogenicity of its entry functions g1 and g2. However, choosing in particular g1 = g and
g2 = 0, the H-monogenicity of the corresponding diagonal matrix G0 is seen to be equivalent
to the h-monogenicity of the function g.

Defining the matrix Laplacian by

Δ =
(
Δ2n 0
0 Δ2n

)

, (4.7)

we may call the matrix function G1
2 harmonic in the domain Ω if and only if it satisfies the

equation ΔG1
2 = O. It is a simple, yet remarkable, fact that the Dirac matrix D(Z,Z†) still in
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some sense “factorizes the Laplacian” (as does the Cauchy-Riemann operator in the complex
plane) since

4D(Z,Z†)
(D(Z,Z†)

)† = 4
(D(Z,Z†)

)†D(Z,Z†) =
(
Δ2n 0
0 Δ2n

)

. (4.8)

This property guarantees that any H-monogenic matrix function G1
2 also is harmonic in Ω,

and moreover, its entries are harmonic in the classical sense.
The above matrix approach will form the key towards the construction of a boundary

value theory of h-monogenic functions. In what follows, we will restrict to left monogenicity,
unless explicitly stated.

From now on the notations Y and Y | are reserved for Clifford vectors associated to
points in Ω±. Their Hermitean counterparts are denoted by

V =
1
2
(Y + iY |), V † = −1

2
(Y − iY |), (4.9)

while the Hermitean vector pair (Z,Z†) still corresponds, as before, to the orthogonal pair
(X,X|).

Given functions g1, g2 ∈ C0,α(Γ) (0 < α < 1), we then introduce the vector space

C0,α(Γ) =
{

G1
2 =

(
g1 g2
g2 g1

)

: g1, g2 ∈ C0,α(Γ)
}

, (4.10)

and we define, forG1
2 ∈ C0,α(Γ), its Hermitean matrix Cauchy integral C[G1

2] to be

C[G1
2](Y ) =

∫

Γ
E(Z − V ,Z† − V †)N(Z,Z†)G

1
2(X)dH2n−1, Y ∈ Ω±, (4.11)

which is H-monogenic in Ω±, that is, D(V ,V †)C[G1
2](Y ) = O in Ω±. Here we have introduced

the additional circulant matrix

N(Z,Z†) =

(
N −N†

−N† N

)

(4.12)

containing (up to a factor) the Hermitean projections N and N† of the outward unit normal
vector n(X) at the point X, given by

N = −1
4
(−1)n(n+1)/2(2i)n(n(X) − in|(X)),

N† = −1
4
(−1)n(n+1)/2(2i)n(n(X) + in|(X)),

(4.13)
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and the matrix Hausdorff measure

dH2n−1 =

(
dH2n−1 0

0 dH2n−1

)

. (4.14)

A direct calculation reveals that the Hermitean Cauchy integral can be expressed in terms of
the Euclidean Cauchy integrals C and C| as follows:

C[G1
2] =

(−1)n(n+1)/2(2i)n
2

(
C[g1 − g2] + C|[g1 + g2] −C[g1 − g2] + C|[g1 + g2]

−C[g1 − g2] + C|[g1 + g2] C[g1 − g2] + C|[g1 + g2]

)

. (4.15)

In particular, for the special case of the matrix function G0 (i.e., g1 = g and g2 = 0) this is
reduced to

C[G0] =
(−1)n(n+1)/2(2i)n

2

(
C[g] + C|[g] −C[g] + C|[g]
−C[g] + C|[g] C[g] + C|[g]

)

. (4.16)

Remark 4.2. It is clear that, in general, C[G0]will not turn out to be a diagonal matrix, whence
its entries will not be h-monogenic functions. The particular situation where C[g] = C|[g],
giving rise to an interpretation in terms of h-monogenicity, is explicitly treated below.

We aim at establishing a generalization of the Plemelj-Sokhotzki formulae to the
case of H-monogenic matrix functions. To that end, and at the same time inspired by the
structure of the above expressions (4.15)-(4.16), let us introduce the singular matrix Cauchy
integral

S =
1
2

(
S + S| −S + S|
−S + S| S + S|

)

(4.17)

its action on the matrix functions G1
2 and G0 being given by matrix multiplication, followed

by an operator action on the level of the entries, that is,

S[G1
2] =

1
2

(
S + S| −S + S|
−S + S| S + S|

)(
g1 g2

g2 g1

)

=
1
2

(
S[g1 − g2] + S|[g1 + g2] −S[g1 − g2] + S|[g1 + g2]

−S[g1 − g2] + S|[g1 + g2] S[g1 − g2] + S|[g1 + g2]

)

.

(4.18)

Invoking the expressions (4.15)-(4.16) for C[G1
2] in terms of C[g1 − g2] and C|[g1 + g2], and

taking into account the Plemelj-Sokhotzki formulae (3.7), the following result is then readily
obtained.
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Theorem 4.3. Let G1
2 ∈ C0,α(Γ) (0 < α < 1), then the continuous boundary values of its Hermitean

Cauchy integral C[G1
2] exist and are given by

C±[G1
2](U) = lim

Y →U
Y∈Ω±

C[G1
2](Y ) = (−1)n(n+1)/2(2i)n

(

± 1
2
G1

2(U) +
1
2
S[G1

2](U)
)

, U ∈ Γ.

(4.19)

Moreover, some properly adapted analogues of the basic properties of S and S|,
mentioned in the previous section, hold for the matrix operator S.

Theorem 4.4. The singular Hermitean Cauchy integral S satisfies the following properties:

(i) S is a bounded linear operator on C0,α(Γ) (0 < α < 1);

(ii) S is an involution on C0,α(Γ) (0 < α < 1), that is, S2 = I, where I is the (2 × 2) identity
matrix operator.

Similarly we put

P =
1
2

(
P + P | −P + P |
−P + P | P + P |

)

, Q =
1
2

(
Q +Q| −Q +Q|
−Q +Q| Q +Q|

)

, (4.20)

where the operators P and Q were introduced in (3.8) and the operators P | and Q| in (3.9). It
is directly seen that P +Q = I, with P = (1/2)(I + S) and Q = (1/2)(I − S). The following
result is then obtained.

Theorem 4.5. The operators P and Q are mutually complementary projection operators on the same
space, that is, P2 = P, Q2 = Q and PQ = QP = O.

This theorem entails the direct decomposition

C0,α(Γ) = P[C0,α(Γ)] ⊕Q[C0,α(Γ)], (0 < α < 1), (4.21)

so that each functionG1
2 ∈ C0,α(Γ) admits a unique decomposition into components belonging

to P[C0,α(Γ)] and Q[C0,α(Γ)], respectively. In what follows, we will use the notations

C0,α
+,l (Γ) ≡ P[C0,α(Γ)], C0,α

−,l (Γ) ≡ Q[C0,α(Γ)], (4.22)

when dealingwith leftH-monogenic functions. Likewise, in the case of rightH-monogenicity,
we will use C0,α

+,r(Γ) and C0,α
−,r(Γ).

5. The jump problem for H-monogenic functions

In this section, we will study the so-called jump (or decomposition) problem for left H-
monogenic functions, that is, we will investigate under which conditions a given matrix
function G1

2 can be decomposed as

G1
2 = G1

2
+ −G1

2
−
, (5.1)



12 Boundary Value Problems

where the componentsG1
2
± are extendable to left (resp., right)H-monogenic functions inΩ±,

vanishing at infinity. First, it should be noted that if this jump problem has a solution, then
it is necessarily unique. This assertion can easily be proved using the Painlevé and Liouville
theorems in the Clifford analysis setting, see [1, 15]. Next, under the condition that G1

2 ∈
C0,α(Γ) (0 < α < 1), Theorem 4.3 ensures the solvability of the jump problem (5.1) for left
H-monogenic functions, its unique solution is given by

G1
2
±
=

1

(−1)n(n+1)/2(2i)n
C±[G1

2]. (5.2)

The solvability for right H-monogenic functions can be formulated similarly.
Now consider the special case of the matrix function G0, or equivalently, of a

single nonzero entry g. The above decomposition problem (5.1) then obviously is strongly
connected to the analogous problem for h-monogenic functions, as studied in [24]. In order
to be able to rephrase the obtained result (5.2) in the h-monogenic setting, we only need to
ensure that C[G0] is interpretable as an h-monogenic function. In view of this observation
and of [24, Remark 1, Theorem 2.2] may be reformulated into the present setting as follows.

Theorem 5.1. Let g ∈ C0,α(Γ) (0 < α < 1) and consider the corresponding matrix function G0 ∈
C0,α(Γ). Then the jump problem (5.1) is solvable in terms of h-monogenic functions if and only if

C[G0] =
(−1)n(n+1)/2(2i)n

2

(
C[g] + C|[g] 0

0 C[g] + C|[g]
)

. (5.3)

Proof. Clearly (5.3) is equivalent to the requirement that C[g] = C|[g], and thus S[g] = S|[g].
The remaining entry C[g] + C|[g] = 2C[g] = 2C|[g] of C[G0] then automatically is an h-
monogenic function in Ω±.

The next result deals with a necessary and sufficient condition for the extendability of
a given matrix function on the hypersurface Γ to an H-monogenic function in Ω+ or in Ω−,
vanishing at infinity. It is clear that the answer will have to involve the projection operators
P andQ.

Theorem 5.2. LetG1
2 ∈ C0,α(Γ) (0 < α < 1).

(i) In order for G1
2 to be the boundary value of a matrix function G1

2
+ which is H-monogenic

in Ω+, it is necessary and sufficient that

G1
2 ∈ imP, (5.4)

that is, there exists a matrix function F12 ∈ C0,α(Γ) such that G1
2 = P[F12].

(ii) In order for G1
2 to be the boundary value of a matrix function G1

2
− which is H-monogenic

in Ω− and vanishes at infinity, it is necessary and sufficient that

G1
2 ∈ imQ, (5.5)

that is, there exists a matrix function F12 ∈ C0,α(Γ) such that G1
2 = Q[F12].
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Proof. First, let G1
2 ∈ C0,α(Γ) be the boundary value of an H-monogenic function G1

2
+ in Ω+.

Then, as was already shown in [14],G1
2
+ is nothing but the Cauchy integral of G1

2, namely,

G1
2
+
(Y ) = C[G1

2](Y ). (5.6)

Now let U ∈ Γ and let Ω± 
 Y → U. Then G1
2
+(Y ) → G1

2(U), while, according to
Theorem 4.3, C[G1

2](Y ) → P[G1
2](U). Thus, G1

2(U) = P[G1
2](U), yielding (5.4). Conversely,

assume that (5.4) holds and consider G1
2
+(Y ) given by (5.2), for Y ∈ Ω+. Then G1

2
+ is an H-

monogenic function in Ω+ and again by Theorem 4.3, we have that G1
2
+|Γ = P[G1

2] = G1
2,

which proves (i). Similar considerations apply to (ii).

Remark 5.3. Condition (5.4) can be rewritten as

G1
2(U) = S[G1

2](U), U ∈ Γ, (5.7)

and condition (5.5) as

G1
2(U) = −S[G1

2](U), U ∈ Γ. (5.8)

Remark 5.4. For the special case of the matrix function G0 ∈ C0,α(Γ) (0 < α < 1), condition
(5.7) can be rephrased in terms of the entry function g as S[g] = S|[g] = g, which exactly
is the criterion for the existence of an h-monogenic extension of g to Ω+, obtained in [24].
Similarly, in Ω−, (5.8) yields S[g] = S|[g] = −g.

As an application of Theorem 5.2, we consider the Dirichlet boundary value problem
for the operator D(Z,Z†), which is stated as follows.

Dirichlet problem

Given G1
2 ∈ C0,α(Γ) (0 < α < 1), find a function F12 such that

D(V ,V †)[F
1
2](Y ) = O, in Ω,

F12 = G1
2, on Γ.

(5.9)

From Theorem 5.2, we immediately see that a solution to this Dirichlet problem will not
always exist, as not all functionsG1

2 are extendable to anH-monogenic function inΩ. Indeed,
to this end, they need to satisfy condition (5.4) or equivalently, condition (5.7). If this is
fulfilled, the solution of the Dirichlet problem will be given, up to a multiplicative constant,
by the Cauchy integral of G1

2, namely,

F12 =
1

(−1)n(n+1)/2(2i)n
C[G1

2]. (5.10)
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6. A conservation law for two-sided H-monogenic functions

This section is devoted to the proof of a remarkable result, establishing a connection between
two-sidedH-monogenicity of a functionG1

2 in a domainΩ and the singular Cauchy integrals
S[G1

2|Γ] and [G1
2|Γ]S of its trace on the boundary Γ of Ω. We still mention that, in the context

of Euclidean Clifford analysis, a similar “conservation law” was obtained in [25] for two-
sided monogenicity.

Theorem 6.1. Let G1
2 ∈ C0,α(Ω ∪ Γ) (0 < α < 1), such that D(V ,V †)[G

1
2](Y ) = O in Ω. Then the

following statements are equivalent:

(i) G1
2 is two-sidedH-monogenic in Ω;

(ii) S[G1
2|Γ] = [G1

2|Γ]S.

Proof. Suppose that, next to its already assumed left H-monogenicity, G1
2 also is right H-

monogenic in Ω. Then it holds that G1
2|Γ ∈ C0,α

+,l,r(Γ), whence

S[G1
2|Γ] = G1

2|Γ = [G1
2|Γ]S. (6.1)

Conversely, suppose that S[G1
2|Γ] = [G1

2|Γ]S. From the assumed left H-monogenicity of G1
2,

we have that G1
2 = C[G1

2|Γ] and that for U ∈ Γ the boundary value taken from the inside,
denoted by BV+, is given by

BV+G1
2(U) = lim

Ω
Y →U
G1

2(Y ) = C+[G1
2|Γ](U) = (−1)n(n+1)/2(2i)n

(
1
2
G1

2|Γ(U) +
1
2
S[G1

2|Γ](U)
)

.

(6.2)

In view of the assumption made, we thus have

BV+G1
2 =

1
2
(−1)n(n+1)/2(2i)n(G1

2|Γ + [G1
2|Γ]S) = [G1

2|Γ]C+. (6.3)

Now put F12 = BV+[G1
2]C. Then F12 is rightH-monogenic inΩ and belongs to C0,α(Ω∪Γ), with

BV+F12(U) = lim
Ω
Y →U

F12(Y ) = [G1
2|Γ]C+C+(U) = [G1

2|Γ]C+(U) = BV+G1
2(U). (6.4)

Next, putH1
2 = G1

2−F12. ThenH1
2 is harmonic inΩ and it belongs to C0,α(Ω∪Γ)with BV+H1

2 = 0
on Γ. The Dirichlet problem for harmonic matrix functions then implies that H1

2 ≡ 0 in Ω or
G1

2 = F12 in Ω. Consequently, G1
2 is also right H-monogenic in Ω.

In the next theorem, we will show how the requirement D(V ,V †)[G
1
2](Y ) = O in the

formulation of Theorem 6.1 can be avoided.

Theorem 6.2. Let G1
2 : Ω → C2n be a continuous matrix function with trace G1

2|Γ ∈ C0,α(Γ). Then
G1

2 is two-sidedH-monogenic in Ω if and only if it is harmonic in Ω and

S[G1
2|Γ] = G1

2|Γ = [G1
2|Γ]S. (6.5)
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Proof. Suppose that G1
2 is two-sided H-monogenic in Ω. By Cauchy’s integral formula (see

[14]), we have that

(−1)n(n+1)/2(2i)nG1
2(Y ) = C[G1

2](Y ) = [G1
2]C(Y ), Y ∈ Ω. (6.6)

The Plemelj-Sokhotzki formulae (see Theorem 4.3) then imply that

G1
2(U) =

1
2
(G1

2(U) +S[G1
2](U)) =

1
2
(G1

2(U) + [G1
2]S(U)), U ∈ Γ. (6.7)

Consequently, S[G1
2|Γ](U) = G1

2|Γ(U) = [G1
2|Γ]S(U) for all U ∈ Γ. Conversely, assume that

G1
2 is harmonic in Ω and S[G1

2|Γ] = G1
2|Γ = [G1

2|Γ]S. Let us define the matrix functions

F12(Y ) =
1

(−1)n(n+1)/2(2i)n
C[G1

2|Γ](Y ), Y ∈ Ω, F12(U) = G1
2|Γ(U), U ∈ Γ,

H1
2(Y ) =

1

(−1)n(n+1)/2(2i)n
[G1

2|Γ]C(Y ), Y ∈ Ω, H1
2(U) = G1

2|Γ(U), U ∈ Γ.
(6.8)

They are left and right H-monogenic, respectively, and hence both are harmonic in Ω.
Combining Theorems 4.3 and 4.4, we can assert that F12 and H1

2 are also continuous on Ω.
As F12 − H1

2 is harmonic in Ω and F12|Γ = H1
2|Γ, it follows that F12(Y ) = H1

2(Y ) for Y ∈ Ω. The
proof is completed by showing thatG1

2 = F12 = H1
2 in Ω.

7. Main theorem

Theorem 7.1. LetG1
2 ∈ C0,α(Γ) (0 < α < 1). Then the following statements are equivalent:

(i) G1
2 can be decomposed as in (5.1), the components G1

2
± ∈ C0,α(Γ) being extendable to

two-sidedH-monogenic functions in Ω±, vanishing at infinity;

(ii) C[G1
2] is a two-sidedH-monogenic in R

2n \ Γ.

Proof. Assuming (i) to hold, we may directly check, invoking Theorem 5.2, that S[G1
2] =

[G1
2]S. We thus get that C+[G1

2] = [G1
2]C+, which yields (ii) in view of Theorem 6.1. This

completes the proof since the inverse implication is trivial.

Acknowledgments

This paper was written while R. Abreu Blaya and J. Bory Reyes were visiting the Department
of Mathematical Analysis of Ghent University. They were supported by the Special Research
Fund no. 01T00807, obtained for the collaboration between the Clifford Research Group
Ghent and the Cuban Research Group in Clifford analysis, on a project entitled Boundary
Values Theory in Clifford Analysis. The authors wish to thank all members of this Department
for their kind hospitality.



16 Boundary Value Problems

References

[1] F. Brackx, R. Delanghe, and F. Sommen, Clifford Analysis, vol. 76 of Research Notes in Mathematics,
Pitman, Boston, Mass, USA, 1982.
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