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1. Introduction

The singular boundary value problems of the form

-u" = f(t,u), te€(0,1),
(1.1)
u(0) =0=u(1)

occurs in several problems in applied mathematics, see [1-6] and their references. In many
papers, a critical condition is that

f(t,r) >0 for (t,r) € (0,1) x (0,0) (1.2)
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or there exists a constant L > 0 such that for any compact set K C (0,1), thereis € = ex > 0
such that

ft,r)>L VteK, re(0,¢],

lim —f(t' i)

r— oo 'a

(1.3)
=0 Vte(0,1).

We refer the reader to [1-4]. In the case, when f (¢, r) may change sign in a neighborhood of
r=0and limsup,_,, (f(t,r)/r) = +co for t € (0,1), very few existence results are available
in literature [1].

In this paper we study positive solutions of the second boundary value problem

-u" = g(t,u) + Ah(t,u), te(0,1),
(1.4)
u(0) =0=u(1);

here g: (0,1) x (0,00) — Rand h: (0,1) x [0,0) — (0, o0) are continuous, so as a result, our
nonlinearity may be singular at f = 0,1 and u = 0. Also our nonlinearity may change sign and
be superlinear at u = +oo0. Our main existence results (Theorems 1.1, 1.2 and 1.4) are new (see
Remark 1.5, Examples 3.1 and 3.2).

A function u is a solution of the boundary value problem (1.4) if u : [0,1] — R,u
satisfies the differential equation (1.4) on (0,1) and the stated boundary data.

Let C[0,1] denote the class of maps u continuous on [0,1], with norm |u|, =
maxefo]|u(t)|. We put min{a, b} = a A b; max{a,b} = aVv b. Given a,fp € C[0,1], a < f,
let

Di={v|veC[01], a<v<p). (1.5)

Let

1
M= {h €C(0,1): f [h(s)lds < oo with lim H(1)] < oo, lim (1= H)lh(t)] < oo}. (1.6)
0 — 0+ — 1~

In this paper, we suppose the following conditions hold:

(G1) suppose there exist g; : (0,1) x (0,00) — (0, 0) (i = 1,2) continuous functions such
that

gi(t,-) is strictly decreasing for t € (0,1),
g1(rd1(0), ¢r)eM Vr>0, (1.7)

-q1(t,r) < g(t,r) < gp(t,r) for (t,r) € (0,1) x (0, 0),

where ¢, is defined in Lemma 2.1;
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(H1) there exist h; : (0,1) x [0,00) — [0,00) (i =1,2) continuous functions such that

h;i(t,-) is increasing for t € (0,1),
hi(,r), ha(-,r) €M forr >0, (1.8)
hl(trr) S h(t/r) S hZ(trr) fOI' (tl T) € (0/1) X [0/ OO),

(H?2) there exists 7 > 0 such that hy(¢t,7) >0 fort € (0,1).

The main results of the paper are the following.

Theorem 1.1. Suppose (G1), (H1), (H2) and the following conditions hold:
(G2) for all ry > r > 0, there exists y(-) € M such that g (-, r) + y(-)r is increasing in (r1,12):
(H3)

lim
r— oo

@ =0 Vte(0,1); (1.9)

(H4) there exists a sequence {R; }Jf’il such that lim;_, , R; = oo and

hz(S,R]' + [11) -0

lim ——= =0,
j— oo R]

(1.10)

where a; =1+ f(l)gz(s, 1)ds.

Then there exists A] > 0 such that for every A > 1], (1.4) has at least one positive
solution u € C[0,1] N C'(0,1) and u > 0 for t € (0,1).

Theorem 1.2. Suppose (G1), (H1), (H2) and the following conditions hold:
(G3) forall ry > ry > 0 there exists y(-) € M such that g(t,r) + y(t)r is increasing in (r1,12);
(G4) there exists ¢1 > 0 such that

0<g(tr), te(0,1), 0<r<cy (1.11)
(G5) there exists ¢, € (0,¢1), 0 < f < 1 such that for all r € (0, cy)
1
’[ t(1-t)g, (¢t rl(t))dt > rar, (1.12)
0
where
— . m
g.(tr)= mm{g(t,r), r_ﬁ} form>1, (1.13)

and I(t) = min{t,1 -t} for t € [0,1].
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Then there exists ] > 0 such that

(i) if 0 < A < A}, (1.4) has at least one solution u € C[0,1] N C'(0,1) and u > 0 for
te(0,1);
(i) if L > A3, (1.4) has no solutions.

Remark 1.3. Notice that g, (t,7) satisfies (G1), (G3), (G4) and for fixed m > 1,

1
’[ t(1-t)g,,(t,ri(t)dt >ror forr € (0,c2),
0

(1.14)
gtry>g, (t,r)>g(tr) forte(0,1), r€(0,00).
Theorem 1.4. Suppose (G1), (H1), (H2) and the following conditions hold:
(G6) there exists T > Ty such that
(¢
i 8T 0, (1.15)

o0 h(t,r)

where T is defined in Lemma 2.1 and g*(t,r) = max{0,g(t,r)}, g (t,r) = max{0,
-g(t,n}
(H5) forall ry > 11 > 0,there exists y(-) € M such that h(t,r) + y(t)r is increasing in (r1,12).

Then there exists A} > 0 such that

(i) if 0 < A < A%, (1.4) has at least one solution u € C[0,1] N C'(0,1) and u > 0 for
te (0,1);
(i) if L > A3, (1.4) has no solutions.

Remark 1.5. In [5, 6], the authors consider the boundary value problem (1.4) under the
conditions

lim 2287 _

r—oo T

0. (1.16)

In Section 3, we give two examples (see Examples 3.1 and 3.2) which satisfy the
conditions in Theorem 1.1 or Theorem 1.2 but they do not satisfy the conditions in [1-5].

2. Proof of Main Results
2.1. Some Lemmas

Lemma 2.1. Consider the following eigenvalue problem

-u" =tu(t), te(0,1),
2.1)
u(0) = u(l) =0.
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Then the eigenvalues are
Ty = (mor)? form=1,2,..., (2.2)
and the corresponding eigenfunctions are
Qm(t) =sinmart form=1,2,.... (2.3)

Let G(t, s) be the Green’s function for the BVP:

-u"=0 forte(0,1),

(2.4)
u(0) =u(l) =0.
Then
s(1-t), 0<s<t<l1,
G(t,s) = (2.5)
t(l-s), 0<t<s<l.
Also for all (¢,s) € [0,1] x [0, 1], define
(G(t,s) .
if t#0,1,
$1(t) 7
N(,s)=31-s 0 (2.6)
7[' 4
2 if £=1.
\ JT
It follows easily that
0<G(t,s)<t(1-t) for (t,s)€(0,1)x(0,1),
(2.7)
s(1-15s) 1
T <N(ts) < 5 for (t,s) € (0,1) x (0,1).
Define the operator A,B: M — CJ[0,1] by
1
Ax(t) = j G(t,s)x(s)ds,
0
(2.8)

1
Bx(t) = J‘ON(t, s)x(s)ds.

The following four results can be found in [5] (notice lim, _, o (ha2(t,7)/r) = 0 is not
needed in the proofs there).
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Lemma 2.2. Suppose (G1) and (H1) hold. Let ng € N. Assume that for every n > ny, there exist
a,, 6,, 6 € M such that

0<ant), [6,(01<6(t), lim6,(t)=0, forte(0,1) (29)

and there exist u, u,, Uy, € C[0,1] such that
0 <u(t) <u,(t) <u,(t) <u(t) forte(0,1), (2.10)
and u(0) = u(1) = 0. If
=1, () + an (t)un(t)
1
< g(t, = + v) + Ah(t,v) + 6,(t) + a,(t)v(t) forte (0,1),
(2.11)

— U (t) + an(t)id,(t)

> g<t, % + v) + A(t,0) + 6, (t) + an(t)o(t) for t € (0,1),

where A > 0 andv € Dg", then (1.4) has a solution u € C[0,1]NC"(0,1) such that u(t) < u(t) < u(t)
fort e [0,1].

Lemma 2.3. Let ¢ : (0,1) x (0,00) — (0, 00) be a continuous function with

w(t,-) is strictly decreasing,

(2.12)
g(,r)eM Vr>0.
Then the problem
" 1
—w'(t) = q;(t,w(t) + —> forte(0,1),
n (2.13)
w0) =w(l)=0
has a solution w,, € C[0,1] such that
1
wn(t) w1 (t) <T+wi(t) <1+ f ¢(s,1)ds forte[0,1], ne N. (2.14)
0

If we let w(t) = lim, _, xwy(t) for t € [0,1], then

weC[0,1], w(t)>0 forte(0,1),
" (t) = p(t,w(t)) forte(0,1), (2.15)
w(0) =w(l) =0.
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Next we consider the boundary value problem

—u" +a(tyu(t) = f(1), te0,1),

(2.16)
u(0) =0=u(1),
wherea, f € M, a(t) >0fort € (0,1).
Lemma 2.4. The following statements hold:
(i) forany f € M, (2.16) is uniquely solvable and
u+ A(au) = A(f); (2.17)

(ii) if f(t) > 0 for t € (0,1), then the solution of (2.16) is nonnegative.

Corollary 2.5. Let ® : M — C[0,1] N C(0,1) be the operator such that ®(f) is the solution of
(2.16). Then we have

(@) if f1(t) < fo(t) for t € (0,1), then D(f1)(t) < D(f2) () for t € [0,1];

(ii) let EC Mand p € M. If |[f(t)| < B(t), t € (0,1) forall f € E, then ®(E) is relatively
compact with respect to the topology of C[0, 1].

Lemma 2.6 (see [2]). Let f € M, f >0, f#0, u € C[0,1] n C!(0, 1) satisfy

-u"=f in(0,1),

u(0) = u(1) = 0. 218)
Then there exist m = m(f) >0, M = M(f) > O such that
ml(t) <u(t) < MI(t) forte[0,1]. (2.19)

2.2. The Proof of Theorem 1.1

Claim 1 (see [5]). There exists A] > 0, ¢ > 0, independent of \, such that for all A > A} there
exist Ry > ¢, u € C([0,1]), with c¢: (t) < u(t) < Ry¢1(t) and

—7'(t) = —g1(,U(t)) + Ay (£, 7(E)), for t € (0,1),
(2.20)
7(0) = u(1) =0,
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with
Let A} >0, c > 0and u € C[0,1] be defined in Claim 1. Define

pt,r)=g(tr) forte(0,1). (2.22)

From (G1) notice that ¢ satisfies the assumptions of Lemma 2.3, so there exist w, w, €
C[0,1], wy(t) >0, w(t) > 0 for t € (0,1) such that

—wy(t) = & <t,% + wn> for t € (0,1),

wn(0) = wu(1) =0,

wy(t) w1 (B) <1+wi(t)<ay forte0,1], ne€ N,
) 1(8) 1(t) <a [0,1] (2.23)

w(t) = lim w,(t) for te[0,1],

~w'(t) = g2t w(t)) for t€ (0,1),

w(0) =w(l) =0,

where a; =1 + f(l)gz(s,l)ds.
Let A > A}, n € N be fixed. We consider the following boundary value problem:

—v"(t) = M (t, v + wy) + My (t,u) for t € (0,1),
(2.24)
v(0) =ov(1) =0.

By (H4), there exist {R]-}]f'i such that lim; . ,R; = oo and

1

o h (i’, R]' + al)
llm _—

] =0 forte(0,1), (2.25)
j— o RI

SO

. Ahy (t, R]' + al) + Ahy (t, ﬁ(t))
lim

A =0 forte(0,1). (2.26)
j— oo R]
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There exists jo € N such that
./U’lz (t, Rjo + (11) + )th (t,ﬁ(t)) < Rjo' (227)

IfveC[0,1] and 0 < v(t) < Rj¢1(t) for t € [0,1], then

1
| N5 (s, 5) + 0a(6)) + A (s, 7)1
0
1
< f N (t, s)[Lna(s,v(s) + a1) + Ay (s, u)]ds
0
1
< J‘ N(t,s) [Aha(s, Rjy¢i(s) + a1) + Ahi(s,u)]ds (2.28)
0
1
< f N (t,s)[Ah2(s, Rj, + a1) + Ahy (s, u)]ds
0

Jo
< - for t € (0,1),
and so
0< J‘lG(t, s)[Aha(s,v(s) + wn(s)) + Ahi(s,u(s))]ds < Rj,¢1(t) for t € [0,1]. (2.29)
0

Let®: C[0,1] — CJ[0,1] be the operator defined by

1
(@m@%zJ;XLQMMGJKQ+wﬂ@fﬁ%ﬂ&ﬁ@»ﬁs for v € C[0,1], t € [0,1].

(2.30)

It is easy to see that @ is a continuous and completely continuous operator. Also if 0 < v(t) <
Rj,¢1(t) for t € [0,1], then 0 < @(v)(t) < Rj,¢1(t) for t € [0,1], so Schauder’s fixed point
theorem guarantees that there exists v € [0, Rj,¢1] such that ®(v) = 7, that is,

—0"(t) = Ao (£, 0(t) + wn(s)) + Aha (8, u(t)),

(2.31)
H(1) = 5(1) = 0.

Let

Un(t) = wn(t) + Ta(t) for t € [0,1]. (2.32)
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Then u, € C[0,1], u,(1) = %1,(1) =0, and
—it, (£) = —w,,(£) = Ty, (t)
= t ! Aho(t Un) + Ay (t,u
=& b+ wn | + Ma(t, wn + On) + X (8,10) (2.33)

> <t% + a) + Ahy(t, ) + Ao (t, di,)  for t € (0,1).

Let
u(t) = w(t) + Rj¢1(t) forte[0,1], (2.34)
SO
0<u,(t) <u() fortel01]. (2.35)
From Claim 1, we obtain
~u"(t) = —g (t, u) + Ay (t, 1)
< Aha(t,u)
1 (2.36)
<A (L) + g (t, o an) + Nt )
<-u,(t) forte(0,1),
that is,
—(u—-1,)"(t) <0 forte (0,1). (2.37)
A standard argument yields
u(t) <u,(t) forte[0,1]. (2.38)

From (G2), there exists y € M such that r — g (t,1/n +r) + y(t)r is increasing on
(0, ||e)- Let u,, = u. From (2.35) and (2.38), we have

0 <u(t) < Tn(t) < fin(t) <di(t) for t € (0,1). (2.39)
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Also for v € Dg” we have

=14, (1) + Y (D (1)
= —g1(t, n) + Ay (1, ) + Y (£) U (F)

< -gi(t,v) + A (t,0) +y(t)o(t)
<-g <t% + v) + Ay (t,0) + y(B)o(t)
< g(t,% + v) + Ah(t,v) + y(t)o(t) for t e (0,1),
— 1, (£) + y ()i (t) (2.40)

> oty 4 ) + (6 7) + Aot ) + (01701

v
%

(t,% + ﬁn> +y (D), (t) + Aho(t, tiy)

> (t,% + v) +y(t)o(t) + Aha(t, v(t))

Now Lemma 2.2 with 6, =0, n € N guarantees that there exists a solution u € C[0, 1] to (1.4)
with

u(t) <u(t) <a(t) forte[0,1]. (2.41)

2.3. The Proof of Theorem 1.2

Let

A ={XeR|(1.4) has at least one positive solution}. (2.42)

Claim 2. Let

1
A= >0; 243
maxte[orl]féN(t, S)hz(S, ay + (i)l)ds ( )
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here

1
1
a =1+ —f 1)+ +e(t) | dt,
o (u0)”
g(t) =ol(t) forte0,1], (2.44)
_ . (%))
sup g (tr), ifc<l+ >
e(t) — TE[C1,1+C2/2]
0, ifor>1+ %

Then (0, A%) € A.
Proof of Claim 2. Let n > 1 be fixed. Lemma 2.8 [6] implies that there exists a,,; € C[0,1] such
that

u(t) < ap () <ut), (2.45)

—a','lrl(t) =g <t% + (xn,l(t)> +6,(t) forte(0,1),

(2.46)
L6751 (O) = [xn,l(l) =0,
where g, is defined in (G5), and
_ _ /.1
6u(t) = 3, <t,g(t)> -3 <t, ~ g(t)), (2.47)
u(t) =cl(t) fortel[0,1],
(2.48)

¢ =max4 cj, o sup |2B ! 5 (t) + B(e)(t)
te(0,1) (E())

which does not depend on #.
On the other hand, let

w(t,r) = gt 7) + ﬁ ve(t). (2.49)
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From (G1) notice ¢ satisfies the assumptions of Lemma 2.3, so there exist w,w, €
CJ[0,1] such that

1 ) 1
—w,(t) = t,—+w, )+ ——+e(t) forte(0,1),
0 =gty e 1)

wn(0) = wu(1) =0,

wy(t) Lwp1(t) <1+wi(t) <ap forte[0,1], n€ N,

(2.50)
w(t) = limw,(t) forte[0,1],
1! 1
-w'(t) = @(t, w(t)) + +e(t) forte(0,1),
u(t)’
w(0) =w(l) =0.
Next we consider the boundary value problem
-on(t) = Ay (t, wy +0,) for t € (0,1),
(2.51)
0,(0) =0,(1) =0,
where A € (0, 1%).
Let®: C[0,1] — CJ[0,1] be the operator defined by
1
(Do) (t) := )tj G(t,s)hy(s,w, +v)ds for v e C[0,1], t € [0,1]. (2.52)
0

It is easy to see that @ is a continuous and completely continuous operator. Also, if 0 < v(t) <
¢1(t) fort € [0,1], then

1
0<D(v)(t) = .)Lf G(t,s)hy(s,wy, +v)ds
0

< A*IlG(t, s)ha(s, ar + ¢1)ds
’ (2.53)
¢1(5) [N (¢, 5)ha (s, a2 + 1) ds
maxte[o,uféN(t, s)ha(s, az + ¢1)ds

<$i(t) forte[0,1].
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Thus Schauder fixed point theorem guarantees that there exists v, € [0, ¢1] such that ®(7,) =

U, that is,

—on(t) = Aha(t, wy + Dy),

n

(2.54)
5,(0) = By(1) = 0.
Let
Uun(t) = wn(t) +0p(t), u(t) =w(t) +¢1(t) forte[0,1]. (2.55)
Then iy, & € C[0,1], i, (0) = 7, (1) = 0, %(0) = 7(1) = 0,
0 <, (t) <u(t) fortel0,1], (2.56)

=L, () = —w, () = n(t)

1 > 1 ~
= t,—+w, )+ +e(t) + Ao (t, wy, + 0,
2(ty e ) -

>0 (t,1 + ﬁn> + ! +e(t) + Ay (t,u,) forte (0,1), Le (0,1%).
n u(t)f

Now let us consider the problem

-u'(t) = g<t,% + u) + Ah(t,u) + 6,(t) forte (0,1), A e (0,1%)
u(0) =u(1) =0,

(2.58)

where 6, is defined in (2.47).
We will prove a,,1 is a lower solution of (2.58) and i, is an upper solution of (2.58).
Now (2.46) and the positivity of h(t, s) implies that

_a;;,l (t) = §1 <t/ % + a1 (t)> + 5n(t)
(2.59)

<ty + 0 ) + 1h(t,ana (1) + 5,00,
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SO a1 is a lower solution of (2.58). On the other hand, from the definition of g, and u, we

have
g <t,u> = min g(t,u),L < L for t € (0,1),
= = u®f | T uwy
§<t 1+u> min g*(t 1+u> 1 +g‘<t 1+u>
e\ TE) T wTE) h = 2.60
n n <1/n+g>ﬁ n ( )
< ‘<t L +u>
<g (b +u
<e(t) forte(0,1),
SO

6u(t) <
O P

+e(t) forte(0,1). (2.61)

Consequently, we have

+e(t) + Aha(t, ty)

—u(t) > (t, 1 + ﬁn> + !
n u(t)f

1 1 -
> g(t, p + un> + g(t)ﬂ +e(t) + Lh(t, uy) (2.62)

<)

o ) + At ) + 60(D),

S0 U, is an upper solution of (2.58). We next prove that

() < n(t) for t € [0,1]. (2.63)

Suppose (2.63) is not true. Let y(t) = a1 (t) —1i,(t) and let o € (0, 1) be the point where
y(t) attains its maximum over (0, 1). We have

y(o) >0, y'(o) <0. (2.64)
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On the other hand, since a,,1(c) > Ui, (), we have

~a30) =51 (007 + 01(0) ) +6(0)
(
(

<@ <o, 1 + an,1(0)> +

n

<glo =+ an,1(0)> +6,(0)

IN

o,

4

+e(0o)

S~ Q-

+ a1 (o)> +

u(o)?
- (2.65)

g(o)ﬂ +e(0)

+e(0) + Ahy (o, u,(0))

< <o l+ﬁ (o)>+
2 In n E(O'ﬁ

< -1, (0),

SO

y"(0) = a;, 1 (0) — 1,(0) >0, (2.66)

and this is a contradiction.
From (G3), there exists y € M such that r — g(t,1/n + r) + y(t)r is increasing in
(0, |]e). Let u(t) = u(t), u,(t) = a,1(t). From (2.45), (2.56), and (2.63), we have

0<u(t) <u,(t) <u,(t) <u(t) forte(0,1). (2.67)
Also forv € Dg:, we have
= 1l () +y (£) 2 ()
< g<t,% + ﬁn> +y(#)uy + 6, (t)
1
- + v) +y(t)v + 6,(t) + AR(t, v) (2.68)

< g(t,% + ﬁn> +y(t)tiy + 0, (t) + Aha(t, 1y)

<= () + y(B)un().
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On the other hand, by (2.61)

164(8)] < 1)ﬁ +e(t)=8(t),

u (2.69)
lim 6,(t) =0 forte (0,1).

Now Lemma 2.2 guarantees that there exists a solution u € C[0,1] N C*(0, 1) to (1.4) with

u(t) <u(t) <a(t) forte[0,1]. (2.70)

Thus (1.4) has a solution for A € (0,1*) so Claim 2 holds. In particular, A#@ and sup A >
0. O

Claim 3. If A € A, then (0,A] € A.
Proof of Claim 3.

Step 1. We may assume that A > 0. Let y be a positive solution of (1.4), that is,

X" =8(tx) +Ah(tx), te©),

(2.71)
x(0) =0= x(@).
We prove that there exists p > 0 such that
x() > pl(t) forte[0,1]. (2.72)

By (G4), g(t,r) > 0 for t € (0,1), r € (0,c1]. From the continuity of y and y(0) = 0 = y(1), it
follows that there is 0 < 6 < 1/2 such that

0<x(t)<e forte[0,6]U[1l-6,1]. (2.73)
Then
—x" > Ah(t,x) forte[0,6]U[1-5,1]. (2.74)
Let v € C'(0,6) N C[0, 6] so that

-v'(t) = h(t,x) forte(0,6),
(2.75)
v(0) =v(6) =0.

It follows that Aov(t) < y(t) for t € [0, 6]. Lemma 2.6 implies that there exists m > 0 so that

minf{t,6 -t} <ov(t) forte [0,06]. (2.76)
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The same reason implies that
minf{t+6-1,1-t} <v(t) forte[l-61].
It follows that

mMl(t) < y(t) forte [O, g] U [%,1].

Moreover,
1nf{ 0 ‘te O,2 U > ,1 > 0.

On the other hand, we easily have

inf{&:te [§ ﬂ]}>0,

1(t) 27 2
S0
o X0 o) -
1r1f{ 10 :te€(0,1)p=p>0,
and thus

x(t) > pl(t) forte[0,1].

Step 2. Letr = p Acy and u(t) = rl(t). Then

u(t) < A<§m<-,% +g/\x> +6n>(t) forte€[0,1], mn>1,

where

S =
+
|I=
>
o<
~

6.(6) =3 (1) - (4

Notice

u(t) <x(), u)<cll) fortel01].

(2.77)

(2.78)

(2.79)

(2.80)

(2.81)

(2.82)

(2.83)

(2.84)

(2.85)
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From (G5), we have
A<§1 (-,g/\ X))(t) - f:G(t, )3, <s,g>ds

1
= ¢1(t)f0N(t, )%, (s,1)ds

(2.86)
¢ (#) (! _
> gJ‘OS(l -5)g; <s,£l(s)>ds
ra(t)
> = >u(t) fortel0,1],
SO
— 1
A5, (5 +unx) +6.)0
! 1 1
= j G(t,s) [§m<s,a +g/\x) —§1<5,1—1 +g/\x> +§1(s,g/\x>]ds
0 a a a (2.87)
1
> j G(t,s)g, (s,g/\x)ds
0 =
>u(t) forte[0,1].
Step 3. Let 0 < u < \. For each m > 1, there exists T >, independent of n. Let
U () = Tul(t)  for t € [0,1]. (2.88)
Then
A<§m<-,% +v /\x> + 6, +,uh2(~,v/\x))(t) <TUn(t) forte[0,1], ve DZ’", n>1.
(2.89)
Letv € C[0,1] nC'(0,1) such that
0" = Ahy(t,x) forte(0,1),
(2.90)

v(0) =ov(1) =0.
By Lemma 2.6, there exists M > 0 such that

o(t) < MI(t) for t € [0,1]. (2.91)
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Let

= 1
Tm>max{ M+asupB| ———+—+e |(t),rp. (2.92)
te(0,1) <u /\X> u =

Note u < u since 7, > r. Let v > u and notice (note g7(-,7) = 0if 0 < 7 < ¢; from (G4))

A<§m<-,% +v /\x) +6n>(t)

feus)

oql
3
N
A
S|
+
Q
>
<
~
|
sl
N
»
Q=
+
=
>
<
~
+
O
S
>
=
>
<
—
N
)

! [ m ,( 1 ) _ ]
<| Gt,s)| ——— g (s,~+u)+3,(su)|d
fo ( S)_(l/n+v/\x)ﬂ &\’ n = g1<s g> °

! [ m 1
SIOG(t,s) (v/\x)ﬂ +g+e] ds
i (2.93)

1
gfc(t,s) _m L e]as
. ;

<x|B —+l+e (t)-1(t) forte[0,1].
P oyb

(rx) =
On the other hand,

1
AGuh (00 0) 0 = 1 Gt (5,01 s

< /\JlG(t, s)ha(s, x)ds (294)
0

=o(t) < MI(t) forte]0,1],
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so
A<§m (,% +U/\X> +6p +‘uh(~,v/\x))(t)

< A<§m<-,% +v Ax) + 6n>(t) + A(ph(-, 0N x)) ()

(2.95)
<x|B Lﬂ+lﬂ+e (t) - I(t) + MI(t)
(wn)
< ﬁm(t) forte[0,1], v e [g,ﬁm], n>1.
Step 4. Let 0 < u < A. Let n,m > 1 be fixed. There exists B, ,, € C[0, 1] such that
u(t) < Pum(t) <Unm(t),
B wt) =3, (t% + B A x) + ph(t, Bum A x) +6a(t) for t € (0,1), (2.96)

Bnm(0) = Pnm(1) =0

Let n,m > 1 be fixed. From Remark 1.3, there exist y, € M, y, > O such that g, (t,7) +
Yn(t)7 is increasing in (1/n,1/n +7,,/2). We easily prove that

S, (7 A Y) + yau(t)r is increasing in <%,% + %") (2.97)

Let y(t) = y,. We have g, (t,1/n +r A x) + y(t)r is increasing in (O,?m/Z). From (2.83) and
(2.89), we have for fixed v € C[0, 1], u(t) < v(t) < U,/ (t) that

u(t) + A7) ) < A%, (3 420 x) +6,) 0+ A7)0

(Gl

A< < —+v/\x>+yv+6 + ph(-, v/\x))(t)

IA
b

) Y+ 6n+ph(, v/\x))

Ilt

(2.98)

IN

< Tm(t) + A< )(t)
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Fix v € C[0,1] with u(t) < v(t) < ﬁm(t). From Lemma 2.4, there exists ¥(v) € CJ[0,1] such
that a

= ¥'(0)(t) + Y () ¥ (v) (t)
_ ( 1 _
=g, (t —tv Ax> +¥(t)v(t) +6,(t) + ph(t,v A x) forte (0,1) (2.99)
W(0)(0) = ¥(v)(1) = 0.
Then

Y(o)(t) + AF¥(v))(t) = A<§m<,% + v/\x> +¥v + 6, + ph(, 0N Y) )(t) for t € (0,1),

(2.100)

s0 (2.98) implies that

u(t) + A(Fu) () < P (0) () + AT¥(0)) (1)
(2.101)
< Tm(t) + A(? ﬁm) (t) forte (0,1).
From Corollary 2.5, we have
u(t) <W(o)(b) < Un(t) fort€[0,1]. (2.102)
Also,
§m<t,% +v/\x> +?U+6n+/4h(t,v/\x)‘

(2.103)

G ET G A IR AU U

=pt)yeM forte(0,1).

Now ¥ : DE"‘ — DE’" is compact, so Schauder’s fixed point theorem implies that there exists
Bum € C[0,1] such that u(t) < frm(t) < Hm(t) and W (By,m) (t) = Pum(t) for t € (0,1) :

—Brmt) =8, (t, % + Bum A X> + ph(t, Pum A x) +6,(t) fort€(0,1),

,Bn,m(o) = ﬂn,m(l) =0, (2.104)

_ /1
3, <t, =+ Pum /\x) + ph(t fum A X) + 62(8)| <32 (L1 A x) + Ao (1, x).
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Let m > 1 be fixed. We consider the sequence {f, .}, ;- Fix ng € {2,3,...}. Let us
look at the interval [1/2™*!,1 — 1/2™*1]. The mean value theorem implies that there exists

T € (1/2™*,1-1/2m*) with |B), ,(T)| < (8/3)supte[0/1]ﬁm(t). As a result

{ ﬁn,m(t)};‘;no ., is bounded, equicontinuous family on [ ! 1 L ] (2.105)

2mo+1 [ 2mo+1

The Arzela-Ascoli theorem guarantees the existence of subsequence N, of integers and a
function z, », € [1/2"*,1 - 1/2"*] with B, ,, converging uniformly to z,,, on [1/2™*!,1 -
1/2™*!'] asn — oo through N, . Similarly,

o . . . . 1 1
{Brm} .1 13 bounded, equicontinuous family on [ 1 ], (2.106)

2mo+2 s 2mo+2

so there is a subsequence N, 1 of Ny, and a function zy 1., € C[1/2™*2,1 - 1/2™*2] with
Pnm converging uniformly to Zuy1,, on [1/2%%2,1-1/2"*2] as n — oo through Ny, .1. Note
Zngtim = Zmgm ON [1/271 1 = 1/2m*1] since Ny41 C Ny, Proceed inductively to obtain
subsequences of integers N, 2 Npys1 2 -+ 2 Ni 2 --- and functions zx,, € C[1/ 2k+1 1 —
1/2K1] with B, ,, converging uniformly to zk , on [1/2K*1,1-1/2K1]asn — oo through Ny,
and zg, = Zx_1,m on [1/2K,1-1/2F].

Define a function u,, : [0,1] — [0,0) by u,(t) = zk,(t) on [1/251,1 - 1/2K1] and
Uy (0) = u,y (1) = 0. Notice u, is well defined and u(t) < u,,(t) < u,(t) for t € (0,1). Next, fix
t € (0,1) (without loss of generality assume ¢ #1/ 2) and let n* € {ng,ny +1,...} be such that
1/2"* <t <1-1/2"*1 Let N;. = {i € N, : i > n*}. Now fB,,,,,n € N?. satisfies the integral
equation

Bum(t) = ﬁn,mG) +ﬁ%,m<%) (t‘ %>

+ It (s—1t) <§m (s, % + Bum A X) + uh (s, Pum N YX) + 6n(5)>d5/

1/2

(2.107)

for t € [1/2"1,1 - 1/2"1]. Notice (take t = 2/3 say) that {f,.(1/2)},n € N*., is a bounded
sequence since u(t) < Pum(t) < ﬁm(t) for t € [0,1]. Thus {fym(1/2)},cn- has a convergent
subsequence; for convenience we will let {Pnm(1/2)},cn-, denote this subnsequence also, and
let 7 € R be its limit. Now for the above fixed t, and letn' — oo through N, to obtain

1
8m <t1 E + ﬂn,m A X> I gm(t/ Zk,m N\ X)/

h(t, ,Bn,m N X) —> h(t, Zk,m JAN x)/ (2108)

6, — 0.
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As a result,
1 1 ! _
Zem(t) = zk,m<§> + T<t - 5) + f (s=1t)(8,,(s, zim A X) + ph(s, zim A x))ds, (2.109)
1/2
that is,

1 1 ! _
Uy (t) = um<§> +T<t - E) +f /2(5 —1)(3,,(5, ttm A ) + ph(s, um A x))ds. (2.110)

1
We can do this argument for each t € (0,1) and so

—tty, (t) = g, (b m A X) + ph(t,um A x) for te(0,1). (2.111)

It remains to show that u,, is continuous at 0 and 1. _
Let € > 0 be given. Since u,, € C[0,1] there exists 6 > 0 with u,,(t) < e/2 for t € [0, 5].

As aresult u(t) < Bnm(t) < ﬁm(t) <e/2fort € [0,8]. Consequently, u(t) < u,,(t) < e/2 < € for
t € [0,6] and so u,, is continuous at 0. Similarly, u,, is continuous at 1. As a result u,, € C[0,1]
and

—up(t) =g, (b um A x) +ph(t,u, Ay) forte(0,1),
(2.112)
U (0) = uy(1) =0.

Next we prove
um(t) < x(t) forte[0,1]. (2.113)

Suppose (2.113) is not true. Let y(t) = u,,(t) — x(t) and o € (0,1) be the point where y(t)
attains its maximum over (0,1). We have

y(o) >0, y"(0) <0. (2.114)
On the other hand, since u,,(c) > y(c), we have

y'(0) = uy (o) - x" (o)
= =8, (0,um A X) = ph(o,um A X) + g(0, X) + Ah(0, X)
==8,,(0,x(0)) — puh(0, x(0)) + g(0, x(0)) + Ah(0, x(0))
> (A-o0)h(o, x(0)) >0.

(2.115)

This is a contradiction, so (2.113) is true.



Boundary Value Problems 25

Thus we have

_u,r,n = gm(t, um) + ph(t, uy),
Um(0) = um(1) =0, (2.116)

u(t) <up(t) < x(t) for te[0,1].

By the same reason as above, we obtain subsequences of integers N, 2 Ny 41 2 -+ 2
Ni 2 --- and functions z,, € C[1/251,1 — 1/2%1] with u,, converging uniformly to zi on
[1/2k1,1-1/2k1]asm — oo through Ni, and zx = zx-; on [1/2%,1-1/2F].

Define a function u : [0,1] — [0, o0) by u(t) = zx(t) on [1/2%1,1 - 1/2K1] and u(0) =
u(1) = 0. Notice u is well defined and u(t) < u(t) < y(t) for t € (0,1). Next fix t € (0,1)
(without loss of generality assume t #1/2 ) and let m* € {my, mo+1,...} be such that 1/2"™*! <
t<1-1/2"*1 Let N}, = {k € Ny : k > m*}. Now u,,, m € N,. satisfies the integral equation

U (t) = um<%> + u'm<%> (t - %) + r (s —t)(8,,(S tm) + ph(s, uy))ds (2.117)

1/2

fort € [1/2™*1,1-1/2™+1]. Notice (take t = 2/3 say) that {u,,(1/2)}, m € N,. is a bounded
sequence since u(t) < u,(t) < x(t) for t € [0,1]. Thus {u;,(1/2)},,cn-, has a convergent
subsequence; for convenience we will let {1,,(1/2)} e _ denote this su%sequence also, and
let 7 € R be its limit. Now for the above fixed t, and lettigg m — oo through N} to obtain

u(t) = u(%) + T(i’ - %) + J‘t (s —t)(g(s,u) + ph(s,u))ds. (2.118)

1/2
we can do this argument for each ¢ € (0,1) and so

—u"(t) = g(t,u) + ph(t,u) forte (0,1). (2.119)

Also reasoning as before we have that u is continuous at 0 and 1.
Thus we have

-u" = g(t/ u) + #h(t/ u)/
u(0) =u(l) =0.

(2.120)

Now let A5 = sup A > 0. Then

(i) if 0 < A < A3, (1.4) has at least one solution u € C[0,1] N C'(0,1) and u > 0 for
te (0,1);

(i) if L > A3, (1.4) has no solutions. O
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2.4. The Proof of Theorem 1.4

Claim 4. Let
. 1
A= : > 0; (2.121)
maxieo1] [, N (t, 5)ha (s, as + ¢1)ds
here
_ 1 ! 1 (1)1 (S)
az =1+ Z.[o (gz(s,l) +hy (s, 3 + ¢1(s)> + 2|¢1|w ds. (2.122)

Then (0,1*) € A.

Proof of Claim 4. Let A € (0, 1*) be fixed. From assumption (G6), it follows that there is 7 > 71
and ¢;3 € (0,1),such thatif n>2/c;3,0 <k <c3/2 <1, we have

0<Kpil, <3, 0< % + k() < c3,
2.123
T(1/n+kd:1(t)) + g (t,1/n+ k(1)) <1 ( )
h(t,1/n+kq(t)) -
Thus,
ki (t) + g (t,1/n+ k(1)) <1 (2.124)
h(t,1/n+ki(t))
Then, forn > 2/c3,
Tk (t) + g <t,% + k¢1(t)> < \h (t,% + k¢1(t)>, (2.125)
and we have
Tk (t) < )Lh<t,% + k¢1(t)) -g (t,% + k¢1(t)>
<g* (t,% + k¢1(t)> -g (t,% + kd)l(t)) + Ah(t,% + k¢1(t)>
(2.126)

- g<t,711 + k¢1(t)> + Ah(t,% + k¢1(t)>
— A (t, ki (D) + \h(t ko (£))

= g<t, % + k¢1(t)) +AR(t kdr(t)) + 64 (t),
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where
6,(t) = \h (t,% + k¢1(t)> — Ah(t ke (t)).

Let u(t) = k¢1 (). We have

—'(t) = Tiky () < Thpy () < g<t, % + H(t)) + Ah(tT(E) + 6,(t) for t € (0,1).

Let

$1(t)
2|,

w(t,s) = g(t,s) +Ahy <t,% + ¢1(t)> +

27

(2.127)

(2.128)

(2.129)

From (G1) notice that ¢ satisfies the assumptions of Lemma 2.3, so there exist w, w, €

C[0,1] such that

$1(t)
2|¢nl,,

—wi(t) =g <t,% + wn> + Ahy <t, % + ¢1(t)> + for t € (0,1),
wy(0) = wy(1) =0,
w(t) = lim w,(t) forte[0,1],

1

1
wn(t)§1+L—J 2ol

0

Consider the boundary value problem

—5"(t) = Mo (t,wy +B)  for t € (0,1),

5(0) = B(1) = 0.

Let @ : C[0,1] — C[0,1] be the operator defined by

(Do) (t) := .)LJ‘:G(t, S)hy(s,wy, +v)ds for v e C[0,1], t € [0,1].

<g2(s,1) + h2<s,% + ¢1(s)> + ) >ds =a; forte[0,1], neN.

(2.130)

(2.131)

(2.132)
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28
It is easy to see that @ is a continuous and completely continuous operator. Also if 0 < v(t) <

$1(t) for t € [0,1], then

1
0<D(v)(t) = .)Lf G(t,s)hy(s, wy, +v)ds
0

1
< A*IOG(t, s)hy (s, as + ¢1)ds
(2.133)

$1 (D[Nt 5)ha (s, a5 + b )ds
maXte[o,uf(l)N(t, s)ha (s, az + ¢1)ds

<¢i(t) forte[0,1].

Thus Schauder’s fixed point theorem guarantees that there exists o, € [0, ¢1] such that
®(v,) = U, that is,
—0n(t) = Aha(t, wy + D),
(2.134)
0,(0) = 0,(1) = 0.

Let

Uy (t) = wu(t) +0,(t), u(t) =w(t)+¢:1(t) fortel0,1]. (2.135)

Then @i, 7 € C[0,1], #:(0) = @1, (1) = 0, @(0) = (1) = 0, 0 < @Lu(t) < @(t) for t € [0,1], and

~1l,, (t) = —w),(t) = T, (1)

~ 1 1 $1(t) ~
= g2 <t, ; + (Un> + -)LhZ (tl E + ¢1 (t)> + 2|¢1| + ")Lhz(t’ Wn + Un) (2136)

> g2<t,% + an> A <t, % + ¢1(t)> N ;pllfl(’j)l + Aha(td1,)  for te (0,1).

We next prove that
u(t) <uy(t) forte[0,1]. (2.137)

Suppose (2.137) is not true. Let y(t) = u(t) — i,(t) and o € (0,1) be the point where

y(t) attains its maximum over (0, 1). We have

y(o) >0, y'(0) <0. (2.138)
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On the other hand, since u(o) > u,(c), we have
—n 1 _ _
-u (o) < g(o, - + u(o)) + (o, u(0)) + 6,(0)

g(a, 111 + ﬁ(a)) + Ah <o, % + ﬁ(o-))
o <o, % ¥ a(o)> + Ay (o‘, % " (i)l(o')) (2.139)

¢1(o)
2|¢]

IN

<P <0',111 + ﬁn(o)> + Ahy <0,% + 4)1(0)) + + Ahy (0, U, (0))

< -\ (0).

Thus y" (o) = 4" (o) — #(c) > 0, and this is a contradiction. As a result, (2.137) is true.
On the other hand, we have

16,(1)] < A‘h(t,% + k¢1(t)> — h(t, kd (t))‘
(2.140)

<21k <t,%+|¢1|>

for n > 2/c3. Consequently, for t € (0,1),6, — Oand n — oo.

From assumptions (G2) and (H5), there existsa y,7 € M, n > 2/c3,so that g(t,1/n +
r)+h(t,r) + a(t)r is increasing in (0, |il|,,), where a(t) = y(t) + T(t). Let u, = u(t). Forv € D;:,
we have

=1, (t) + a(t)iu, (t)
< g<t, % + ﬁn(t)) + Ah(t, u, (1) + 6, () + a(t)u,(t)

< g<t,% +ﬁn(t)> + AR(t, 1w, (t)) + a(t)u,(t)

+ Ah(t, 1, a,,(t)> — Mh(t, Tin (1))

N

. (2.141)
< g<t, % + ﬁn(t)> + AR(t, T () + a(t)iin(t) + AR (t, —+ ﬁn(t)>

$1(t)
2|,

< g2<t,111 + ﬁn(t)> + Ahy (8, 1, (1)) +

+ \hy <t, % + (l)l (t)> + a(t)an(t)

< =il (t) + an (£ 1, (t).
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Reasoning as in the proof of Theorem 1.1, Lemma 2.2 guarantees that (1.4) has a
solution u € C[0,1] N C'(0, 1).
Thus (1.4) has a solution for A € (0,1*) so Claim 4 holds. In particular, A#@ and
supA > 0. O
Claim 5. If A € A, then (0, 1] € A.

Proof of Claim 5. We may assume that A > 0. Let y be a positive solution of (1.4), that is,

~X"=g(t,x) +Ah(t x), te(0,1),

(2.142)
x(0) =0 = x(1).
We first prove that there exists p > 0 such that
x(t) > pl(t) forte[0,1]. (2.143)
By (G6), there exists o > 0 such that for all r € (0, o), we have
s ft_r(; Ny, (2.144)
that is,
Tr < Ah(t,r)—-g (t,r) forte(0,1), re (0,0). (2.145)

From the continuity of y and y(0) = 0 = y(1), it follows that there is 0 < 6 < 1/2 such
that

x(t) <o forte[0,6]U[1-6,1]. (2.146)

Then

-x"=g(t x) +An(t, x)
=g (tx) +Ah(t x) - g (tx)
> A(t x) - g (ty)

>7Ty(t) forte[0,6]U[1-561].

(2.147)

The next part is similar to the proof of (2.72), that is, there exists p > 0 such that

x(t) > pl(t) forte[0,1]. (2.148)
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We consider the boundary value problem

—u"=g(t,uNy) +ph(t,uny),
u(0) =u(1) =0,

(2.149)

where y € (0,1). Let &1(t,u) = q1(t, u A ), @t u) = @t un x),fll(t,u) =hi(t,uny), and
hy(t,u) = hy(t,u A x). We easily prove that the conditions of [6, Theorem 1.2] are satisfied so
(2.149) has a positive solution u € C1(0,1) N C[0, 1]. We next prove that

u(t) < y(t) for te[0,1]. (2.150)

Suppose (2.150) is not true. Let y(t) = u(t) — y(t) and o € (0, 1) be the point where y(t)
attains its maximum over (0, 1). We have

y(o) >0, y"(0) <0. (2.151)
On the other hand, since u(o) > y(o), we have

y'(0) =u"(c) - x"(0)
=-g(o,uny) - ph(o,uny)+g(ox) +h(o,x)
=-8(0,x(0)) - ph(0, x(0)) + g(0, x(0)) + Ah(0, x(0)) (2.152)
= (A=uh(o,x(0))

> 0.
This is a contradiction, so
u(t) < x(t) forte[0,1]. (2.153)

Thus we have

-u' = g(tr u) + ﬂh(t/ u)/
u(0) =u(l) =0.

(2.154)

Let A = sup A > 0. Then

(1) if 0 < A < A%, (1.4) has at least one solution u € C[0,1] N C'(0,1) and u > 0 for
te (0,1);

(ii) if A > A3, (1.4) has no solutions. O
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3. Example

Example 3.1. Consider the boundary value problem

1
-U'=-——+Ag(u) YO<t<l,
Vu

(3.1)
u(0) =u(l) =0,
where A > 1.
Define {x, )50, as x1 =2, x, = x‘z*n_l,xz,lﬂ =xp, +1,and
r?, if r € [0,2],
2 .
q(r) =4 Xon 1/ if r € [x2n-1, X2n], (3.2)
x§n+l Y X2

n .
(r = x24) + /X2n, if 7 € [X2n, X2p41].
Xon+1 — X2n

Then, Theorem 1.1 implies that there exists A] > 0 such that for every A > 1], (3.1) has at least
one positive solution u € C[0,1] N C'(0,1) and u > 0 for t € (0, 1).
To see this, let

it r) =gt r) = \/i; for (t,7) € (0,1) x (0, 0),

ho(t,r) =q(r) for (t,r) € (0,1) x (0,0), (3.3)
{\/? for (t,r) € (0,1) x (16,00),
hl (t/ 7") =

q(r) for (t,r) € (0,1) x (0,16).
It is easy to see that (G1), (H1), (H2), and (H?3) are satisfied.
Forall , > r1 > 0, let y(t) = 1/2r1/r1. Then g (t,r) + (1/2r14/r1)r is increasing in

(rll TZ)'
On the other hand, a; =1+ f(l)(l/\/§)ds =3 and let R; = x»; — 3, so we have

hZ(S/ R] + al) ~ lim hz(S,XZj) ) X2

j— oo R]' j— o X2j xZ]'—3
 im VX2 X (3.4)

j— o x2]- xZ]' -3
=0.
Thus (G2) and (H4) are satisfied. Then Theorem 1.1 implies that there exists A} > 0 such that

for every A > 1], (3.1) has at least one positive solution u € C[0,1] N C'(0,1) and u > 0 for
te (0,1).



Boundary Value Problems 33

Example 3.2. Consider the boundary value problem

—u" = g(t,u) + \h(t,u), te(0,1),

(3.5)
u(0) =0=u(),
where
la sin —|, 0<r<%,
g(tr) = 111
-—sin-, —<r, (3.6)
re r o
h(t,r) =%,

with a > 0. Then Theorem 1.2 guarantees that there exists 15 > 0 such that

(i) if 0 < A < A3, (3.5) has at least one solution u € C[0,1] N C'(0,1) and u > 0 for
te (0,1);

(i) if L > A3, (3.5) has no solutions.

To see this, let p = min{1/2,a/2}, q1(t,r) = 1/7P + x*, and @(t,r)=1/r" for (t,r) €
(0,1)x (0, 00), and hy(t,r) = hao(t,r) = r?, for (t,r) € (0,1) x [0, o). Notice that (G1), (H1), and
(H?2) are satisfied.

Forallr, >r >0, let

y(t) =sup +1< oo, (3.7)

rel

og
or

where A = (r1,12) \ {nor | n € N}, so we have g(t,r) + y(t)r is increasing in (11, 12).
Let ¢ = 1/a and we have

0<g(tr), te(0,1),0<r<c. (3.8)
Let ny be fixed such that

V@B < oo + %. (3.9)

Let ¢p € (0, c1) be such that

G < Wi [(61%1>w_ <6n6+ 5>Z_ﬂ]' (3.10)
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and we have for n > ng,r € (0, c2),

1

1’1_
rt

1 1
forte[

= W r(nor +5m/6) r(nmr +x/6)| (3.11)

Also we have
1 1/2
I t(1-1t)g,,(t,ri(t))dt > J t(1-1t)g,,(t ri(t))dt
0 0

1 1/2
> -j (g, (t, rl(t))dt
2 0

1 oo l/r(no+ar/6) 1

= I t—— dt

zn:n 1/r(nx+57/6) (rt)ﬂ (312)
1 & 1/r(nx+a/6)

> J t1Pdt

Zrﬂ n=ng” 1/r(nx+5m/6)

(2 ﬁ)yrz ﬂ,%,[<6n+1>2_ﬂ ) <%>w]

> 1.

Thus (Gb) is satisfied.
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