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1. Introduction

In this paper, we consider the nonlinear elliptic equation

Qu = λ|u|p−2u + f(x, u), in Ω,

u = 0, on ∂Ω,
(1.1)

Qu =
∑

|α|≤m
(−1)|α|DαAα(x, ξm(u)), (1.2)

where Ω ⊂ RN is a bounded open connected set, N ≥ 1. Q is a quasilinear elliptic operator
generalizing the p-Laplace, that is, Qu = −div(|∇u|p−2∇u).

It appears that certain nonlinear mathematical models lead to nonlinear differential
equations; one of them describes the behavior compressible fluid in a homogeneous isotropic
rigid porous medium, such as the p-Laplace equation. And some purely mathematical
properties of the p-Laplace seem to be a challenge for nonlinear analysis, and their study
leads to the development of new methods and approaches.
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These statements generalize certain homogeneous operators to a class of nonhomo-
geneous quasilinear elliptic operators. In particular, we get an equation involving the mean

curvature [1, page 357], that is,Qu =
∑

|α|=1 (−1)|α|Dα(|ξ′1(u)|p−2+(1 + |ξ′1(u)|2)
−(2−r)/2

)Dαu, r =
1, which is nonhomogeneous; see [2].

For nonhomogeneous quasilinear operators, there are many papers in literature
describing the properties of the principle eigenvalue and corresponding principle eigenfunc-
tion. One can refer to [3–9]. It is the purpose of this paper to study the existence results of
non-homogeneous quasilinear equations. Using Mountain Pass Theorem [10], the work of
Leray and Lions (A-3 below) [11], and variational techniques of Euler and Lagrange, we
obtain the nontrivial weak solution of (1.1).

In conclusion, we like to say that Theorem 2.1 in this paper extends and unifies the
previous results of [2].

This paper is organized as follows. In Section 2, we introduce some preliminaries and
state the main results in this paper. In Section 3, the proof of Theorem 2.1 is given.

2. Preliminaries and Basic Results

In this section, we introduce the assumptions and definitions necessary for the proof of the
theorem to come in the next section.

Let Lp(Ω) denote the usual Lebesgue space endowed with the norm |u|pp =
∫
Ω|u|pdx,

and let W
m,p

0 (Ω) denote the completion of the space C∞
0 in the standard norm ‖u‖m,p =

(
∫
Ω

∑
|α|≤m |Dαu|pdx)1/p.
Denote by Dα the differential operator

∂|α|

∂xα1
1 · · · ∂xαN

N

, (2.1)

where α = (α1, . . . , αN) is a multi-index consisting of nonnegative integers, and |α| = ∑N
i=1 αi

denotes the order of Dα. In order to write nonlinear partial differential operators in a
convenient form, we introduce, as in [12], the vector space RSm whose elements are of the
form ξm(u)(x) = {Dα(u(x)) : |α| ≤ m}, for each u ∈ W

m,p

0 (Ω), where m is a positive integer
(note D(0,...,0)u = u).

We will assume that the Q has a variational structure in the sense that there exists a
potential function Γ : Ω × RSm → R satisfying the following.

(Q-1) The map x → Γ(x, ξm) is measurable for each ξm ∈ RSm , and the map ξm →
Γ(x, ξm) is continuously differentiable for a.e.x ∈ Ω.

(Q-2) There exist constants p and c1, with 1 < p < ∞ and c1 > 0, and a nonnegative
function h ∈ L1(Ω) such that

|Γ(x, ξm)| ≤ h(x) + c1|ξm|p (2.2)

for a.e.x ∈ Ω and all ξm ∈ RSm .
(Q-3) Γ(x, 0) = 0, a.e.x ∈ Ω, and for each α, 0 ≤ |α| ≤ m, (x, ξm) ∈ Ω × RSm ,

∂Γ
∂ξα

(x, ξm) = Aα(x, ξm). (2.3)
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The functions Aα : Ω × RSm → R defined in (Q-3) will be assumed to satisfy the
Caratheodory conditions (i.e., Aα(x, ξm), are measurable in x for all ξm ∈ RSm , and are
continuous in ξm for a.e.x ∈ Ω), as well as the following four conditions.

(A-1) There exists a constant c2, with c2 > 0, and a nonnegative function h0 ∈ Lp′(Ω),
where p′ = p/(p − 1) and p is as in (Q-2), such that

|Aα(x, ξm)| ≤ h0(x) + c2|ξm|p−1, 0 ≤ |α| ≤ m (2.4)

for a.e.x ∈ Ω and all ξm ∈ RSm .
(A-2) There exists a positive constant c0 such that

∑

|α|≤m
Aα(x, ξm)ξα ≥ c0

⎛

⎝
∑

|α|=m
|ξα|2

⎞

⎠
p/2

(2.5)

for a.e.x ∈ Ω and all ξm ∈ RSm .
(A-3) Let ξm = (ηm−1, ςm) be the division of ξm into its mth order component and the

corresponding (m − 1)st order terms ηm−1, that is, ηm−1 = {ξβ : 0 ≤ |β| ≤ m − 1} ∈ RSm−1 , and
ςm = {ξα : |α| = m}. PutAα(x, ξm) = Aα(x, ηm−1, ςm). Then for a.e.x ∈ Ω and each ηm−1 ∈ RSm−1 ,
ςm /= ς∗m, we have

∑

|α|=m

(
Aα

(
x, ηm−1, ςm

) −Aα

(
x, ηm−1, ς∗m

))
> 0. (2.6)

(A-4) (Near p-homogeneity). For 0 ≤ |α| ≤ m,

(i) Aα(x, tξm)tξα ≤ |t|pAα(x, ξm)ξα, |t| ≥ 1,

(ii) Aα(x, tξm)tξα ≥ |t|pAα(x, ξm)ξα, |t| ≤ 1,

for t ∈ R, a.e.x ∈ Ω and all ξm ∈ RSm .
We note that (A-4)(ii) and the Caratheodory conditions imply that Aα(x, 0) = 0 for

0 ≤ |α| ≤ m and a.e.x ∈ Ω.
We define the following semilinear Dirichlet form:

Q(u, v) =
∑

|α|≤m

∫

Ω
Aα(x, ξm(u))Dαv, ∀u, v ∈ W

m,p

0 (Ω). (2.7)

From the definition above and (A-2), we get

Q(u, u) ≥ c0

⎛

⎝
∫

Ω

∑

|α|=m
|Dαu|2

⎞

⎠
p/2

, ∀u ∈ W
m,p

0 (Ω). (2.8)

Then it follows from [13, page 1822] that

lim inf
‖u‖Lp →∞

Q(u, u)

‖u‖pLp

< ∞. (2.9)
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So we define as in [13, page 1821]

λ1 = lim inf
‖u‖Lp →∞

Q(u, u)

‖u‖pLp

. (2.10)

Also f(x, u) ∈ C(Ω × R,R) will meet the following conditions.
(f-1) There exist constants b0 > 0, b1 > 0, such that

∣∣f(x, u)
∣∣ ≤ b0|u|q−1 + b1|u|r−1, ∀x ∈ Ω, (2.11)

where 1 < r < p < q < p∗, p∗ = Np/(N −mp).
(f-2) There exist constants θ > p,M > 0, such that

0 < F(x, u) =
∫u

0
f(x, s)ds ≤ 1

θ
uf(x, u), ∀x ∈ Ω, |u| ≥ M. (2.12)

(f-3) f(x, 0) = 0, uf(x, u) ≥ 0, u ∈ R and for a.e.x ∈ Ω, limt→ 0(f(x, t))/|t|p−1 = 0.
Now, we state our main theorem in this paper.

Theorem 2.1. Assume that Q given by (1.2) satisfies (Q-1)–(Q-3), Aα(x, ξm) satisfies (A-1)–(A-4),
λ ∈ (0, λ1), and f satisfies (f-1)–(f-3). Then problem (1.1) has at least one nontrivial weak solution.

3. Proof of the Theorem

Define a functional I : Wm,p

0 (Ω) → R by

I(u) =
∫

Ω
Γ(x, ξm(u))dx − λ

p

∫

Ω
|u|pdx −

∫

Ω
F(x, u)dx. (3.1)

Also we note that there are positive constants c3 and c4 such that

c3‖u‖m,p ≤ ‖ξm(u)‖Lp ≤ c4‖u‖m,p, ∀u ∈ W
m,p

0 (Ω), (3.2)

and from the Poincaré inequality, there is a positive constant c5 such that

‖ξm(u)‖pLp ≤ c5

⎛

⎝
∫

Ω

∑

|α|=m
|Dαu|2

⎞

⎠
p/2

, ∀u ∈ W
m,p

0 (Ω). (3.3)

Let Wm,p

0 (Ω)∗ be the dual of Wm,p

0 (Ω). I ′(u) is the Frechet derivative of I(u). So the
weak solutions of problem (1.1) are equivalent to the critical points of I(u). And (f-3) implies
that u = 0 is a trivial solution to problem (1.1).
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To derive out Theorem 2.1 we need the following lemma.

Lemma 3.1. Assume that all the conditions in the hypothesis of Theorem 2.1 hold, then I satisfies the
(PS) condition.

Proof. (1) We have the boundedness of (PS) sequence of I(u).
Suppose that {un} is a (PS) sequence of I(u); that is, there exists C > 0, such that

|I(un)| ≤ C, I ′(un) −→ 0, n −→ ∞. (3.4)

Let E = W
m,p

0 (Ω), S = {un}. From (3.4)we obtain

Q
(
un, ϕ

) − λ

∫

Ω
|un|p−2unϕdx −

∫

Ω
f(x, un)ϕdx = 0(1)

∥∥ϕ
∥∥
m,p, ∀ϕ ∈ E. (3.5)

By (Q-2), (A-4) and Fubini theorem, we have

∫

Ω
Γ(x, ξm)dx =

∫1

0
Q(tu, u)dt ≥ Q(u, u)

p
. (3.6)

From (3.5)we have

I(un) − 1
θ
0(1)‖un‖m,p =

∫

Ω
Γ(x, ξm(un))dx − 1

θ
Q(un, un)

− λ

(
1
p
− 1
θ

)∫

Ω
|un|pdx +

∫

Ω

(
1
θ
unf(x, un) − F(x, un)

)
dx

≥
(
1
p
− 1
θ

)(
1 − λ

λ1

)
Q(un, un)

+
∫

Ω(|un|≥M)

(
1
θ
unf(x, un) − F(x, un)

)
dx

+
∫

Ω(|un|<M)

(
1
θ
unf(x, un) − F(x, un)

)
dx

≥
(
1
p
− 1
θ

)(
1 − λ

λ1

)
Q(un, un) − C1

≥
(
1
p
− 1
θ

)(
1 − λ

λ1

)
c0c

p

3

c5
‖u‖pm,p − C1,

(3.7)

where C1 is a constant independent of un. The above estimates imply that

‖un‖m,p ≤ C. (3.8)
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SinceWm,p(Ω) is a separable Banach space, from Sobolev compact imbedding theorem
[14, page 144] and the weak convergence theorem [15, page 8] we obtain that there exists a
subsequence (still denoted by {un}) and a function u ∈ W

m,p

0 (Ω), such that

un −→ u, a.e. in Ω, (n −→ ∞). (3.9)

lim
n→∞

‖Dαun −Dαu‖p = 0 for |α| ≤ m − 1. (3.10)

lim
n→∞

∫

Ω
Dαunw =

∫

Ω
Dαuw, ∀w ∈ Lp′ , |α| = m. (3.11)

lim
n→∞

ηm−1(un(x)) = ηm−1(u(x)) a.e. x ∈ Ω. (3.12)

(2) Next, for the above {un}we claim that

lim
n→∞

Q(un, un − u) = 0. (3.13)

Let ϕ = un − u in (3.5), we see that

Q(un, un − u) = λ

∫

Ω
|un|p−2un(un − u)dx +

∫

Ω
f(x, un)(un − u)dx + 0(1)‖un − u‖m,p. (3.14)

We conclude from (f-1) and Sobolev compact imbedding theorem that

∣∣∣∣

∫

Ω
f(x, un)(un − u)dx

∣∣∣∣ ≤
∥∥f(x, un)

∥∥
q′ ‖un − u‖q

≤
(
b0
∥∥∥uq−1

n

∥∥∥
q′
+ b1

∥∥∥ur−1
n

∥∥∥
q′

)
‖un − u‖q

≤ c
(
‖un‖q−1m,p + ‖un‖r−1m,p

)
‖un − u‖q

−→ 0, (n −→ ∞),

(3.15)

where q′ = q/(q − 1).
Also we see from (3.8) that

λ

∣∣∣∣

∫

Ω
|un|p−2un(un − u)dx

∣∣∣∣ ≤ λ‖un‖p−1p ‖un − u‖p −→ 0, n −→ ∞. (3.16)

By (3.14), (3.15), (3.16)we obtain that (3.13) holds.

(3) There exists a subsequence {unk}∞k=1 ⊂ {un} satisfying

lim
k→∞

ζm(unk(x)) = ζm(u(x)), a.e. x ∈ Ω, (3.17)

where ζm(u(x)) = {Dαu(x) : |α| = m}.
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To establish (3.17), it is sufficient to establish that subsequence {unk}∞k=1 satisfies the
following two facts.

(c1) One has

lim
k→∞

∑

|α|=m

(
Aα

(
x, ηm−1(unk), ζm(unk)

) −Aα

(
x, ηm−1(unk), ζm(u)

))

× (Dαunk(x) −Dαu(x)) = 0, a.e. x ∈ Ω.

(3.18)

(c2) With {unk}∞k=1 designating the same subsequence as in (3.20),

{|ζm(unk)|}∞k=1 is pointwise bounded for a.e. x ∈ Ω. (3.19)

To see that (c1) and (c2) together imply (3.17), let Ω1 = {x ∈ Ω, (c1), (c2), (A-1)-(A-2)
hold simultaneously}. We have measΩ = measΩ1. If (3.17) does not hold, there must exist
a point x0 ∈ Ω1, and further a subsequence {ζm(unkl

(x0))}∞l=1 and ζ∗m ∈ RSm−Sm−1 , where
ζ∗m /= ζm(u(x0)), such that

lim
l→∞

ζm
(
unkl

(x0)
)
= ζ∗m. (3.20)

Therefore (3.12) produces

lim
l→∞

∑

|α|=m

(
Aα

(
x0, ηm−1

(
unkl

)
, ζm

(
unkl

))
−Aα

(
x0, ηm−1

(
unkl

)
, ζm(u)

))

×
(
Dαunkl

(x0) −Dαu(x0)
)

=
∑

|α|=m

(
Aα

(
x0, ηm−1(u), ζ∗m

) −Aα

(
x0, ηm−1(u), ζm(u)

)) × (ζ∗m −Dαu(x0)).

(3.21)

It is easy to see from (3.20) and (A-3) that the right side of the equality in (3.21) is strictly
positive and so the left side. This is contrary with x0 ∈ Ω1 and (c1). Therefore there is no such
a point x0 in Ω1. Hence (3.17) is established.

Now we need to prove that (c1) and (c2) hold. Set

pk(x) =
∑

|α|=m

(
Aα

(
x, ηm−1(unk), ζm(unk)

) −Aα

(
x, ηm−1(unk), ζm(u)

))

× (Dαunk(x) −Dαu(x)) = 0.

(3.22)
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From (A-3) we see that pk(x) ≥ 0, then

Ik =
∫

Ω
pk(x)dx

= −
∫

Ω

∑

|α|=m

(
Aα

(
x, ηm−1(unk), ζm(u)

) −Aα

(
x, ηm−1(u), ζm(u)

))
(Dαunk(x) −Dαu(x))

−
∫

Ω

∑

|α|=m
Aα

(
x, ηm−1(u), ζm(u)

))
(Dαunk(x) −Dαu(x))

+
∫

Ω

∑

|α|=m

(
Aα

(
x, ηm−1(unk), ζm(unk)

))
(Dαunk(x) −Dαu(x))

= I
(1)
k

+ I
(2)
k

+ I
(3)
k

.

(3.23)

By [16, page 70], we obtain that pk(x) → 0, a.e. x ∈ Ω, if Ik → 0.
From (3.11), (A-1), (A-2) and u ∈ W

m,p

0 , it follows that I(2)k → 0.
By (3.10) and (A-1), for all ε > 0, there are δ > 0, Ω′ ⊂ Ω, with measΩ′ < δ, such that

∫

Ω′

∣∣Aα

(
x, ηm−1(unk), ζm(u)

) −Aα

(
x, ηm−1(u), ζm(u)

)∣∣p′ < ε. (3.24)

We have from Egoroff theorem and (3.11) I(1)
k

→ 0. On the other hand, we can conclude from
Hölder’s inequality that

lim
k→∞

∫

Ω
Aα(x, ξm(unk))(D

αunk(x) −Dαu(x)) = 0, for 0 ≤ |α| ≤ m − 1. (3.25)

From the above and (3.13) we have that I(3)
k

→ 0 and Ik → 0. Hence (c1) is established.
Using the same methods as in [13, pages 1835-1836], we obtain that (c2) holds. The

proof of Lemma 3.1 is complete.

Proof of Theorem 2.1. We will verify the geometric assumptions of the Mountain Pass Lemma.

(i) There exists ρ > 0, β > 0 : ‖u‖m,p = ρ ⇒ I(u) ≥ β.

Let λ = λ1 − 2δ > 0, δ > 0. For all u ∈ W
m,p

0 (Ω), there holds

I(u) =
∫

Ω
Γ(x, ξm(u))dx − λ

p

∫

Ω
|u|pdx −

∫

Ω
F(x, u)dx

≥ δ

p
‖u‖pp +

δc0c
p

3

λ1pc5
‖u‖pm,p −

∫

Ω
F(x, u)dx.

(3.26)

From (f-3), for all ε > 0, ∃ρ0 = ρ0(ε) such that if 0 < ρ = ‖u‖m,p < ρ0, then

∣∣f(x, u)
∣∣ < ε|u|p−1. (3.27)
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Thus,

∫

Ω
F(x, u)dx =

∫

Ω

∫u

0
f(x, t)dt dx ≤ ε

p

∫

Ω
|u|pdx ≤ C2ε

p
‖u‖m,p. (3.28)

Taking C2 = (δc0c
p

3)/(2λ1c5), from (3.26) and (3.28), we have

I(u) ≥ β > 0. (3.29)

(ii) There exists u0 ∈ W
m,p

0 (Ω) : ‖u0‖m,p ≥ ρ and I(u0) < 0.

In fact, from (f-2), (f-3), we can deduce that there exist constants c′3, c
′
4 such that

F(x, u) ≥ c′3|u|θ − c′4, ∀u ∈ W
m,p

0 (Ω). (3.30)

Since θ > ρ, a simple calculation shows that

I(tu0) ≤ tp
∫1

0
Q(tu0, u0)dt − λtp

p

∫

Ω
|u0|pdx − c′3t

θ

∫

Ω
|u0|θdx + c′4|Ω|. (3.31)

The above implies that I(tu0) → −∞, as t → ∞.
Thus by the Mountain Pass Lemma, I(u) possesses a nontrivial critical point, and the

proof of the Theorem 2.1 is complete.

Corollary 3.2. Assume that Q given by (1.2) satisfies (Q-1)–(Q-3), Aα(x, ξm) satisfies (A-1)–(A-4),
λ ∈ (0, λ1), and f satisfies (f-2), (f-3), and the condition (f-4). There exist constants c′1 >, c

′
2 >, for all

x ∈ Ω, such that

∣∣f(x, u)
∣∣ ≤ c′1|u|q−1 + c′2, (3.32)

where 1 < q < p∗, p∗ = Np/(N −mp). Then problem (2.7) has nontrivial weak solutions.
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