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This paper motivates and sets up the mathematical framework for a new program of
investigation: to isolate and clarify the precise influence of symmetry on the probability space
of assembly pathways that successfully lead to icosahedral viral shells. Several tractable open
questions are posed. Besides its virology motivation, the topic is of independent mathematical
interest for studying constructions of symmetric polyhedra. Preliminary results are presented:
a natural, structural classification of subsets of facets of T ¼ 1 polyhedra, based on their
stabilizing subgroups of the icosahedral group; and a theorem that uses symmetry to formalize
why increasing depth increases the numeracy (and hence probability) of an assembly pathway
type (or symmetry class) for a T ¼ 1 viral shell.
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1. Introduction

The viral assembly process – just like many other spontaneous macromolecular assembly

processes – is not well-understood. This lack of understanding prevails even for basic assembly

of T ¼ 1 viral shells, including those that assemble with equal efficacy into empty shells without

enclosing the internal genomic material, and without the use of chaperone or scaffolding

proteins. This is the type of assembly that we consider here. Many mathematical models of viral

shell assembly have been proposed and studied including [2,3,9,11–13,18–20]. Here, we use

the viral assembly pathway GT model of Ref. [16] that was developed to answer focused

questions that concern only the influence of symmetry and geometric constraints (present in the

complete viral shell) on the relative probabilities of different types of abstract assembly

pathways. The geometric constraints (within monomers or between monomers) are extracted

from the X-ray or cryo-EM structure of the viral shell. More specifically, the final viral structure

can be viewed formally as the solution to a symmetric system of geometric constraints that can

be expressed as algebraic equations and inequalities.

The basic GT model does not directly address factors resulting from dynamics or kinetics or

solvent interaction, although it permits a natural extension to incorporate such factors.

As a result of this simplicity, the basic GT model is easily tunable and provides an intuitive

theory of assembly that is restricted to (and based purely on) geometry and symmetry constraints

present in the complete viral shell. Moreover, the GT model is computationally tractable, i.e.

there is an efficient randomized algorithm for computing (a provably good approximation of)

probability distribution on pathways. Since the required algorithms are modifications of state-of-

the art 3D geometric constraint decomposition algorithms [15], simulation software for the
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model is built directly upon existing opensource software for 3D geometric constraint solving

[14]. For biochemical validation, a precise GT model for minute virus of mice (MVM) assembly

pathways has been developed using MVM X-ray structure’s geometric constraints, and rough

models have been developed for maize streak geminivirus (MSV), and human adeno-associated

virus (AAV4). Several of the GT model’s predictions consistently explain existing experimental

observations about T ¼ 1 viral shell assembly pathways for MVM, MSV and AAV4.

Furthermore, the GT model’s biochemical and mathematical assumptions have been clarified

and justified.

2. Motivation and contribution

In Ref. [17], the authors observed the following. The study of the probability of an abstract

pathway is reduced to two separate factors – geometry and symmetry – that could largely be

treated independently. We explain briefly below. The GT model’s abstract pathways represent

static information in the construction (or decomposition) of the complete viral shell (Figure 1).

The nodes of these pathway trees represent subassemblies that do not disintegrate during the

course of the assembly process.

See Figures 2 and 3 for examples of pathways. These subassemblies are subsystems of the

complete viral geometric constraint system. In a pathway tree, these subassemblies or

subsystems are partially ordered by containment, with the root representing the complete

assembled structure, i.e. we only consider trees that represent successful pathways. Additionally,

in a simplified pathway tree, the leaves represent the individual viral shell monomers. Since the

T ¼ m viral shell can be overlaid on a polyhedron with the monomers represented as facets, a

simplified pathway tree for an icosahedral T ¼ m viral shell describes the assembly of a

corresponding polyhedron from its individual facets. This manuscript will only refer to

simplified, successful pathways. See Figure 1 for nomenclature of a T ¼ 1 polyhedron that we

use in this paper.

In the GT model, the first factor influencing the probability of a given pathway tree is the

geometric stability factor: this is determined by quantifiable properties – such as extent of

rigidity, algebraic complexity and size of configuration space – for each of the subassemblies

(internal nodes) that appear in the pathway tree. This factor is estimated by analysing

the corresponding subsystems of the given viral geometric constraint system. It was shown

Figure 1. (Left) Facenumbers: pentamer of trimers in a T ¼ 1 polyhedron. (Right) Vertex numbers:
trimers of pentamers in a T ¼ 1 polyhedron. Available in colour online.
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in Ref. [16] that the geometric stability factor can be expressed purely graph theoretically, using

the geometric constraint graph underlying the viral constraint system. This factor is correlated

with biochemical stability influenced by assembly and dis-assembly energy thresholds. Some

pathways can never occur (have probability zero) since the subassemblies occurring in them are

unstable (their geometric stability factor is zero). Such pathways are geometrically invalid. It was

further shown in Ref. [17] that validity of pathways can be expressed using even simpler

polyhedral graphs extracted from the underlying geometric constraint graphs, often directly

using the T ¼ m polyhedral graphs.

The second factor that clearly influences the probability of a given symmetry type or class of

pathway t is the size of the orbit of t under the action of the icosahedral group (Figure 2). By a

classic result [1,10], the sense-preserving automorphism group of a polyhedral graph can be

realized as the group of rotations of a convex polyhedron whose skeleton is the given polyhedral

graph. Hence, we can continue to use a purely graph-theoretic treatment of subassemblies and

valid pathways when analysing this factor as well. In this paper, we study this symmetric

numeracy factor exclusively.

Figure 2. T ¼ 1 assembly pathways based on pentameric subassemblies and nomenclature of Figure 1,
triangles at bottom represent pentamers; arrows represent the action of the icosahedral group on pathways;
only the two arrows to the right of the two middle figures fix the corresponding pathways.

Figure 3. T ¼ 1 assembly pathways based on trimeric subassemblies, triangles at bottom represent trimers.
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Remark. Note that the geometric stability factor and validity remain invariant for any pathway

tree of the same symmetry type, or in the same symmetry class (using the symmetries of the

underlying polyhedron or the automorphisms of the corresponding polyhedral graph).

2.1 Contribution and organisation

With the above virology motivation, the overall contribution and organization of this paper is as

follows.

(1) In Section 3, we set up the required definitions with examples and develop a program of

questions concerning assembly pathway trees t of polyhedra or polyhedral graphs P with a

symmetry/automorphism group G.

This is a novel approach to studying symmetric macromolecular assembly, isolating and

clarifying the precise influence of the symmetric numeracy factor on the probability of assembly

pathway types. While the questions posed here stem from the above virology motivation, to the

best of our knowledge, they begin a new direction of mathematical investigation.

Related work. There is a rich literature on the enumeration of construction sequences of

symmetric polyhedra and their underlying polyhedral graphs, including fullerenes and fulleroids

[4,6,7]. These have focused on enumerating (constructions of) different polyhedra, using

structural features such as the so-called zigzags. On the one hand, our goal – of classifying

pathways based on their stabilizers – is geared towards enumerating (symmetry classes) of

constructions of the same polyhedron representing the viral shell. Hence, while we expect to

draw on the existing work on zigzags, we believe that the questions and theorems discussed here

require new ingredients.

(2) In Section 4, the tractability of these questions is illustrated by new results about

assembly pathway trees of icosahedral T ¼ 1 polyhedra P. In Theorem 1, we observe that the

probability that P assembles using a pathway tree t generally increases with the depth of t: more

precisely, the symmetric numeracy factor, i.e. the size of the orbit (or symmetry class) of t, is

bounded below by the depth of t. This is a useful theorem that directly indicates that the

symmetric numeracy factor generally increases with the depth. Moreover, increasing depth also

means that each intermediate subassembly or node in the pathway tree is assembled from fewer

constituent subassemblies (its children); and it is intuitively clear that this would in turn effect an

increase in the geometric stability factor of the pathway (this is formalized in Ref. [16]). Hence,

Theorem 1 clarifies how increasing depth increases the probability of the pathway symmetry

type in two independent ways. The proof of Theorem 1 uses a structural classification: for each

subgroup S of the icosahedral group, we describe the structure of a subset of P’s facets that is

fixed by S.

3. Framework and questions

A T ¼ 1 polyhedral graph is the dual or facet-adjacency graph of Figure 1 (where each of the 20

faces of the icosahedron is subdivided into three 5-sided facets as shown). That is, this graph has

one vertex for each facet shown in the figure, and edges connect vertices corresponding to pairs

of adjacent facets. As mentioned earlier, we will identify the T ¼ 1 polyhedral graph P with any

polyhedron whose facet adjacencies are specified by P and whose symmetry group is the sense-

preserving automorphism group of P. We will use these objects interchangeably. We call such a

polyhedron (with 60 facets) a T ¼ 1 polyhedron, i.e. it is based on an icosahedral construction

with T number 1 (see [5] for Caspar–Klug T number or alternatively [8] for the equivalent

Goldberg–Coxeter (h, k)-numbers). A T ¼ 1 assembly pathway tree is a rooted tree whose

leaves are labelled by the 60 facets of a T ¼ 1 polyhedron (or the 60 vertices of a T ¼ 1

polyhedral graph). Each internal node is labelled by the subset of facets corresponding to the
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descendant leaves of that node (and the corresponding subgraph of the T ¼ 1 polyhedral graph),

i.e. it represents the subassembly induced by them. The root represents the complete successful

assembly of a T ¼ 1 polyhedron or the entire T ¼ 1 polyhedral graph. From now on, a pathway

tree refers to a T ¼ 1 pathway tree. The depth of a pathway tree is the number of edges on the

longest path from root to any leaf.

It is well-known that if G is a finite permutation group acting on a set S and s [ S, then

jsGj ¼ jGj=jGsj, where s G is the orbit or symmetry class of s under the action of G, and Gs is the

stabilizer subgroup of G that fixes s. Here, j·j denotes size or cardinality of a set. If U # S, then

the stabilizer GU of U is also a subgroup of G.

We will study the natural action of the icosahedral group on the set of facets of a T ¼ 1

polyhedron, set of subsets of facets and the set of pathway trees (induced by the action on the

facets labelling the leaves). A property Q of pathway trees t is symmetry-invariant provided

Q(t0) either holds for all t0 in t’s symmetry class, or holds for none of them. Note that a

conjunction of symmetry-invariant properties is also symmetry invariant. The following is an

example of a symmetry-invariant property whose probability of occurrence would be valuable to

estimate. Pathway trees with this property can be biochemically interpreted as assembly

pathways that are based on a specific type of nucleation.

Example [nucleation]. A trimer is a triangle subgraph (3-cycle) of a T ¼ 1 polyhedral graph

induced by any three facets of a T ¼ 1 polyhedron that cover one face of the underlying

icosahedron. Similarly, a pentamer is a pentagon subgraph (5-cycle) induced by any five facets

of a T ¼ 1 polyhedron that are incident at any of the vertices of the underlying icosahedron.

A dimer is an edge between any two adjacent facets belonging, respectively, to two adjacent

faces of the underlying icosahedron. A symmetry-invariant property of pathway trees is whether

it is a pentamer nucleation tree (respectively dimer or trimer nucleation tree), i.e. all nodes

whose children are all leaves, correspond to pentamers (respectively dimers, trimers).

As remarked earlier, any natural notion of validity of pathways is a symmetry-invariant

property and Ref. [17] shows how some natural notions of validity can be expressed directly

using the T ¼ 1 polyhedral graphs. Below are two such examples of validity.

Example [validity]. A node in a pathway tree is valid if the subgraph of the T ¼ 1 polyhedral

graph corresponding to it is connected. Stronger notions of validity are defined by specifying a

set of (symmetry classes of) base stable subgraphs of the T ¼ 1 polyhedral graph [17]. In this

case, a node n in a pathway tree is valid if one of the base stable subgraphs has a non-trivial

intersection with the subgraphs associated with each of n’s children, where ‘non-trivial’ is

defined appropriately. In all cases, a pathway tree is valid if all its nodes are valid.

With these definitions and examples, we can pose the following natural questions (the

optional and variable contents in the parentheses give many versions of each question).

Question 1: Given a subgroup G of the icosahedral group, characterize the set of pathway

trees (respectively with a given symmetry-invariant property, say validity or nucleation or both)

stabilized by that subgroup. Alternatively, given a pathway tree (respectively with a given

symmetry-invariant property) specify the information necessary and sufficient to determine its

stabilizer.

Question 2: Count or enumerate (respectively symmetry classes of) pathway trees

(respectively with a given symmetry-invariant property).

Question 3: Additionally, it is interesting to compute the ratio of the number of pathway trees

(respectively number of symmetry classes) that satisfy two symmetry-invariant properties Q1
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(say nucleation) and Q2 (say validity), to the number of pathway trees (respectively number of

symmetry classes) that satisfy only Q2 (validity).

Question 4: The above questions directly extend to larger icosahedrally symmetric

polyhedra (larger T numbers), to fullerenes and fulleroids and polyhedra with different

symmetry groups. In such cases, the questions can also be phrased as algorithmic questions,

where asymptotic complexity of the algorithm is expressed in terms of the number of facets of

the polyhedron (or the T number).

4. Results

It is well-known that the icosahedral group A5 has the following subgroups and subgroup sizes:

A5, of size 60; A4, of size 12; D5, of size 10; D3, of size 6; Z5, of size 5; Z2 £ Z2, of size 4; Z3, of

size 3; Z2, of size 2; and id, of size 1.

The group A5 acts on the set of 60 facets of a T ¼ 1 polyhedron in a natural way. So the

possible symmetry class sizes are 60, 30, 20, 15, 12, 10, 6, 5 and 1. It is not difficult to verify that

all these class sizes actually occur.

Let S be a subset of the set of facets of a T ¼ 1 polyhedron, and assume that S is fixed by a

subgroup H of A5. Then we have the following possibilities for S. (These can be verified by

considering how each subgroup of A5 acts on the facets of the T ¼ 1 polyhedron.)

(1) If H ¼ A5, then S is the set of all 60 facets.

(2) If H ¼ A4, then S consists of all the facets situated on four full icosahedral faces whose

centres form a regular tetrahedron.

(3) If H ¼ D5, then S is somewhat more complicated to describe. In this case, H fixes a set of

two pentagons in parallel planes whose edges are edges of the icosahedron. Then S can

be any set of facets arranged symmetrically around these ten edges. (So for instance, the

number of facets in S is always divisible by 10 in this case).

(4) If H ¼ D3, then S consists of two full opposite faces of the icosahedron, and possibly,

additional facets added on each of the six sides of these faces in a symmetrical fashion.

(5) If H ¼ Z5, then S consists of 5-tuples of facets arranged symmetrically around the same

axis of rotation.

(6) If H ¼ Z2 £ Z2, then S consists of facets adjacent to two opposite edges of the

icosahedron.

(7) If H ¼ Z3, then S is a union of triples of facets, the triples consisting of facets

symmetrically arranged around the same axis of rotation.

(8) If H ¼ Z2, then S consists of pairs of opposite facets (on opposite faces of the

icosahedron).

(9) If H ¼ 1, then S can be any subset of facets not belonging to any of the previous eight

cases.

We are now ready to state and prove a theorem on the sizes of icosahedral symmetry classes

of T ¼ 1 pathway trees.

Theorem 1. Let d ¼ 3. Then the size of the symmetry class of a T ¼ 1 pathway tree t is at least

d 2 1, where d is the depth of t.

Proof. The proof is by verifying all cases depending on the values of d. In each case, we will use

the description of S given in the list above. Let G be the icosahedral group. We consider the

longest path in t (of length at least d). At each level, consider the set of leaves in t of that depth.

Let S denote the smallest such set; and let StabS denote its stabilizer.
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(1) If d . 30, then by the Pigeon-hole Principle, there is a level in t where S consists of only

one leaf. This can be any of the 60 facets of the T ¼ 1 polyhedron, so t has a symmetry

class size 60.

(2) If 20 , d # 30, then again by the Pigeon-hole Principle, there is a level in t where S

consists of at most two leaves. If they correspond to opposite facets, then there are 30

possibilities for their pairing, otherwise there are more. So t has an symmetry class size

of at least 30.

(3) If 15 , d # 20, then there is a level in t for which S consists of at most three leaves.

(If there is a level with two leaves, we are in the previous case. For this reason, in all

subsequent cases, we will assume that the smallest level is not smaller than it has to be.)

Then StabS can consist of at most three elements – that happens when StabS ¼ Z3), so

the orbit S G of S is of size at least 20.

(4) If 12 , d # 15, then there is a level in t that consists of at most four leaves. The above

description shows that if S has four elements, then jStabSj # 4, with equality holding

when StabS ¼ Z2 £ Z2. Therefore, jS Gj $ 15.

(5) If 10 , d # 12, then there is a level in t that consists of at most five leaves. When this is

exactly five, jStabSj # 5 (equality occurs when StabS ¼ Z5). Therefore, jS Gj $ 12.

(6) If 6 , d # 10, then we take S to be the minimum number of nodes at any given level

and show the stronger statement that jS Gj $ 10. Indeed, the only way for this claim to be

false would be if S were stabilized by a subgroup of G that has more than six elements,

that is, by A5, A4 or D5. The list above shows that that is impossible since jSj has less than

10 elements.

(7) If d ¼ 6, then there is a level in t that consists of at most 10 nodes. When jSj ¼ 10, then

it is possible that jStabSj ¼ 10, provided that StabS ¼ D5, but the larger subgroups of A5,

that is, A5 and A4, cannot be stabilizers of S. Therefore, jS Gj $ 6.

(8) If 4 , d # 5, the stabilizer of S is a proper subgroup of A5, and as such has at most 12

elements. Therefore, the orbit of S is of size at least 5.
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