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A central limit theorem and a functional central limit theorem are obtained for weighted
linear process of ρ-mixing sequences for the Xt =

∑∞
i=0aiYt−i, where {Yi, 0 ≤ i <∞} is a

sequence of ρ-mixing random variables with EYi = 0, 0 < EY 2
i <∞,

∑∞
i=1ρ(2i) <∞. The

results obtained generalize the results of Liang et al. (2004) to ρ-mixing sequences.
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1. Introduction and main results

A sequence {Xn, n≥ 1} is said to be a ρ-mixing sequence, if n→∞, we have

ρ(n)= sup
k≥1,X∈L2(Fk

1 ),Y∈L2(F∞k+n)

∣
∣cov(X ,Y)

∣
∣/‖X‖2‖Y‖2 −→ 0, (1.1)

where Fm
n is a σ-field that is generated by the random variables Xn,Xn+1, . . . ,Xm. Here

‖X‖p = (E|X|p)1/p.
We assume that {Yi, 0≤ i <∞} is a ρ-mixing sequence. Let Xt be a linear process gen-

erated by Yt, that is,

Xt =
∞∑

i=0

aiYt−i, (1.2)

where

∞∑

i=0

∣
∣ai
∣
∣ <∞. (1.3)
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And let EYi = 0, 0 < EY 2
i <∞, that is,

σ2 = lim
n→∞E

(∑n
i=1Yi

)2

n
> 0. (1.4)

Let Sn =
∑n

i=1Xi,τ2 = σ2(
∑∞

i=0 ai)
2,ξn(u)= (S[nu])/(τ

√
n).

Let X̃t = (
∑∞

i=0 ai)Yt, S̃n =
∑n

t=1 X̃t, ξ̃n(u)= (S̃[nu])/(τ
√
n).

For the linear process, Ho and Hsing [1], Phillips and Solo [2] and Wang et al. [3]
got central limit theorems (functional central limit theorems) for linear process under
independent assumptions. Kim and Baek [4] got a central limit theorem (functional cen-
tral limit theorem) for strongly stationary linear process under linear positive quadrant-
dependent assumptions.

As for NA random variable, Liang et al. [5] obtained the following result.

Theorem 1.1. Let {Yn, n ≥ 0} be a sequence of NA random variables with EYi = 0 and
∑

j:|k− j|≥u |cov(Yk,Yj)| → 0 as n→∞ uniformly for k ≥ 1. Assume that {bni, 1≤ i≤ n, n≥
1} is an array of real numbers satisfying max1≤i≤n |bni| = O(n−1/2), satisfying

∑n
i=1 b

2
ni =

O(1), max1≤i≤n |bni| → 0, as n→∞ and that Var(
∑n

i=1 bniXi) → 1.
∑∞

i=1 ρ(2i) <∞, {Y 2
n ,

n≥ 0} is uniformly integrable, (1.4) holds, and let {Yn, n≥ 0} be a linear process defined by
(1.2). Suppose that (1.3) holds, then

n∑

i=1

bniXi
d−→N

(

0,

( ∞∑

i=0

∣
∣ai
∣
∣

)2)

. (1.5)

We are inspired by Wang et al. [3] and Salvadori [6]. Salvadori [3] have obtained Lin-
ear combinations of order statistics to estimate the quantiles of generalized Pareto and
extreme values distributions. In this paper, we obtain a central limit theorem (functional
central limit theorem) for linear process under ρ-mixing sequence assumptions. The re-
sults obtained generalize the results of Liang et al. [5] to ρ-mixing sequences. More pre-
cisely, we will prove the following theorem.

Theorem 1.2. Let {Yn, n ≥ 0} be a ρ-mixing sequence of indentically distributed random
variables with EYi = 0, 0 < EY 2

i <∞,
∑∞

i=1 ρ(2i) <∞, {Y 2
n , n ≥ 0} is uniformly integrable,

(1.4) holds, and let {Yn, n≥ 0} be a linear process defined by (1.2). Suppose that (1.3) holds,
let {bni, 1 ≤ i ≤ n, n ≥ 1} is an array of real numbers satisfying max1≤i≤n |bni| = O(n−1/2),
then

∑n
i=1 bniXi

τ
d−→N(0,1), Wn =⇒W , (1.6)

where Wn(t)=∑[nt]
i=1 Yi/σ

√
n and {W(t); t ≥ 0} is a standard Brownian motion.

The weak convergence of Theorem 1.2 is quite useful in characterizing the limit dis-
tribution of various statistics arising from the inference of econometric theory, when the
economic time series {yt} defined as

yt = αyt−1 +Xt, t = 1,2, . . . , (1.7)
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where y0 is a constant with probability one. The least squares estimator of α is given by

α̂n =
∑n

t=1 yt yt−1
∑n

t=1 y
2
t

. (1.8)

To test α = 1 against α < 1, that is, the unit root test, a key step is to derive the limit
distribution of the DF (Dickey-Feller) test statistic

n(α̂n− 1)=
∑n

t=1 yt−1
(
yt − yt−1

)

n−2
∑n

t=1 y
2
t−1

. (1.9)

As shown by Phillips [7] and Wang et al. [3] obtained the limit distribution of n(α̂n− 1)
when {Xt} is a linear process generated by an i.i.d. sequence under some conditions. In
this paper, we obtained the limit distribution of n(α̂n− 1) when {Xt} is a linear process
under ρ-mixing random variables assumptions.

2. Proof of main theorem

In order to proof Theorem 1.2, we need the following lemmas.

Lemma 2.1 (see [8]). Let {Yn, n≥ 1} be a centered ρ-mixing sequence, E|Yi|p <∞, for some
p ≥ 2, then there exists a positive constant C = C(p,ρ(·)), such that

E max
1≤m≤n

∣
∣
∣
∣
∣

n∑

m=1

Ym

∣
∣
∣
∣
∣

p

≤ C

{

exp

(

C
[logn]∑

i=0

ρ(2i)

)(

n max
1≤m≤n

E
∣
∣Ym

∣
∣2
)p/2

+nexp

(

C
[logn]∑

i=0

ρ2/p(2i)

)(

max
1≤m≤n

E
∣
∣Ym

∣
∣p
)}

.

(2.1)

Lemma 2.2 ([9]). Let {Yn, n≥1} be a ρ-mixing sequence with EYi=0, EY 2
i <∞,

∑∞
i=1 ρ(2i)<

∞, {Y 2
n , n≥ 0} is uniformly integrable, and (1.4)holds, then

∑n
i=1Yi

σ
√
n

d−→N(0,1), Wn =⇒W , (2.2)

where Wn(t)=∑[nt]
i=1 Yi/σ

√
n and {W(t); t ≥ 0} is a standard Brownian motion.

3. Proof of Theorem 1.2

It is clear that

S̃k =
k∑

t=1

X̃t =
k∑

t=1

( k−t∑

i=0

ai

)

Yt +
k∑

t=1

( ∞∑

i=k−t+1

ai

)

Yt

=
k∑

t=1

( t−1∑

i=0

aiYt−i

)

+
k∑

t=1

( ∞∑

i=k−t+1

ai

)

Yt.

(3.1)
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Then

S̃k − Sk =−
k∑

t=1

( ∞∑

i=t
aiYt−i

)

+
k∑

t=1

( ∞∑

i=k−t+1

ai

)

Yt =: A+B. (3.2)

First we proof

n−1/2 max
1≤k≤n

∣
∣S̃k − Sk

∣
∣ P−→ 0. (3.3)

In order to proof (3.3), we need only to show

n−1/2 max
1≤k≤n

|A| P−→ 0, (3.4)

n−1/2 max
1≤k≤n

|B| P−→ 0. (3.5)

Using the Minkowsky inequality, Lemma 2.1 with p = 2 and the dominated convergence
theorem, then

n−1E max
1≤k≤n

∣
∣
∣
∣
∣

k∑

t=1

∞∑

i=t
aiYt−i

∣
∣
∣
∣
∣

2

= n−1E max
1≤k≤n

∣
∣
∣
∣
∣

∞∑

i=1

i∧k∑

t=1

aiYt−i

∣
∣
∣
∣
∣

2

≤ n−1E

( ∞∑

i=1

∣
∣ai
∣
∣ max

1≤k≤n

∣
∣
∣
∣
∣

i∧k∑

t=1

Yt−i

∣
∣
∣
∣
∣

)2

≤ n−1

( ∞∑

i=1

∣
∣ai
∣
∣

(

E max
1≤k≤n

∣
∣
∣
∣
∣

i∧k∑

t=1

Yt−i
∣
∣
∣

2
)1/2)2

≤ n−1

( ∞∑

i=1

∣
∣ai
∣
∣

)2

C exp

(

C
[logn]∑

i=0

ρ(2i)

)

(i∧n)EY 2
1

≤ Cn−1

( ∞∑

i=1

∣
∣ai
∣
∣(i∧n)1/2

)2

= o(1).

(3.6)

By (3.6), we have (3.4).
Because

B =
k∑

t=1

( ∞∑

i=k−t+1

ai

)

Yt

=
k∑

i=1

ai

k∑

t=k−i+1

Yt +
∞∑

i=k+1

ai

k∑

t=1

Yt =: B1 +B2.

(3.7)
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Let {pn} be a positive integers {pn} such that pn→∞ and pn/n→ 0, we have

n−1/2 max
1≤k≤n

∣
∣B2

∣
∣≤

( ∞∑

i=0

∣
∣ai
∣
∣

)

n−1/2 max
1≤k≤pn

∣
∣
∣
∣
∣

k∑

i=1

Yi

∣
∣
∣
∣
∣

+

( ∞∑

i=pn+1

∣
∣ai
∣
∣

)

n−1/2 max
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

Yi

∣
∣
∣
∣
∣

=: B21 +B22.

(3.8)

Using Lemma 2.1 with p = 2, we have

E(B21)2 =
( ∞∑

i=0

∣
∣ai
∣
∣

)2

n−1E max
1≤k≤pn

∣
∣
∣
∣
∣

k∑

i=1

Yi

∣
∣
∣
∣
∣

2

≤
( ∞∑

i=0

∣
∣ai
∣
∣

)2

n−1C exp

(

C
[logn]∑

i=0

ρ(2i)

)

pnEY
2
1

≤ C

( ∞∑

i=0

∣
∣ai
∣
∣

)2(
pn
n

)

= o(1).

(3.9)

Using Lemma 2.1 with p = 2, we have

E(B22)2 =
( ∞∑

i=pn+1

|ai|
)2

n−1E max
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

Yi

∣
∣
∣
∣
∣

2

≤
( ∞∑

i=pn+1

|ai|
)2

n−1C exp

(

C
[logn]∑

i=0

ρ(2i)

)

nEY 2
1

≤ C

( ∞∑

i=pn+1

|ai|
)2

= o(1).

(3.10)

By (3.8), (3.9), and (3.10), when n→∞, we have

n−1/2 max
1≤k≤n

∣
∣B2

∣
∣ P−→ 0. (3.11)

Next, when n→∞, we want to proof

Ln = n−1/2 max
1≤k≤n

∣
∣B1

∣
∣ P−→ 0. (3.12)

For each m≥ 1, let

B1,m =
k∑

i=1

bi

k∑

t=k−i+1

Yt, (3.13)

where bi = aiI (i≤m). Let

Ln,m = n−1/2 max
1≤k≤n

∣
∣B1,m

∣
∣, (3.14)
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for each m≥ 1, when n→∞, then

Ln,m ≤
(∣
∣a1
∣
∣+ ···+

∣
∣am

∣
∣
)
n−1/2(∣∣Y1

∣
∣+ ···+

∣
∣Ym

∣
∣
) P−→ 0, (3.15)

for all ε > 0, by Lemma 2.1, we have

P
(∣
∣Ln−Ln,m

∣
∣ > ε

)≤ ε−2(Ln−Ln,m
)2

≤ ε−2n−1E max
m≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

(
ai− bi

)(
Yk + ···+Yk−i+1

)
∣
∣
∣
∣
∣

2

≤ ε−2n−1E max
m≤k≤n

( k∑

i=m+1

∣
∣ai
∣
∣

( k∑

i=1

Yi−
k−i∑

i=1

Yi

))2

≤ 4ε−2

( ∞∑

i=m+1

∣
∣ai
∣
∣

)2

n−1E max
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

Yi

∣
∣
∣
∣
∣

2

≤ 4ε−2

( ∞∑

i=m+1

∣
∣ai
∣
∣

)2

n−1C exp

(

C
[logn]∑

i=0

ρ(2i)

)

nEY 2
1

≤ C

( ∞∑

i=m+1

∣
∣ai
∣
∣

)2

−→ 0,

(3.16)

when m→∞. By (3.16), we have

∣
∣Ln−Ln,m

∣
∣ P−→ 0. (3.17)

Using (3.15) and (3.17), we have (3.12). By (3.11), (3.12), and (3.7), we have (3.5).
Therefore we have (3.3). By max1≤i≤n |bni| =O(n−1/2), and (3.3), then

max
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

bniX̃i−
k∑

i=1

bniXi

∣
∣
∣
∣
∣

P−→ 0. (3.18)

By Lemma 2.2 and (1.4), we have

S̃n
τ

d−→N(0,1), ξ̃n =⇒W , (3.19)

and by (3.3), we have

Sn
τ

d−→N(0,1), ξn =⇒W. (3.20)

Now, we complete the proof of Theorem 1.2.

Remark 3.1. Theorem 1.2 generalizes Theorem A to ρ-mixing sequences.
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