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1. Introduction

Let D be the open unit disc in the complex plane C, dm(z) the Lebesgue area measure on D,
dmα(z) = (1 − |z|2)αdm(z), α > −1, and H(D) the space of all analytic functions on the unit
disc.

The weighted Bergman space Ap
α(D), where p > 0 and α > −1, consists of all f ∈ H(D)

such that

∥
∥f

∥
∥
p

A
p
α(D)

= (α + 1)
∫

D

∣
∣f(z)

∣
∣
p
(

1 − |z|2
)α

dm(z) < ∞. (1.1)

With this norm, Ap
α(D) is a Banach space when p ≥ 1, while for p ∈ (0, 1), it is a Fréchet space

with the translation invariant metric

d
(

f, g
)

=
∥
∥f − g

∥
∥
p

A
p
α(D)

, f, g ∈ A
p
α(D). (1.2)
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Let μ(z) be a positive continuous function on a set X ⊂ C (weight) and n ∈ N0 be fixed.
The nth weighted-type space on X, denoted by W(n)

μ (X), consists of all f ∈ H(X) such that

bW(n)
μ (X)

(

f
)

:= sup
z∈X

μ(z)
∣
∣
∣f (n)(z)

∣
∣
∣ < ∞. (1.3)

For n = 0, the space becomes the weighted-type spaceH∞
μ (X), for n = 1 the Bloch-type

space Bμ(X), and for n = 2 the Zygmund-type space Zμ(X).
For n ∈ N, the quantity bW(n)

μ (X)(f) is a seminorm on the nth weighted-type space

W(n)
μ (X) and a norm onW(n)

μ (X)/Pn−1, where Pn−1 is the set of all polynomials whose degrees
are less than or equal to n − 1. A natural norm on the nth weighted-type space can be
introduced as follows:

∥
∥f

∥
∥
W(n)

μ (X) =
n−1∑

j=0

∣
∣
∣f(j)(a)

∣
∣
∣ + bW(n)

μ (X)

(

f
)

, (1.4)

where a is an element in X. With this norm, the nth weighted-type space becomes a Banach
space.

For X = D is obtained the space W(n)
μ (D), on which a norm is introduced as follows:

∥
∥f

∥
∥
W(n)

μ (D) :=
n−1∑

j=0

∣
∣
∣f(j)(0)

∣
∣
∣ + sup

z∈D

μ(z)
∣
∣
∣f (n)(z)

∣
∣
∣. (1.5)

Some information on Zygmund-type spaces on the unit disc and some operators on them
can be found, for example, in [1–6], for the case of the upper half-plane, see [7, 8], while
some information in the setting of the unit ball can be found, for example, in [9–13]. This
considerable interest in Zygmund-type spaces motivated us to introduce the nth weighted-
type space (see [8]).

Assume ϕ is a holomorphic self-map of D. The composition operator induced by ϕ is
defined on H(D) by

(

Cϕf
)

(z) = f
(

ϕ(z)
)

. (1.6)

A typical problem is to provide function theoretic characterizations when ϕ induces
bounded or compact composition operators between two given spaces of holomorphic
functions. Some classical results on composition and weighted composition operators can
be found, for example, in [14], while some recent results can be found in [1, 5, 7, 15–34] (see
also related references therein).

Here we characterize the boundedness of the composition operator from the weighted
Bergman space to the nth weighted space on the unit disc when n ∈ N. The case n = 0
was previously treated in [16, 22, 24, 31, 35]. Hence we will not consider this case here.
See also [36] for some good results on weighted composition operators between weighted-
type spaces. The case n = 1 was treated, for example, in [26, 32]. For some other results on
weighted composition operators which map a space into a weighted or a Bloch-type space,
see, for example, [15, 17–21, 23, 25, 33, 34].
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Let X and Y be topological vector spaces whose topologies are given by translation-
invariant metrics dX and dY , respectively, and T : X → Y be a linear operator. It is said that
T is metrically bounded if there exists a positive constant K such that

dY

(

Tf, 0
) ≤ KdX

(

f, 0
)

(1.7)

for all f ∈ X. When X and Y are Banach spaces, the metrically boundedness coincides with
the usual definition of bounded operators between Banach spaces.

If Y is a Banach space, then the quantity ‖Cϕ‖Ap
α(D)→Y is defined as follows:

∥
∥Cϕ

∥
∥
A

p
α(D)→Y

:= sup
‖f‖A

p
α(D)

≤1

∥
∥Cϕf

∥
∥
Y
.

(1.8)

It is easy to see that this quantity is finite if and only if the operator Cϕ : Ap
α(D) → Y is

metrically bounded. For the case p ≥ 1 this is the standard definition of the norm of the
operatorCϕ : Ap

α(D) → Y , between two Banach spaces. If we say that an operator is bounded,
it means that it is metrically bounded.

Throughout this paper, constants are denoted by C, they are positive and may differ
from one occurrence to the other. The notation a � b means that there is a positive constant
C such that a ≤ Cb. Moreover, if both a � b and b � a hold, then one says that a 	 b.

2. Auxiliary Results

Here, we quote several auxiliary results. The first lemma is a direct consequence of a well-
known estimate in [37, Proposition 1.4.10]. Hence, we omit its proof.

Lemma 2.1. Assume p > 0, α > −1, n ∈ N0, and w ∈ D. Then the function

gw,n(z) =

(

1 − |w|2
)n+(α+2)/p

(1 −wz)n+2((α+2)/p)
, (2.1)

belongs to Ap
α(D). Moreover, supw∈D

‖gw,n‖Ap
α
< ∞.

The next lemma is folklore and was essentially proved in [38]. We will sketch a proof
of it for the completeness and the benefit of the reader.

Lemma 2.2. Assume p > 0, α > −1, n ∈ N0, and z ∈ D. Then there is a positive constant C
independent of f such that

∣
∣
∣f (n)(z)

∣
∣
∣ ≤ C

‖f‖Ap
α(D)

(1 − |z|)n+(α+2)/p
. (2.2)
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Proof. By the subharmonicity of the function |f (n)(z)|p, p > 0, applied on the disk:

D

(

z,
1 − |z|

2

)

=
{

z ∈ C | |z −w| < 1 − |z|
2

}

, (2.3)

and since

1 − |w| 	 1 − |z|, w ∈ D

(

z,
1 − |z|

2

)

, (2.4)

we have that

∣
∣
∣f (n)(z)

∣
∣
∣

p ≤ C

(1 − |z|)2+α+pn
∫

D(z,(1−|z|)/2)

∣
∣
∣f (n)(w)

∣
∣
∣

p
dmα+pn(w). (2.5)

From (2.5) and in light of the following well-known asymptotic relation [38]:

∫

D

∣
∣f(z)

∣
∣
p
(

1 − |z|2
)α

dm(z) 	
n−1∑

j=0

∣
∣
∣f(j)(0)

∣
∣
∣ +

∫

D

∣
∣
∣f (n)(z)

∣
∣
∣

p(

1 − |z|2
)α+np

dm(z), (2.6)

the lemma easily follows.

Lemma 2.3. Assume a > 0 and

Dn(a) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 · · · 1

a a + 1 · · · a + n − 1

a(a + 1) (a + 1)(a + 2) · · · (a + n − 1)(a + n)

. . .

n−2∏

j=0

(

a + j
)

n−2∏

j=0

(

a + j + 1
) · · ·

n−2∏

j=0

(

a + j + n − 1
)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (2.7)

Then Dn =
∏n−1

j=1 j!.

Proof. By using elementary transformations, we have

Dn(a) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 · · · 0

a 1 · · · 1

a(a + 1) 2(a + 1) · · · 2(a + n − 1)

. . .

n−2∏

j=0

(

a + j
)

(n − 1)
n−3∏

j=0

(

a + j + 1
) · · · (n − 1)

n−3∏

j=0

(

a + j + n − 1
)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, (2.8)
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from which it follows that

Dn(a) = (n − 1)!Dn−1(a + 1), (2.9)

which along with the fact D2(a + n − 2) = 1 implies the lemma.

We will also need the classical Faà di Bruno’s formula

(

f ◦ ϕ)(n)(z) =
∑ n!

k1! · · · kn!f
(k)(ϕ(z)

)
n∏

j=1

(

ϕ(j)(z)
j!

)kj

, (2.10)

where k = k1+k2+ · · ·+kn and the sum is over all nonnegative integers k1, k2, . . . , kn satisfying
k1 + 2k2 + · · · + nkn = n. For a nice exposition related to this formula see, for example, [39].

By using Bell polynomials Bn,k(x1, . . . , xn−k+1), (2.10) can be written in the following
form:

(

f ◦ ϕ)(n)(z) =
n∑

k=0

f (k)(ϕ(z)
)

Bn,k

(

ϕ′(z), ϕ′′(z), . . . , ϕ(n−k+1)(z)
)

. (2.11)

Remark 2.4. Since Bn,0(x1, . . . , xn+1) = 0 the summation in (2.11) is from 1 to k. Moreover, since
Bn,1(x1, . . . , xn) = xn and Bn,n(x1) = xn

1 , (2.11) can be written in the following form:

(

f ◦ ϕ)(n)(z) = f ′(ϕ(z)
)

ϕ(n)(z) +
n−1∑

k=2

f (k)(ϕ(z)
)

Bn,k

(

ϕ′(z), . . . , ϕ(n−k+1)(z)
)

+ f (n)(ϕ(z)
)(

ϕ′(z)
)n
.

(2.12)

3. Main Result

Here, we formulate and prove our main result.

Theorem 3.1. Assume p > 0, α > −1, n ∈ N, μ is a weight on D and ϕ is a holomorphic self-map of
D. Then Cϕ : Ap

α(D) → W(n)
μ (D) is bounded if and only if

Ik := sup
z∈D

μ(z)
∣
∣
∣
∣

∑
(n!/(k1! · · · kn!))

∏n
j=1

(

ϕ(j)(z)/j!
)kj

∣
∣
∣
∣

(

1 − ∣
∣ϕ(z)

∣
∣
2
)k+(α+2)/p

< ∞, k = 1, . . . , n, (3.1)

where for each fixed k ∈ {1, . . . , n}, the sum is over all nonnegative integers k1, k2, . . . , kn such that
k = k1 + k2 + · · · + kn and k1 + 2k2 + · · · + nkn = n.

Moreover, if the operator Cϕ : Ap
α(D) → W(n)

μ (D)/Pn−1 is bounded, then

∥
∥Cϕ

∥
∥
A

p
α(D)→W(n)

μ (D)/Pn−1
	

n∑

k=1

Ik. (3.2)
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Remark 3.2. Note that by (2.11) we see that the conditions in (3.1) can be written in the
following form:

Ik = sup
z∈D

μ(z)
∣
∣Bn,k

(

ϕ′(z), ϕ′′(z), . . . , ϕ(n−k+1)(z)
)∣
∣

(

1 − ∣
∣ϕ(z)

∣
∣
2
)k+(α+2)/p

< ∞, k = 1, . . . , n. (3.3)

Proof. First assume that conditions in (3.1) hold. By formula (2.10) and Lemma 2.2 we have

∥
∥Cϕf

∥
∥
W(n)

μ (D) =
n−1∑

j=0

∣
∣
∣

(

f ◦ ϕ)(j)(0)
∣
∣
∣ + sup

z∈D

μ(z)
∣
∣
∣

(

Cϕf
)(n)(z)

∣
∣
∣

=
n−1∑

j=0

∣
∣
∣
∣
∣
∣

∑ j!
l1! · · · lj !f

(l)(ϕ(0)
)

j
∏

s=1

(

ϕ(s)(0)
s!

)ls
∣
∣
∣
∣
∣
∣

+ sup
z∈D

μ(z)

∣
∣
∣
∣
∣
∣

∑ n!
k1! · · · kn!f

(k)(ϕ(z)
)

n∏

j=1

(

ϕ(j)(z)
j!

)kj
∣
∣
∣
∣
∣
∣

≤
n−1∑

j=0

j
∑

l=0

∣
∣
∣f (l)(ϕ(0)

)
∣
∣
∣

∣
∣
∣
∣
∣
∣

∑ j!
l1! · · · lj !

j
∏

s=1

(

ϕ(s)(0)
s!

)ls
∣
∣
∣
∣
∣
∣

+ C
∥
∥f

∥
∥
A

p
α(D)

n∑

k=1

sup
z∈D

μ(z)
∣
∣
∣
∣

∑
(n!/(k1! · · · kn!))

∏n
j=1

(

ϕ(j)(z)/j!
)kj

∣
∣
∣
∣

(

1 − ∣
∣ϕ(z)

∣
∣
2
)k+(α+2)/p

.

(3.4)

From this, (2.2) with z = ϕ(0), and by conditions in (3.1), it follows that the operator
Cϕ : Ap

α(D) → W(n)
μ (D) is bounded. Moreover, if we consider the space W(n)

μ (D)/Pn−1, we
have that

∥
∥Cϕ

∥
∥
A

p
α(D)→W(n)

μ (D)/Pn−1
≤ C

n∑

k=1

sup
z∈D

μ(z)
∣
∣
∣
∣

∑
(n!/(k1! · · · kn!))

∏n
j=1

(

ϕ(j)(z)/j!
)kj

∣
∣
∣
∣

(

1 − ∣
∣ϕ(z)

∣
∣
2
)k+(α+2)/p

. (3.5)

Now assume that the operator Cϕ : Ap
α(D) → W(n)

μ (D) is bounded. For a fixed w ∈ D,
and constants c1, . . . , cn, set

gw(z) =
n∑

j=1

cj

n − 2 + j + 2
(

(α + 2)/p
)

(

1 − |w|2
)n−2+j+(α+2)/p

(1 −wz)n−2+j+2((α+2)/p)
. (3.6)

Applying Lemma 2.1 we see that gw ∈ A
p
α(D) for everyw ∈ D. Moreover, we have that

sup
w∈D

∥
∥gw

∥
∥
A

p
α(D) ≤ C. (3.7)
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Now we show that for each l ∈ {1, . . . , n}, there are constants c1, c2, . . . , cn, such that

g
(l)
w (w) =

wl

(

1 − |w|2
)l+(α+2)/p

, g
(m)
w (w) = 0, m ∈ {1, . . . , n} \ {l}. (3.8)

Indeed, by differentiating function gw, for each l ∈ {1, . . . , n}, the system in (3.8) becomes

c1 + c2 + · · · + cn = 0,
(

n + 2
α + 2
p

)

c1 +
(

n + 1 + 2
α + 2
p

)

c2 + · · · +
(

2n − 1 + 2
α + 2
p

)

cn = 0,

...

l−2∏

j=0

(

n + j + 2
α + 2
p

)

c1 +
l−2∏

j=0

(

n + 1 + j + 2
α + 2
p

)

c2 + · · · +
l−2∏

j=0

(

2n − 1 + j + 2
α + 2
p

)

cn = 1,

...

n−2∏

j=0

(

n + j + 2
α + 2
p

)

c1 +
n−2∏

j=0

(

n + 1 + j + 2
α + 2
p

)

c2 + · · · +
n−2∏

j=0

(

2n − 1 + j + 2
α + 2
p

)

cn = 0.

(3.9)

By using Lemma 2.3 with a = n + 2(2 + α)/p > 0, we obtain that the determinant of
system (3.9) is different from zero from which the claim follows.

Now for each k ∈ {1, . . . , n}, we choose the corresponding family of functions which
satisfy (3.8) and denote it by gw,k.

For each k ∈ {1, . . . , n}, the boundedness of the operator Cϕ : Ap
α(D) → W(n)

μ (D) along
with (2.10) and (3.7) implies that for each ϕ(w)/= 0:

μ(w)
∣
∣ϕ(w)

∣
∣
k
∣
∣
∣
∣

∑
(n!/(k1! · · · kn!))

∏n
j=1

(

ϕ(j)(w)/j!
)kj

∣
∣
∣
∣

(

1 − ∣
∣ϕ(w)

∣
∣
2
)k+(α+2)/p

≤ sup
w∈D

∥
∥Cϕ

(

gϕ(w),k
)∥
∥
W(n)

μ (D) ≤ C
∥
∥Cϕ

∥
∥
A

p
α(D)→W(n)

μ (D),

(3.10)

where (for each fixed k ∈ {1, . . . , n}) the sum is over all nonnegative integers k1, k2, . . . , kn
such that k = k1 + k2 + · · · + kn and k1 + 2k2 + · · · + nkn = n.

From (3.10), it follows that for each k ∈ {1, . . . , n},

sup
|ϕ(z)|>1/2

μ(z)
∣
∣
∣
∣

∑
(n!/(k1! · · · kn!))

∏n
j=1

(

ϕ(j)(z)/j!
)kj

∣
∣
∣
∣

(

1 − ∣
∣ϕ(z)

∣
∣
2
)k+(α+2)/p

≤ C
∥
∥Cϕ

∥
∥
A

p
α(D)→W(n)

μ (D).
(3.11)
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Now we use consecutively the test functions

hk(z) = zk ∈ A
p
α(D), k = 1, . . . , n, (3.12)

in order to deal with the case |ϕ(z)| ≤ 1/2. Note that

‖hk‖Ap
α(D) ≤ 1, for each k ∈ N. (3.13)

By applying (2.11) to the function f(z) = h1(z),we get

(

h1 ◦ ϕ
)(n)(z) = h′

1

(

ϕ(z)
)

Bn,1

(

ϕ′(z), . . . , ϕ(n)(z)
)

= Bn,1

(

ϕ′(z), . . . , ϕ(n)(z)
)

, (3.14)

which along with the boundedness of the operator Cϕ : Ap
α(D) → W(n)

μ (D) and (3.13) implies
that

sup
z∈B

μ(z)
∣
∣
∣Bn,1

(

ϕ′(z), . . . , ϕ(n)(z)
)∣
∣
∣ ≤

∥
∥Cϕ(z)

∥
∥
W(n)

μ (D) ≤
∥
∥Cϕ

∥
∥
A

p
α(D)→W(n)

μ (D), (3.15)

or equivalently ϕ ∈ W(n)
μ (D) (see Remark 2.4).

Further, by applying formula (2.11) to the function f(z) = h2(z), we get

(

h2 ◦ ϕ
)(n)(z) = h′

2
(

ϕ(z)
)

Bn,1

(

ϕ′(z), . . . , ϕ(n)(z)
)

+ h′′
2
(

ϕ(z)
)

Bn,2

(

ϕ′(z), . . . , ϕ(n−1)(z)
)

.

(3.16)

From the boundedness of Cϕ : Ap
α(D) → W(n)

μ (D) and (3.13), we get

sup
z∈B

μ(z)
∣
∣
∣

(

h2 ◦ ϕ
)(n)(z)

∣
∣
∣ ≤

∥
∥
∥Cϕ

(

z2
)∥
∥
∥
W(n)

μ (D)
≤ ∥
∥Cϕ

∥
∥
A

p
α(D)→W(n)

μ (D). (3.17)

From (3.16) and (3.17), and by using the triangle inequality it follows that

2 sup
z∈B

μ(z)
∣
∣
∣Bn,2

(

ϕ′(z), . . . , ϕ(n−1)(z)
)∣
∣
∣

≤ ∥
∥Cϕ

∥
∥
A

p
α(D)→W(n)

μ (D) + 2 sup
z∈B

μ(z)
∣
∣
∣ϕ(z)Bn,1

(

ϕ′(z), . . . , ϕ(n)(z)
)∣
∣
∣.

(3.18)

Using the fact supz∈D
|ϕ(z)| ≤ 1 and applying inequality (3.15) in (3.18)we get

sup
z∈B

μ(z)
∣
∣
∣Bn,2

(

ϕ′(z), . . . , ϕ(n−1)(z)
)∣
∣
∣ ≤ 3

2
∥
∥Cϕ

∥
∥
A

p
α(D)→W(n)

μ (D). (3.19)
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Assume that we have proved the following inequalities:

sup
z∈B

μ(z)
∣
∣
∣Bn,j

(

ϕ′(z), . . . , ϕ(n−j+1)(z)
)∣
∣
∣ ≤ C

∥
∥Cϕ

∥
∥
A

p
α(D)→W(n)

μ (D), (3.20)

for j ∈ {1, . . . , k − 1} and a k ≤ n.
Applying formula (2.11) to the function f(z) = hk(z), k ∈ {1, . . . , n}, we have that

(

hk ◦ ϕ
)(n)(z) =

k∑

j=1

h
(j)
k

(

ϕ(z)
)

Bn,j

(

ϕ′(z), . . . , ϕ(n−j+1)(z)
)

=
k∑

j=1

k(k − 1) · · · (k − j + 1
)(

ϕ(z)
)k−j

Bn,j

(

ϕ′(z), . . . , ϕ(n−j+1)(z)
)

.

(3.21)

From this, by using the boundedness of the operator Cϕ : A
p
α(D) → W(n)

μ (D),
the boundedness of function ϕ, the triangle inequality, noticing that the coefficient at
Bn,k(ϕ′(z), . . . , ϕ(n−k+1)(z)) is independent of z (it is equal k!), and finally using hypothesis
(3.20), we easily obtain

sup
z∈B

μ(z)
∣
∣
∣Bn,k

(

ϕ′(z), . . . , ϕ(n−k+1)(z)
)∣
∣
∣ ≤ C

∥
∥Cϕ

∥
∥
A

p
α(D)→W(n)

μ (D). (3.22)

Hence, by induction, we get that (3.22) holds for each k ∈ {1, . . . , n}.
From (3.22) and bearing in mind Remark 2.4, for each fixed k ∈ {1, . . . , n}, we have

that

sup
|ϕ(z)|≤1/2

μ(z)
∣
∣
∣
∣

∑
(n!/(k1! · · · kn!))

∏n
j=1

(

ϕ(j)(z)/j!
)kj

∣
∣
∣
∣

(

1 − ∣
∣ϕ(z)

∣
∣
2
)k+(α+2)/p

≤ sup
z∈B

μ(z)
∣
∣
∣Bn,k

(

ϕ′(z), . . . , ϕ(n−k+1)(z)
)∣
∣
∣ ≤ C

∥
∥Cϕ

∥
∥
A

p
α(D)→W(n)

μ (D),

(3.23)

where as usual for a fixed k ∈ {1, . . . , n}, the sum is over all nonnegative integers k1, k2, . . . , kn
such that k = k1 + k2 + · · · + kn and k1 + 2k2 + · · · + nkn = n.

Hence from (3.11) and (3.23), we get

n∑

k=1

Ik ≤ C
∥
∥Cϕ

∥
∥
A

p
α(D)→W(n)

μ (D). (3.24)

From (3.5) and (3.24), we obtain asymptotic relation (3.2).
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