
Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2010, Article ID 381750, 22 pages
doi:10.1155/2010/381750

Research Article
Permanence and Positive Periodic Solutions of
a Discrete Delay Competitive System

Wenjie Qin and Zhijun Liu

Department of Mathematics, Hubei University for Nationalities, Enshi, Hubei 445000, China

Correspondence should be addressed to Zhijun Liu, zhijun liu47@hotmail.com

Received 30 December 2009; Accepted 1 March 2010

Academic Editor: Antonia Vecchio

Copyright q 2010 W. Qin and Z. Liu. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

A discrete time non-autonomous two-species competitive system with delays is proposed, which
involves the influence of many generations on the density of species population. Sufficient
conditions for permanence of the system are given. When the system is periodic, by using the
continuous theorem of coincidence degree theory and constructing a suitable Lyapunov discrete
function, sufficient conditions which guarantee the existence and global attractivity of positive
periodic solutions are obtained. As an application, examples and their numerical simulations are
presented to illustrate the feasibility of our main results.

1. Introduction

In recent years, the application of theories of functional differential equations inmathematical
ecology has developed rapidly. Various delayed models have been proposed in the study
of population dynamics, ecology, and epidemic. In fact, more realistic population dynamics
should take into account the effect of delay. Also, delay differential equations may exhibit
much more complicated dynamic behaviors than ordinary differential equations since a
delay could cause a stable equilibrium to become unstable and cause the population to
fluctuate (see [1]). One of the famous models for dynamics of population is the delay Lotka-
Volterra competitive system. Owing to its theoretical and practical significance, various delay
competitive systems have been studied extensively (see [2–8]). Although much progress
has been seen for Lotka-Volterra competitive systems, such systems are not well studied in
the sense that most results are continuous time versions related. Many authors [9–11] have
argued that the discrete time models governed by difference equations are more appropriate
than the continuous ones when the populations have non-overlapping generations. Discrete
time models can also provide efficient computational models of continuous models for



2 Discrete Dynamics in Nature and Society

numerical simulations. Therefore, the dynamic behaviors of population models governed
by difference equations have been studied by many authors, see [12–18] and the references
cited therein. Noting that some studies of the dynamics of natural populations indicate that
the density-dependent population regulation probably takes place over many generations
[19, 20], many authors have discussed the influence of many past generations on the density
of species population and discussed the dynamic behaviors of competitive, predator-prey,
and cooperative systems (see [21–24]).

Motivated by the above work [19–24], in this paper we will investigate the following
discrete time non-autonomous two-species competitive system with delays:

x1(k + 1) = x1(k) exp

[
r1(k) −

m∑
l=0

a1l(k)x1(k − l) −
m∑
l=0

c2l(k)x2(k − l)
1 + x2(k − l)

]
,

x2(k + 1) = x2(k) exp

[
r2(k) −

m∑
l=0

a2l(k)x2(k − l) −
m∑
l=0

c1l(k)x1(k − l)
1 + x1(k − l)

]
,

(1.1)

with the initial conditions

xi(−l) ≥ 0, xi(0) > 0, l = 0, 1, . . . , m, i = 1, 2, (1.2)

where xi(k) represents the density of population xi at the kth generation, ri(k) is the intrinsic
growth rate of population xi at the kth generation, ail(k)measures the intraspecific influence
of the (k − l)th generation of population xi on the density of its own population, and cjl(k)
stands for the interspecific influence of the (k− l)th generation of population xj on population
xi, i, j = 1, 2 and i /= j. The coefficients {ri(k)}, {ail(k)}, and {cil(k)} (i = 1, 2) are bounded
nonnegative sequences. The exponential form of the equations in system (1.1) ensures that
any forward trajectory {(x1(k), x2(k))

�} of system (1.1) with initial conditions (1.2) remains
positive for all k ∈ {0, 1, 2, . . .}. For the investigations of some continuous versions of (1.1)we
refer to [8, 25, 26] and the references cited therein.

The principle aim of this paper is to study the dynamic behaviors of system (1.1), such
as permanence, existence, and global attractivity of positive periodic solutions. To the best of
our knowledge, no work has been done for the discrete non-autonomous difference system
(1.1). The paper is organized as follows. In Section 2, we obtain sufficient conditions which
guarantee the permanence of system (1.1). In Section 3, a good understanding of the existence
and global attractivity of positive periodic solutions of system (1.1) is gained by using the
method of coincidence degree theory and a Lyapunov discrete function. Some illustrative
examples are given to demonstrate the feasibility of the obtained results in Section 4. To do
this, we need to give the following notations and Definitions 1.1 and 1.2.

For the simplicity and convenience of exposition, throughout this paper we let
Z,Z+,R+, and R2 denote the sets of all integers, nonnegative integers, nonnegative real
numbers and two-dimensional Euclidian vector space, respectively. Meanwhile, we denote
that b∗ = supk∈Z+b(k), b∗ = infk∈Z+b(k) for any bounded sequence b(k).
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Definition 1.1. System (1.1) is said to be permanent if there exist positive constantsmi andMi

such that

mi ≤ lim inf
k→+∞

xi(k) ≤ lim sup
k→+∞

xi(k) ≤ Mi, i = 1, 2 (1.3)

for any positive solution {(x1(k), x2(k))
�} of system (1.1).

Definition 1.2. A positive periodic solution {(x̃1(k), x̃2(k))
�} of system (1.1) is said to be

globally attractive if each other solution {(x1(k), x2(k))
�} of system (1.1) satisfies

lim
k→+∞

|x1(k) − x̃1(k)| = 0, lim
k→+∞

|x2(k) − x̃2(k)| = 0. (1.4)

2. Permanence

In this section, we will establish sufficient conditions for the permanence of system (1.1). To
do this, we first give two lemmas which will be useful for establishing our main result in this
section.

Lemma 2.1 (see [27, Lemma1]). Assume that {x(k)} satisfies x(k) > 0 and

x(k + 1) ≤ x(k) exp[r(k)(1 − αx(k))] (2.1)

for k ∈ [k1,+∞), where α is a positive constant and k1 ∈ Z+. Then

lim sup
k→+∞

x(k) ≤ 1
αr∗

exp(r∗ − 1). (2.2)

Lemma 2.2 (see [27, Lemma2]). Assume that {x(k)} satisfies x(k) > 0 and

x(k + 1) ≥ x(k) exp[r(k)(1 − αx(k))] (2.3)

for k ∈ [k2,+∞), lim supk→+∞x(k) ≤ M, and x(k2) > 0, where α is a constant such that αM > 1
and k2 ∈ Z+. Then

lim inf
n→+∞

x(k) ≥ 1
α
exp[r∗(1 − αM)]. (2.4)
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Before stating Theorem 2.3, for the sake of convenience, we set

Mi
def=

exp
(
r∗i − 1

)
∑m

l=0 ail∗ exp
(−r∗i l) , Δi

def= lim
ε→ 0

Δε
i , Δε

i

def=

∑m
l=0 a

∗
ilĜi

ri∗ −
∑m

l=0 c
∗
jl

,

Ĝi
def= exp

{[
(Mi + ε)

m∑
l=0

a∗
il +

m∑
l=0

c∗jl − ri∗

]
l

}
,

(2.5)

where i, j = 1, 2, i /= j, ε > 0 is a sufficiently small constant.
We are now in a position to state our main result of this section on the permanence of

system (1.1).

Theorem 2.3. If the following assumptions:

min

{
r1∗ −

m∑
l=0

c∗2l, r2∗ −
m∑
l=0

c∗1l

}
> 0,

min{M1Δ1,M2Δ2} > 1

(2.6)

hold, then system (1.1) is permanent.

Proof. Clearly, any solution {(x1(k), x2(k))
�} of system (1.1) satisfies x1(k) > 0, x2(k) > 0. The

following two steps are considered.

Step 1. According to Definition 1.1, we will prove that any positive solution of system (1.1)
satisfies lim supk→+∞xi(k) ≤ Mi for i = 1, 2.

It follows from the first equation of system (1.1) that

x1(k + 1) ≤ x1(k) exp[r1(k)]. (2.7)

Wewill make a convention that
∏k2

i=k1
b(i) = 1 if k1 > k2 for any bounded sequence b(i).

For k ≥ m, l = 0, 1, . . . , m, we can obtain

k−1∏
i=k−l

x1(i + 1) ≤
k−1∏
i=k−l

x1(i) exp[r1(i)], (2.8)

that is,

x1(k) ≤ x1(k − l) exp

[
k−1∑
i=k−l

r1(i)

]
, (2.9)

in other words,

x1(k − l) ≥ x1(k) exp

[
−

k−1∑
i=k−l

r1(i)

]
. (2.10)



Discrete Dynamics in Nature and Society 5

Consequently, we have

x1(k + 1) ≤ x1(k) exp

{
r1(k) −

m∑
l=0

[
a1l(k)x1(k) exp

[
−

k−1∑
i=k−l

r1(i)

]]}

≤ x1(k) exp

{
r1(k) −

m∑
l=0

[
a1l∗ exp

(−r∗1 l)]x1(k)

}

≤ x1(k) exp

{
r1(k)

[
1 −

∑m
l=0 a1l∗ exp

(−r∗1 l)
r∗1

x1(k)

]}
.

(2.11)

By Lemma 2.1, we can derive that

lim sup
k→+∞

x1(k) ≤
exp

(
r∗1 − 1

)
∑m

l=0 a1l∗ exp
(−r∗1 l) = M1. (2.12)

Similar to the above argument, we can verify that

lim sup
k→+∞

x2(k) ≤
exp

(
r∗2 − 1

)
∑m

l=0 a2l∗ exp
(−r∗2 l) = M2. (2.13)

Step 2. By a similar procedure to Step 1, we will prove that any positive solution of system
(1.1) satisfies lim infk→+∞xi(k) ≥ mi, where

mi
def=

exp
[(
ri∗ −

∑m
l=0 cjl

∗)(1 −ΔiMi)
]

Δi
, i, j = 1, 2, i /= j. (2.14)

For any sufficiently small ε > 0, according to (2.5), there exists a positive integer k0
such that x1(k) ≤ M1 + ε for all k ≥ k0. Thus, for k ≥ k0 +m, it follows from the first equation
of system (1.1) that

x1(k + 1) ≥ x1(k) exp

[
r1(k) − (M1 + ε)

m∑
l=0

a1l(k) −
m∑
l=0

c2l(k)

]
. (2.15)

Therefore, for all l = 0, 1, . . . , m and k ≥ k0 +m, it follows that

k−1∏
i=k−l

x1(i + 1) ≥
k−1∏
i=k−l

{
x1(i) exp

[
r1(i) − (M1 + ε)

m∑
l=0

a1l(i) −
m∑
l=0

c2l(i)

]}
, (2.16)

that is,

x1(k − l) ≤ x1(k) exp

{
k−1∑
i=k−l

[
(M1 + ε)

m∑
l=0

a1l(i) +
m∑
l=0

c2l(i) − r1(i)

]}
= x1(k)G1, (2.17)
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where

G1
def= exp

{
k−1∑
i=k−l

[
(M1 + ε)

m∑
l=0

a1l(i) +
m∑
l=0

c2l(i) − r1(i)

]}
. (2.18)

Combining (2.5) and (2.17) with the first equation of system (1.1) leads to

x1(k + 1) ≥ x1(k) exp

[
r1∗ −

m∑
l=0

c∗2l −
m∑
l=0

a∗
1lx1(k − l)

]

≥ x1(k) exp

[
r1∗ −

m∑
l=0

c∗2l −
m∑
l=0

a∗
1lG1x1(k)

]

≥ x1(k) exp

{(
r1∗ −

m∑
l=0

c∗2l

)[
1 −

∑m
l=0 a

∗
1lĜ1

r1∗ −
∑m

l=0 c
∗
2l

x1(k)

]}

= x1(k) exp

{(
r1∗ −

m∑
l=0

c∗2l

)[
1 −Δε

1x1(k)
]}

.

(2.19)

And hence, by applying Lemma 2.2 and letting ε → 0, it follows from (2.5)-(2.6) and
(2.19) that

lim inf
k→+∞

x1(k) ≥
exp

[(
r1∗ −

∑m
l=0 c

∗
2l

)
(1 −Δ1M1)

]
Δ1

= m1. (2.20)

Analogously, from the second equation of system (1.1), we can verify that

lim inf
k→+∞

x2(k) ≥
exp

[(
r2∗ −

∑m
l=0 c

∗
1l

)
(1 −Δ2M2)

]
Δ2

= m2. (2.21)

The proof of Theorem 2.3 is completed by combining Steps 1 and 2.

3. Existence and Global Attractivity of Positive Periodic Solutions

In this section, we will give two main results. We first derive sufficient conditions for the
existence of positive periodic solutions of system (1.1). We further assume that ri, ail, cil :
Z → R+ are positive ω-periodic for system (1.1), that is,

ri(k +ω) = ri(k), ail(k +ω) = ail(k),

cil(k +ω) = cil(k), l = 0, 1, 2, . . . , m, i = 1, 2
(3.1)

for any k ∈ Z, whereω, a fixed positive integer, denotes the prescribed common period of the
parameters in system (1.1).
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In order to obtain sufficient conditions for the existence of positive periodic solutions
of system (1.1), we will use the method of coincidence degree. For convenience, we will
summarize in the following a few concepts and results from [28] that will be useful in this
section.

Let X and Y be two Banach spaces. Consider an operator equation

Lx = λNx, λ ∈ (0, 1), (3.2)

where L : DomL ∩X → Y is a linear operator and λ is a parameter. Let P and Q denote two
projectors such that

P : X ∩DomL −→ KerL, Q : Y −→ Y

ImL
. (3.3)

Denote that J : ImQ → KerL is an isomorphism of ImQ onto KerL. Recall that a
linear mapping L : DomL ∩X → Y with KerL = L−1(0) and ImL = L(DomL) will be called
a Fredholm mapping if the following two conditions hold:

(i) KerL has a finite dimension;

(ii) ImL is closed and has a finite codimension.

Recall also that the codimension of ImL is the dimension of Y/ ImL, that is, the
dimension of the cokernel coker L of L.

When L is a Fredholm mapping, its index is the integer IndL = dim Ker L −
codim Im L.

We will say that a mapping N is L-compact on Ω if the mapping QN : Ω → Y is
continuous.QN(Ω) is bounded andKp(I −Q)N : Ω → X is compact, that is, it is continuous
and Kp(I −Q)N(Ω) is relatively compact, where Kp : ImL − DomL ∩ KerP is an inverse of
the restriction Lp of L to DomL ∩ KerP , so that LKp = I and Kp = I − P .

Lemma 3.1 (see [28, Continuation Theorem]). Let X and Y be two Banach spaces and let L be a
Fredholm mapping of index zero. Assume that N : Ω → Y is L-compact on Ω with Ω open bounded
in X. Furthermore assume that

(a) for each λ ∈ (0, 1), x ∈ ∂Ω ∩DomL, Lx/=λNx,

(b) QNx/= 0 for each x ∈ ∂Ω ∩ KerL,

(c) deg{JQNx,Ω ∩ KerL, 0}/= 0.

Then the equation Lx = Nx has at least one solution in DomL ∩Ω.

In what follows, we will use the following notations:

Iω = {0, 1, . . . , ω − 1}, f =
1
ω

ω−1∑
k=0

f(k), fL = min
k∈Iω

f(k), fU = max
k∈Iω

f(k), (3.4)

where {f(k)} is an ω-periodic sequence of real numbers defined for k ∈ Z.
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Lemma 3.2 (see [29, Lemma3.2]). Let f : Z → R be ω-periodic, that is, f(k + ω) = f(k), then
for any fixed k1, k2 ∈ Iω and any k ∈ Z, one has

f(k) ≤ f(k1) +
ω−1∑
s=0

∣∣f(s + 1) − f(s)
∣∣,

f(k) ≥ f(k2) −
ω−1∑
s=0

∣∣f(s + 1) − f(s)
∣∣.

(3.5)

Denote that

l2 =
{
x = {x(k)} : x(k) ∈ R2, k ∈ Z

}
. (3.6)

For a = (a1, a2)
� ∈ R2, define |a| = max{a1, a2}. Let lω ⊂ l2 denote the subspace of all ω-

periodic sequences equipped with the usual supremum norm ‖ · ‖, that is,

‖x‖ = max
k∈Iω

|x(k)| for x = {x(k) : k ∈ Z} ∈ lω. (3.7)

Then it follows that lω is a finite dimensional Banach space.
Let

lω0 =

{
x = {x(k) ∈ lω} :

ω−1∑
k=0

x(k) = 0

}
,

lωc =
{
x = {x(k) ∈ lω} : x(k) = h ∈ R2, k ∈ Z

}
.

(3.8)

Then it follows that lω0 and lωc are both closed linear subspaces of lω and

lω = lω0 ⊕ lωc , dim lωc = 2. (3.9)

We are now in a position to state one of the main results of this section on the existence
of positive periodic solutions of system (1.1).

Theorem 3.3. Assume that

r1 >
m∑
l=0

c2l, r2 >
m∑
l=0

c1l. (3.10)

Then system (1.1) has at least one positive ω-periodic solution.

Proof. We first make the change of variables

x1(k) = exp
{
y1(k)

}
, x2(k) = exp

{
y2(k)

}
. (3.11)



Discrete Dynamics in Nature and Society 9

By substituting (3.11) into system (1.1), we can get

y1(k + 1) − y1(k) = r1(k) −
m∑
l=0

a1l(k) exp
{
y1(k − l)

} − m∑
l=0

c2l(k) exp
{
y2(k − l)

}
1 + exp

{
y2(k − l)

} ,

y2(k + 1) − y2(k) = r2(k) −
m∑
l=0

a2l(k) exp
{
y2(k − l)

} − m∑
l=0

c1l(k) exp
{
y1(k − l)

}
1 + exp

{
y1(k − l)

} .

(3.12)

It is easy to see that if system (3.12) has one ω-periodic solution, then system (1.1) has one
positive ω-periodic solution. Therefore, to complete the proof, it is only to show that system
(3.12) has at least one ω-periodic solution.

Set X = Y = lω. Denote by L : X → X the difference operator given by Ly = {(Ly)(k)}
with

(
Ly
)
(k) = y(k + 1) − y(k) for y ∈ X, k ∈ Z, (3.13)

and N : X → X as follows:

N

[
y1

y2

]
=

⎡
⎢⎢⎢⎢⎢⎣
r1(k) −

m∑
l=0

a1l(k) exp
{
y1(k − l)

} − m∑
l=0

c2l(k) exp
{
y2(k − l)

}
1 + exp

{
y2(k − l)

}

r2(k) −
m∑
l=0

a2l(k) exp
{
y2(k − l)

} − m∑
l=0

c1l(k) exp
{
y1(k − l)

}
1 + exp

{
y1(k − l)

}

⎤
⎥⎥⎥⎥⎥⎦ (3.14)

for any (y1, y2)
� ∈ X and k ∈ Z. It is easy to see that L is a bounded linear operator and

KerL = lωc , ImL = lω0 , dim Ker L = 2 = codim Im L, (3.15)

then we get that L is a Fredholm mapping of index zero.
Define

P

[
y1

y2

]
= Q

[
y1

y2

]
=

⎡
⎢⎢⎢⎢⎢⎣

1
ω

ω−1∑
s=0

y1(s)

1
ω

ω−1∑
s=0

y2(s)

⎤
⎥⎥⎥⎥⎥⎦,

[
y1

y2

]
∈ X = Y. (3.16)

It is not difficult to show that P and Q are continuous projectors such that

ImP = KerL, KerQ = ImL = Im(I −Q). (3.17)

Furthermore, the inverse (to L) Kp : ImL → DomL ∩ KerP exists and is given by

Kp

(
y
)
=

k−1∑
s=0

y(s) − 1
ω

ω−1∑
s=0

(ω − s)y(s). (3.18)
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Then QN : X → Y and Kp(I −Q)N : X → X are given by

QNy =
1
ω

ω−1∑
s=0

Ny(s) ,

Kp(I −Q)Ny =
k−1∑
s=0

Ny(s) − 1
ω

ω−1∑
s=0

(ω − s)Ny(s) −
(
k

ω
− 1 +ω

2ω

)ω−1∑
s=0

Ny(s).

(3.19)

In order to apply Lemma 3.1, we need to search for an appropriately open, bounded
subset Ω.

Corresponding to the operator equation Ly = λNy, λ ∈ (0, 1), we have

y1(k + 1) − y1(k) = λ

[
r1(k) −

m∑
l=0

a1l(k) exp
{
y1(k − l)

} − m∑
l=0

c2l(k) exp
{
y2(k − l)

}
1 + exp

{
y2(k − l)

}
]
,

y2(k + 1) − y2(k) = λ

[
r2(k) −

m∑
l=0

a2l(k) exp
{
y2(k − l)

} − m∑
l=0

c1l(k) exp
{
y1(k − l)

}
1 + exp

{
y1(k − l)

}
]
.

(3.20)

Suppose that y = {y(k)} = {(y1(k), y2(k))
�} ∈ X is a solution of (3.20) for a certain λ ∈ (0, 1).

Summing both sides of (3.20) from 0 to ω − 1 with respect to k, we can derive

r1ω =
ω−1∑
k=0

m∑
l=0

a1l(k) exp
{
y1(k − l)

}
+

ω−1∑
k=0

m∑
l=0

c2l(k) exp
{
y2(k − l)

}
1 + exp

{
y2(k − l)

} ,

r2ω =
ω−1∑
k=0

m∑
l=0

a2l(k) exp
{
y2(k − l)

}
+

ω−1∑
k=0

m∑
l=0

c1l(k) exp
{
y1(k − l)

}
1 + exp

{
y1(k − l)

} .

(3.21)

Since y = {y(k)} ∈ X, there exist ξi ∈ Iω such that

yi(ξi) = min
k∈Iω

{
yi(k)

}
, i = 1, 2. (3.22)

It follows from (3.21) that

riω ≥
ω−1∑
k=0

m∑
l=0

ail(k) exp
{
yi(ξi)

}
+

ω−1∑
k=0

m∑
l=0

cjl(k) exp
{
yj(ξi)

}
1 + exp

{
yj(ξi)

}

>
ω−1∑
k=0

m∑
l=0

ail(k) exp
{
yi(ξi)

}

= ω
m∑
l=0

ail exp
{
yi(ξi)

}
, i, j = 1, 2, i /= j,

(3.23)
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which implies

yi(ξi) < ln
ri∑m
l=0 ail

= ln
ri
Ai

, i = 1, 2, (3.24)

where Ai
def=
∑m

l=0 ail, besides, from (3.20) and (3.21)

ω−1∑
k=0

∣∣yi(k + 1) − yi(k)
∣∣ ≤ λ

{
ω−1∑
k=0

[
ri(k) +

m∑
l=0

ail(k) exp
{
yi(k − l)

}
+

m∑
l=0

cjl(k) exp
{
yj(k − l)

}
1 + exp

{
yj(k − l)

}
]}

≤ 2riω, i, j = 1, 2, i /= j.

(3.25)

By (3.24), (3.25), and Lemma 3.2, we have

yi(k) ≤ yi(ξi) +
ω−1∑
s=0

∣∣yi(s + 1) − yi(s)
∣∣ ≤ ln

ri
Ai

+ 2riω. (3.26)

On the other hand, there also exist ηi ∈ Iω such that

yi

(
ηi
)
= max

k∈Iω

{
yi(k)

}
, i = 1, 2. (3.27)

In view of (3.21), we can obtain

riω ≤
ω−1∑
k=0

m∑
l=0

ail(k) exp
{
yi

(
ηi
)}

+
ω−1∑
k=0

m∑
l=0

cjl(k)

=

[
m∑
l=0

ail exp
{
yi

(
ηi
)}

+
m∑
l=0

cjl

]
ω, i, j = 1, 2, i /= j.

(3.28)

Therefore,

ri ≤
m∑
l=0

ail exp
{
yi

(
ηi
)}

+
m∑
l=0

cjl, i, j = 1, 2, i /= j. (3.29)

Then

exp
{
yi

(
ηi
)}

>
ri −

∑m
l=0 cjl∑m

l=0 ail

def= Bi, i, j = 1, 2, i /= j. (3.30)

That is,

yi

(
ηi
)
> lnBi, i = 1, 2. (3.31)
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By (3.25), (3.31), and Lemma 3.2, we have

yi(k) ≥ yi

(
ηi
) − ω−1∑

s=0

∣∣yi(s + 1) − yi(s)
∣∣ ≥ lnBi − 2riω, i = 1, 2. (3.32)

Inequalities (3.26) and (3.32) imply

∣∣yi(k)
∣∣ ≤ max

{∣∣∣∣ln ri
Ai

+ 2riω
∣∣∣∣, |lnBi − 2riω|

}
def= Hi, i = 1, 2. (3.33)

Obviously, Bi,Ai, and Hi in (3.33) are independent of λ, respectively. Denote H =
H1 + H2 + h0, where h0 is taken sufficiently large such that any solution {(ỹ1, ỹ2)

�} of the
system of algebraic equations

m∑
l=0

a1l exp
(
y1
)
+

m∑
l=0

c2l exp
(
y2
)

1 + exp
(
y2
) = r1,

m∑
l=0

a2l exp
(
y2
)
+

m∑
l=0

c1l exp
(
y1
)

1 + exp
(
y1
) = r2

(3.34)

satisfies ‖(ỹ1, ỹ2)
�‖ = max{|ỹ1|, |ỹ2|} < h0 (If system (3.34) has at least one solution). Let

Ω def= {y : (y1, y2) ∈ X | ‖y‖ < H}, thus condition (a) in Lemma 3.1 holds. When y ∈
∂Ω ∩ KerL = ∂Ω ∩ R2, y = {(y1, y2)

�}, (y1, y2)
� is a constant vector in R2 with ‖y‖ = H. If

system (3.34) has at least one solution, then

QN

[
y1

y2

]
=

⎡
⎢⎢⎢⎢⎢⎣
r1 −

m∑
l=0

a1l exp
(
y1
) − m∑

l=0

c2l exp
(
y2
)

1 + exp
(
y2
)

r2 −
m∑
l=0

a2l exp
(
y2
) − m∑

l=0

c1l exp
(
y1
)

1 + exp
(
y1
)

⎤
⎥⎥⎥⎥⎥⎦/=

[
0

0

]
. (3.35)

If system (3.34) does not have one solution, then it is obvious that

QN

[
y1

y2

]
/=

[
0

0

]
. (3.36)

This implies that condition (b) in Lemma 3.1 is satisfied.
Now we prove that condition (c) in Lemma 3.1 holds. Define Φ : DomL × [0, 1] → X

as follows:

Φ
(
y1, y2, μ

)
=

⎡
⎢⎢⎢⎢⎣
r1 −

m∑
l=0

a1l exp
(
y1
)

r2 −
m∑
l=0

a2l exp
(
y2
)

⎤
⎥⎥⎥⎥⎦ + μ

⎡
⎢⎢⎢⎢⎢⎣
−

m∑
l=0

c2l exp
(
y2
)

1 + exp
(
y2
)

−
m∑
l=0

c1l exp
(
y1
)

1 + exp
(
y1
)

⎤
⎥⎥⎥⎥⎥⎦, (3.37)
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where μ is a parameter with μ ∈ [0, 1]. When y = {(y1, y2)
�} ∈ ∂Ω ∩ KerL = ∂Ω ∩ R2,

(y1, y2)
� is a constant vector in R2 with ‖y‖ = H. We will show that {(y1, y2)

�} ∈ ∂Ω ∩ KerL,
Φ(y1, y2, μ)/= 0. If the conclusion is not true, then there is a constant vector (y1, y2)

� ∈ R2 with
‖y‖ = H satisfying Φ(y1, y2, μ) = 0, that is,

r1 −
m∑
l=0

a1l exp
(
y1
) − μ

m∑
l=0

c2l exp
(
y2
)

1 + exp
(
y2
) = 0,

r2 −
m∑
l=0

a2l exp
(
y2
) − μ

m∑
l=0

c1l exp
(
y1
)

1 + exp
(
y1
) = 0.

(3.38)

A similar argument to the above shows that ‖y‖ < H, which is a contradiction. Using the
property of topological degree and taking J = I : ImQ → KerL, (y1, y2)

� → (y1, y2)
�, we

have

deg
{
JQN

(
y1, y2

)�
,Ω ∩ KerL, (0, 0)�

}

= deg
{
Φ
(
y1, y2, 1

)�
,Ω ∩ KerL, (0, 0)�

}

= deg
{
Φ
(
y1, y2, 0

)�
,Ω ∩ KerL, (0, 0)�

}

= deg

⎧⎨
⎩
(
r1 −

m∑
l=0

a1l exp
(
y1
)
, r2 −

m∑
l=0

a2l exp
(
y2
))�

,Ω ∩ KerL, (0, 0)�

⎫⎬
⎭.

(3.39)

Obviously, the following equations:

r1 −
m∑
l=0

a1l exp(u1) = 0, r2 −
m∑
l=0

a2l exp(u2) = 0 (3.40)

have the unique solution (ũ1, ũ2)
� ∈ R2. Therefore, we have

deg
{
JQN

(
y1, y2

)�
,Ω ∩ KerL, (0, 0)�

}
= sign

{
m∑
l=0

a1l exp(ũ1)
m∑
l=0

a2l exp(ũ2)

}
= 1/= 0. (3.41)

Finally, we will show that N is L-compact on Ω. For any y ∈ Ω, we have

∥∥QNy
∥∥ =

∥∥∥∥∥ 1
ω

ω−1∑
s=0

Ny(x)

∥∥∥∥∥
≤ max

{
rU1 +

m∑
l=0

aU
1l exp(H1) +

m∑
l=0

cU2l , r
U
2 +

m∑
l=0

aU
2l exp(H2) +

m∑
l=0

cU1l

}
def= E.

(3.42)

Hence, QN(Ω) is bounded. Obviously, QNy : Ω → Y is continuous.
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It is easy to see that

∥∥Kp(I −Q)Ny
∥∥ ≤

ω−1∑
s=0

∥∥Ny(s)
∥∥ +

1
ω

ω−1∑
s=0

(ω − s)
∥∥Ny(s)

∥∥ +
1 + 3ω
2ω

ω−1∑
s=0

∥∥Ny(s)
∥∥ ≤ 1 + 7ω

2
E.

(3.43)

For any y ∈ Ω, k1, k2 ∈ Iω, without loss of generality, let k2 > k1, then we have

∣∣Kp(I −Q)Ny(k2) −Kp(I −Q)Ny(k1)
∣∣

=

∣∣∣∣∣
k2−1∑
s=k1

Ny(s) − k2 − k1
ω

ω−1∑
s=0

Ny(s)

∣∣∣∣∣
≤

k2−1∑
s=k1

∣∣Ny(s)
∣∣ + k2 − k1

ω

ω−1∑
s=0

∣∣Ny(s)
∣∣ ≤ 2E|k2 − k1|.

(3.44)

Thus, the set {Kp(I − Q)Ny | y ∈ Ω} is equicontinuous and uniformly bounded. By
using the Arzela-Ascoli theorem, we see thatKp(I−Q)N : Ω → X is compact. Consequently,
N is L-compact.

By now, we know that Ω verifies all the requirements in Lemma 3.1 and then system
(3.12) has at least one ω-periodic solution. By the medium of (3.11), we derive that system
(1.1) has at least one ω-periodic solution. This completes the proof of Theorem 3.3.

Next, by constructing a suitable Lyapunov-like discrete function, we further investi-
gate the global attractivity of positive periodic solutions of system (1.1).

Theorem 3.4. In addition to (3.10), assume further that there exists a constant η > 0 such that

min
{
ai0∗,

2
Mi

− a∗
i0

}
−maM

i − (m + 1)cMi ≥ η, i = 1, 2, (3.45)

whereMi (i=1,2) are defined in (2.5) and

aM
i = max

{
a∗
il : l = 1, 2, 3, . . . , m

}
, cMi = max

{
c∗il : l = 0, 1, 2, . . . , m

}
, i = 1, 2. (3.46)

Then the positive periodic solution of system (1.1) is globally attractive.
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Proof. Let {(x̃1(k), x̃2(k))
�} be a positive periodic solution of system (1.1). To finish the proof

of Theorem 3.4, we will consider the following two steps.

Step 1. Let V11(k) = | lnx1(k)− ln x̃1(k)|, then it follows from the first equation of system (1.1)
that

V11(k + 1) = |lnx1(k + 1) − ln x̃1(k + 1)|

=

∣∣∣∣∣
[
lnx1(k) + r1(k) −

m∑
l=0

a1l(k)x1(k − l) −
m∑
l=0

c2l(k)x2(k − l)
1 + x2(k − l)

]

−
[
ln x̃1(k) + r1(k) −

m∑
l=0

a1l(k)x̃1(k − l) −
m∑
l=0

c2l(k)x̃2(k − l)
1 + x̃2(k − l)

]∣∣∣∣∣
≤ |lnx1(k) − ln x̃1(k) − a10(k)[x1(k) − x̃1(k)]|

+
m∑
l=1

a1l(k)|x1(k − l) − x̃1(k − l)| +
m∑
l=0

c2l(k)|x2(k − l) − x̃2(k − l)|.

(3.47)

By the mean value theorem, we have

x1(k) − x̃1(k) = exp[lnx1(k)] − exp[ln x̃1(k)] = ξ1(k) ln
x1(k)
x̃1(k)

, (3.48)

that is,

ln
x1(k)
x̃1(k)

=
1

ξ1(k)
[x1(k) − x̃1(k)], (3.49)

where ξ1(k) lies between x1(k) and x̃1(k). Then we have

∣∣∣∣ln x1(k)
x̃1(k)

− a10(k)[x1(k) − x̃1(k)]
∣∣∣∣

=
∣∣∣∣ln x1(k)

x̃1(k)

∣∣∣∣ −
∣∣∣∣ln x1(k)

x̃1(k)

∣∣∣∣ +
∣∣∣∣ln x1(k)

x̃1(k)
− a10(k)[x1(k) − x̃1(k)]

∣∣∣∣
=
∣∣∣∣ln x1(k)

x̃1(k)

∣∣∣∣ − 1
ξ1(k)

|x1(k) − x̃1(k)| +
∣∣∣∣ 1
ξ1(k)

[x1(k) − x̃1(k)] − a10(k)[x1(k) − x̃1(k)]
∣∣∣∣

=
∣∣∣∣ln x1(k)

x̃1(k)

∣∣∣∣ − 1
ξ1(k)

|x1(k) − x̃1(k)| +
∣∣∣∣ 1
ξ1(k)

− a10(k)
∣∣∣∣ × |x1(k) − x̃1(k)|

=
∣∣∣∣ln x1(k)

x̃1(k)

∣∣∣∣ −
[

1
ξ1(k)

−
∣∣∣∣ 1
ξ1(k)

− a10(k)
∣∣∣∣
]
× |x1(k) − x̃1(k)|.

(3.50)
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And hence it follows from (3.47) and (3.50) that

ΔV11(k) = V11(k + 1) − V11(k)

≤ −
[

1
ξ1(k)

−
∣∣∣∣ 1
ξ1(k)

− a10(k)
∣∣∣∣
]
× |x1(k) − x̃1(k)|

+
m∑
l=1

a1l(k)|x1(k − l) − x̃1(k − l)| +
m∑
l=0

c2l(k)|x2(k − l) − x̃2(k − l)|.

(3.51)

Step 2. Let

V12(k) =
m∑
l=1

k−1∑
s=k−l

a1l(s + l)|x1(s) − x̃1(s)| +
m∑
l=0

k−1∑
s=k−l

c2l(s + l)|x2(s) − x̃2(s)|. (3.52)

For the sake of convenience, we will make a convention that
∏k2

i=k1
b(i) = 1 if k1 > k2

for any bounded sequence b(i). By a simple calculation, it derives that

ΔV12(k) = V12(k + 1) − V12(k)

=
m∑
l=1

k∑
s=k−l+1

a1l(s + l)|x1(s) − x̃1(s)| +
m∑
l=0

k∑
s=k−l+1

c2l(s + l)|x2(s) − x̃2(s)|

−
m∑
l=1

k−1∑
s=k−l

a1l(s + l)|x1(s) − x̃1(s)| −
m∑
l=0

k−1∑
s=k−l

c2l(s + l)|x2(s) − x̃2(s)|

=
m∑
l=1

a1l(k + l)|x1(k) − x̃1(k)| −
m∑
l=1

a1l(k)|x1(k − l) − x̃1(k − l)|

+
m∑
l=0

c2l(k + l)|x2(k) − x̃2(k)| −
m∑
l=0

c2l(k)|x2(k − l) − x̃2(k − l)|.

(3.53)

Now, we are in a position to define V1(k) by

V1(k) = V11(k) + V12(k). (3.54)

Therefore, it follows from (3.51) and (3.53) that

ΔV1(k) = ΔV11(k) + ΔV12(k)

≤ −
[

1
ξ1(k)

−
∣∣∣∣ 1
ξ1(k)

− a10(k)
∣∣∣∣ −

m∑
l=1

a1l(k + l)

]
× |x1(k) − x̃1(k)|

+
m∑
l=0

c2l(k + l)|x2(k) − x̃2(k)|.

(3.55)
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By a similar argument, we can define V2(k) by

V2(k) = V21(k) + V22(k), (3.56)

where

V21(k) = |lnx2(k) − ln x̃2(k)|,

V22(k) =
m∑
l=1

k−1∑
s=k−l

a2l(s + l)|x2(s) − x̃2(s)| +
m∑
l=0

k−1∑
s=k−l

c1l(s + l)|x1(s) − x̃1(s)|.
(3.57)

Then it is easy to derive that

ΔV2(k) = ΔV21(k) + ΔV22(k)

≤ −
[

1
ξ2(k)

−
∣∣∣∣ 1
ξ2(k)

− a20(k)
∣∣∣∣ −

m∑
l=1

a2l(k + l)

]
× |x2(k) − x̃2(k)|

+
m∑
l=0

c1l(k + l)|x1(k) − x̃1(k)|,

(3.58)

where ξ2(k) is between x2(k) and x̃2(k).
Now we can define a Lyapunov-like discrete function V (k) by

V (k) = V1(k) + V2(k). (3.59)

It is easy to see that V (k) ≥ 0 for all k ∈ Z and V (k0 +m) < +∞. For the arbitrariness of
ε and by (3.45), we can choose a small enough ε > 0 such that

min
{
ai0∗,

2
Mi + ε

− a∗
i0

}
−maM

i − (m + 1)cMi ≥ η, i = 1, 2. (3.60)
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Therefore, it follows from (3.55)–(3.60) that

ΔV (k) = ΔV1(k) + ΔV2(k)

≤ −
2∑
i=1

{
1

ξi(k)
−
∣∣∣∣ 1
ξi(k)

− ai0(k)
∣∣∣∣ −

m∑
l=1

ail(k + l) −
m∑
l=0

cil(k + l)

}
× |xi(k) − x̃i(k)|

≤ −
2∑
i=1

{
min

{
ai0∗,

2
Mi + ε

− a∗
i0

}
−

m∑
l=1

a∗
il −

m∑
l=0

c∗il

}
× |xi(k) − x̃i(k)|

≤ −
2∑
i=1

{
min

{
ai0∗,

2
Mi + ε

− a∗
i0

}
−maM

i − (m + 1)cMi

}
× |xi(k) − x̃i(k)|

≤ −η
2∑
i=1

|xi(k) − x̃i(k)| for k ≥ k0 +m.

(3.61)

Thus, by (3.61) we obtain

V (k + 1) + η
k∑

p=k0+m

2∑
i=1

∣∣xi

(
p
) − x̃i

(
p
)∣∣ ≤ V (k0 +m) for any k ≥ k0 +m,

+∞∑
k=k0+m

2∑
i=1

|xi(k) − x̃i(k)| ≤ V (k0 +m)
η

< +∞,

(3.62)

from which we conclude that
∑2

i=1 |xi(k) − x̃i(k)| = 0 when k → +∞, that is,

lim
k→+∞

|x1(k) − x̃1(k)| = 0, lim
k→+∞

|x2(k) − x̃2(k)| = 0. (3.63)

According to Definition 1.2, this result implies that the positive periodic solution
{(x̃1(k), x̃2(k))

�} is globally attractive. This completes the proof of Theorem 3.4.

4. Example and Numerical Simulation

In this paper, a discrete time non-autonomous two-species competitive system with delays
is investigated. By using difference inequality technique, continuous theorem of coincidence
degree theory, and Lyapunov discrete function, sufficient conditions for the permanence of
system (1.1) and the existence and global attractivity of positive periodic solutions of system
(1.1) are obtained, respectively.
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Figure 1: Permanence of system (4.1) with x1(−1) = 0.2, x1(0) = 0.018, x2(−1) = 0.3, and x2(0) = 0.017. (a)
Time series of x1. (b) Time series of x2.

To substantiate our analytical results, we construct the following example:

x1(k + 1) = x1(k) exp
[
r1(k) − a10(k)x1(k) − a11(k)x1(k − 1) − c20(k)x2(k)

1 + x2(k)
− c21(k)x2(k − 1)

1 + x2(k − 1)

]
,

x2(k + 1) = x2(k) exp
[
r2(k) − a20(k)x2(k) − a21(k)x2(k − 1) − c10(k)x1(k)

1 + x1(k)
− c11(k)x1(k − 1)

1 + x1(k − 1)

]
.

(4.1)

We first verify the sufficient conditions for permanence of system (4.1) and choose the
coefficients

r1(k) = 0.85 + 0.04 sin k, r2(k) = 0.87 + 0.01 sin k,

a10(k) = a11(k) = 1.83 + 0.02 sin k, a20(k) = a21(k) = 1.20 + 0.03 sin k,

c10(k) = c11(k) = 0.05 + 0.01 sin k, c20(k) = c21(k) = 0.04 + 0.01 sin k

(4.2)

and the initial conditions

x1(−1) = 0.2, x1(0) = 0.018, x2(−1) = 0.3, x2(0) = 0.017. (4.3)

It is easy to see that system (4.1) satisfies assumption (2.6) of Theorem 2.3, and hence system
(4.1) is permanent (see Figure 1).
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Figure 2: Dynamic behaviors of system (4.1) with x1(−1) = 0.02, x1(0) = 0.0660, x2(−1) = 0.03, and x2(0) =
0.0608. (a) Time series of x1. (b) Time series of x2. (c) Phase portrait of x1 and x2 with k over [0, 120]. (d)
Phase portrait of x1 and x2 with k over [110, 120].

In the following, we will consider the existence and global attractivity of positive
periodic solutions of system (4.1). We assume that

r1(k) = 0.0695 + 0.0055 cosπk, r2(k) = 0.0665 − 0.0005 cosπk,

a10(k) = 1.0080 + 0.0010 cosπk, a20(k) = 1.0425 − 0.0005 cosπk,

a11(k) = 0.0080 − 0.0010 cosπk, a21(k) = 0.0425 − 0.0005 cosπk,

c10(k) = 0.00035 + 0.00015 cosπk, c20(k) = 0.00035 − 0.00005 cosπk,

c11(k) = 0.00045 + 0.00015 cosπk, c21(k) = 0.00045 − 0.00005 cosπk.

(4.4)

It is easy to verify that assumptions (3.10) of Theorem 3.3 are satisfied. Figure 2 shows
that system (4.1) has a 2-periodic solution {(x1(k), x2(k))

�}, which implies that the two
species x1 and x2 can coexist. Furthermore, a calculation can show that the assumptions
(3.34) of Theorem 3.4 are satisfied, so {(x1(k), x2(k))

�} is globally attractive, that is, any
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Figure 3: Time series of x∗
1, x1 and x∗

2, x2. (a) Time series of x∗
1, x1 with x∗

1(−1) = 0.03, x∗
1(0) = 0.0662,

x1(−1) = 0.02, and x1(0) = 0.0668. (b) Time series of x∗
2, x2 with x∗

2(−1) = 0.04, x∗
2(0) = 0.0606, x2(−1) = 0.05,

and x2(0) = 0.0607.

positive solution {(x∗
1(k), x

∗
2(k))

�} of system (4.1) tends to {(x1(k), x2(k))
�} (see Figure 3).

From Figure 3(a), we see that x∗
1 with x∗

1(−1) = 0.03 and x∗
1(0) = 0.0662 will tend to x1 with

x1(−1) = 0.02 and x1(0) = 0.0668. Similarly, from Figure 3(b), we see that x∗
2 with x∗

2(−1) = 0.04
and x∗

2(0) = 0.0606 will tend to x2 with x2(−1) = 0.05 and x2(0) = 0.0607.
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